七年级上数学单元测试2-1(含答案)人教版
- 格式:doc
- 大小:242.50 KB
- 文档页数:5
一、选择题1.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 2.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53- C .-2 D .1 3.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =04.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D . 5.下列运用等式的性质对等式进行的变形中,错误的是( ) A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=- 6.解方程-3x=2时,应在方程两边( ) A .同乘以-3 B .同除以-3 C .同乘以3 D .同除以37.已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b =D .2a b= 8.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3.A .38B .34C .28D .449.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( )A .3x ﹣20=24x +25B .3x +20=4x ﹣25C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x=1B .(9+7)x=1C .11()179x -= D .11()179x += 11.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++= 12.某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元二、填空题13.我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“. 例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b 的值为_____.14.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 15.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.16.定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________. 17.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.18.一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x 个玩具,根据题意可列方程______.19.(1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m =___________. 20.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.三、解答题21.一天,某客运公司的甲、乙两辆客车分别从相距380千米的A 、B 两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C 地,此时两车相距20千米,甲车在服务区C 地休息了20分钟,然后按原速度开往B 地;乙车行驶2小时15分钟时也经过C 地,未停留继续开往A 地.(友情提醒:画出线段图帮助分析)(l )乙车的速度是 千米/小时,B 、C 两地的距离是 千米,A 、C 两地的距离是 千米;(2)甲车的速度是 千米/小时;(3)这一天,乙车出发多长时间,两车相距200千米?22.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 23.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份水量和缴纳水费情况,根据表格提供的数据,回答:)规定用量内的收费标准是 元吨,超过部分的收费标准是 元/吨;(2)问该市每户每月用水规定量是多少吨?(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?24.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?25.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?26.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 2.B解析:B【分析】根据方程的解求得m 的值,然后将m 的值代入方程3261x m x +=+求解x 的值即可.【详解】解:∵x=5是关于x 的方程4x+2m=3x+1的解,∴20+2m=15+1,解得:m=-2,∴方程变为3x-4=6x+1,解得:x=53 -.故选B.【点睛】本题考查了二元一次方程的解的知识,解题的关键是根据方程的解求得m的值,难度不大.3.A解析:A【分析】利用等式的性质解方程即可解答.【详解】解:移项得:2+2x4+4x=合并同类项得:48x=系数化为1得:2x=故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.4.D解析:D【解析】【分析】根据每一行、每一列以及两条对角线中所填的数字之和均相等,可求出方格中间、右下以及右上的数,再由每一行、每一列所填的数字之和相等,即可得出关于x的一元一次方程,解之即可得出结论.【详解】16+11+12−11−15=13,16+11+12−16−13=10,16+11+12−10−15=14.根据题意得:16+11+12=16+x+14,解得:x=9.故选:D.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找出等量关系.5.C解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A 、根据等式性质2,a (x 2+1)=b (x 2+1)两边同时除以(x 2+1)得a=b ,原变形正确,故这个选项不符合题意;B 、根据等式性质2,a=b 两边都乘c ,即可得到ac=bc ,原变形正确,故这个选项不符合题意;C 、根据等式性质2,c 可能为0,等式两边同时除以c 2,原变形错误,故这个选项符合题意;D 、根据等式性质1,x=y 两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C .【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.6.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.D解析:D【分析】根据等式的性质判断即可.【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确;B 、因为a=2b ,所以a-m=2b-m ,正确;C 、因为a=2b ,所以2a =b ,正确; D 、因为a=2b ,当b≠0,所以a b =2,错误; 故选D .【点睛】此题考查比例的性质,关键是根据等式的性质解答.8.C解析:C【解析】试题设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C.9.B解析:B【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可.【详解】解:根据题意可得:3x+20=4x﹣25.故选B.【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.10.D解析:D【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x天相遇,可列方程为:11()1 79x+=.故选D.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.11.C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.12.C解析:C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135,解得:x=108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x=135,解得:x=180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.二、填空题13.【详解】解:(1)解方程3x=a得x=∵关于x的一元一次方程3x=a是和解方程∴=3+a解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b∴﹣2b=ab+b∵方程﹣2x=ab+b是和解方程∴b=a解析:92-113-【详解】解:(1)解方程3x=a得x=,∵关于x的一元一次方程3x=a是“和解方程”,∴=3+a,解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b,∴﹣2b=ab+b,∵方程﹣2x=ab+b是“和解方程“,∴b=ab+b﹣2,即b=﹣2b﹣2,解得b=﹣,∴a=﹣3,∴a+b=﹣3﹣=﹣.故答案为﹣,﹣.14.5291【分析】根据比例设这三个数分别为2x4x7x再根据这三个数的和是169列方程即可求解【详解】设这三个数分别为2x4x7x则2x+4x+7x=169解得x=13所以这三个数分别为265291故解析:52 91【分析】根据比例设这三个数分别为2x,4x,7x,再根据这三个数的和是169列方程即可求解.【详解】设这三个数分别为2x,4x,7x,则2x+4x+7x=169,解得x=13,所以这三个数分别为26,52,91.故答案为:26,52,91.【点睛】此题主要考查列一元一次方程解应用题,根据比例设未知数是解题关键.15.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x+(7-x)=15,解得x=4,故答案为:4.16.【分析】根据定义新运算及求出x的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x的值再利用新的运算方法解决问题解析:19 35【分析】根据定义新运算及5213*=,求出x的值,即可求出34*的值.【详解】解:∵1(1)(1)x a b a b a b *=++++,5213*= ∴15=21(21)(11)3++++x ∴=8x ∴18(1)(1)*=++++a b a b a b ∴181934=34(31)(41)35*=++++ 故答案为:1935【点睛】 本题主要考查定义新运算的知识,解答此题的关键是,根据所给出的式子,得出x 的值,再利用新的运算方法解决问题.17.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算解析:1【分析】根据新定义的运算法则,代入计算即可得到答案.【详解】解:∵*2a b b a =-,∴()3*12(1)31x x +=+-=,∴211x -=,∴1x =;故答案为:1.【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行运算. 18.【解析】【分析】依据题意分析可得等量关系:两总分法实际上球的个数不变【详解】解:若设有个玩具由题意得【点睛】本题考查了一元一次方程的应用解答本题的关键是读懂题意找出等量关系列方程求解解析:3(2)29x x -=+【解析】【分析】依据题意分析,可得等量关系: 两总分法实际上球的个数不变.【详解】解:若设有x 个玩具,由题意得,3(2)29x x -=+【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.19.-y 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到【详解】(1)∵−3x =3y ∴x =−y ;故答案为:−y ;(2)∵∴;故答案解析:-y23n 【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x =−y ;(2)根据等式性质2把等式两边都除以3即可得到3m =23n . 【详解】(1)∵−3x =3y ,∴x =−y ;故答案为:−y ;(2)∵2m n =, ∴3m =23n ; 故答案为:23n 【点睛】 本题考查了等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.20.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.三、解答题21.(1)80,180,200;(2)100(3)乙车出发1小时或11327小时,两车相距200千米【分析】(1)由题意可知,甲车2小时到达C地,休息了20分钟,乙车行驶2小时15分钟也到C 地,这20分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B、C两地的距离和A、C两地的距离即可解答.(2)根据A、C两地的距离和甲车到达服务区C地的时间可求出甲车的速度;(3)此题分为两种情况,未相遇和相遇以后相距200千米,据此根据题意列出符合题意得方程即可解答.【详解】解:(1)15分钟=14小时,2小时15分=94小时,20分钟=13小时乙车的速度为:20÷14=80(千米/小时);B、C两地的距离是:80×94=180(千米);A、C两地的距离是:380-180=200(千米);故答案为:80,180,200;(2)甲车的速度是:200÷2=100(千米/小时);故答案为:100;(3)设乙车出发x小时,两车相距200千米.由题意得,100x+80x+200=380或100(x-13)+80x=380+200解得:x=1或x=11 3 27答:乙车出发1小时或11327小时,两车相距200千米【点睛】本题主要考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x,然后根据k是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.23.(1)2;3(2)规定用水量为10吨(3)六月份的用水量为20吨【分析】(1)由小明家1,2月份的用水情况,可求出规定用量内的收费标准;由小明家3,4月份的用水情况,可求出超过部分的收费标准;(2)设该市规定用水量为a 吨,由小明家3月份用水12吨缴纳26元,即可得出关于a 的一元一次方程,解之即可得出结论;(3)设小明家6月份的用水量是x 吨,根据应缴水费=2×10+3×超出10吨部分,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】(1)由表可知,规定用量内的收费标准是2元/吨,超过部分的收费标准为3元/吨 (2)设规定用水量为a 吨;则23(12)26a a +-=,解得:10a =,即规定用水量为10吨;(3)∵2102050⨯=<,∴六月份的用水量超过10吨,设用水量为x 吨,则2103(10)50x ⨯+-=,解得:20x, ∴六月份的用水量为20吨【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:通过分析小明家1-4月用水量和交费情况,找出结论;找准等量关系,正确列出一元一次方程.24.180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.25.原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.26.(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.。
人教版七年级数学上册第二章单元测试题(含答案)一、单选题1.下列各组单项式中,属于同类项的是( )A .2x y 与22yxB .2ab 与2a b -C .4x -与4y -D .3ab 与3a b2.下列说法正确的是( )A .单项式2xy-的系数是-2 B .单项式23x y -与4x 是同类项 C .单项式2x yz -的次数是4D .多项式3221x x --是三次三项式3.下列各式中,正确的是( )A .325a a a +=B .235a b ab +=C .321ab ab -=D .22223a b a b a b -=-4.多项式245634a a a ---的最高次项为( )A .-4B .4C .44aD .44a -5.一台整式转化器原理如图,开始时输入关于x 的整式M ,当21M x =+时,第一次输出41x +,继续下去,则第3次输出的结果是( )A .161x +B .141x +C .121x +D .81x +6.已知单项式13a b x y -与436x y 是同类项,则代数式a+b 的值为( )A .5B .6C .7D .87.下列说法中正确的个数是( )⑴a 和0都是单项式.⑵多项式2223721a b a b ab -+-+的次数是3. ⑶单项式22π3a b -的系数为23-.⑷222x xy y +-可读作2x 、2xy 、2y -的和. A .1个B .2个C .3个D .4个8.将1,2,3,4,5,6六个数随机分成2组,每组各3个,分别用 1a , 2a , 3a 和 1b , 2b ,3b 表示,且 123a a a << , 123b b b >> ,设 112233m a b a b a b =-+-+- ,则 m 的可能值为( ). A .3B .39或C .9D .59或9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .210.多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A .2B .-4C .-2D .-8二、填空题11.将多项式2233235x y xy x y -++-按字母y 降幂排列是 . 12.多项式2365a a --中的常数项是 .13.若42m a b -与325n a b +是同类项,则m n -+的值是 . 14.若单项式12m xy -与32n x y -的差是单项式,则m n -的值是 .15.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 步,落脚点表示的数是 .(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是 个单位;(4)若数轴上有个动点表示的数是x ,则|x+4|+|x+2|+|x-3|的最小值是 .16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x ,宽为y ,不重叠地放在一个底面为长方形(宽为a )的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是 (用只含b 的代数式表示).三、解答题17.先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.18.已知 22a b -=- ,求代数式 ()()22324232ab a b ab a b -+--+ 的值.19.先化简,再求值:()42424443a ab a ab a ---+,其中3a =-,2b =.20.已知有理数a 、b 、c 在数轴上对应的点如下图所示,化简:|||2|||b a a c c b --+-+21.设 ()()3254326356107133212ax x x x b x x x x x -+++=+-++- ,求a 与b 的值22.已知A=a 2-2ab+b 2,B=-a 2-3ab-b 2,求:2A-3B 。
2023-2024学年七年级数学上册《第一章有理数》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60 B.﹣36C.﹣90 D.﹣304.检测4个足球质量,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的是()A.+0.9 B.-3.6 C.-0.8 D.+2.55.算式的值与下列选项值相等的是()A.B.C.D.6.|a-2|+|b+1|=0,则a+b等于()A.-1 B.1 C.0 D.-27.一根1米长的绳子,第一次剪去它的三分之一,如此剪下去,第五次后剩下的绳子的长度为()A.米B.米C.米D.米8.有理数a,b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a| C.a+b>0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.比较大小:.(用“>”“=”或“<”填空).10.用四舍五入法将4.036取近似数并精确到0.01,得到的值是.11.一天早晨的气温是﹣2℃,半夜又下降了1℃,则半夜的气温是℃.12.某车间生产一批圆柱形机器零件,从中抽出了6件进行检验,把标准直径的长记为0,比标准直径长的记为正数,比标准直径短的记为负数,检查记录如下:则第个零件最符合标准.13.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.三、解答题:(本题共5题,共45分)14.计算15.计算:(1);(2) .16.计算:(1)(2)17.某仓库原有某种商品300件,现记录了8天内该种商品进出仓库的件数如下所示:(“+”表示进库,“﹣”表示出库)+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15.(1)经过8天,仓库内的该种商品是增加了还是减少了?此时仓库还有多少件商品?(2)如果该种商品每次进出仓库都需要支付人工费每件3元,请问这8天要支付多少人工费?18.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日. (3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.参考答案:1.C 2.B 3.B 4.C 5.A 6.B 7.B 8.C 9.>10.4.0411.-312.513.-6或614.解:﹣22﹣×[4﹣(﹣3)2]÷(﹣)=﹣4﹣×(4﹣9)×(﹣)=﹣4﹣×(﹣5)×(﹣)=﹣4﹣2=﹣6.15.(1)解:原式===== ;(2)解:原式=== .16.(1)解:;(2)解:= .17.(1)解:+30+(﹣10)+(﹣15)+(+25)+(+17)+(+35)+(﹣20)+(﹣15)=47(件)300+47=347(件)答:经过8天,仓库内的该种商品是增加了47件,此时仓库还有347件商品;(2)解:|+30|+|﹣10|+|﹣15|+|+25|+|+17|+|+35|+|﹣20|+|﹣15|=167(件)3×167=501(元)答:这8天要支付501元人工费.18.(1)解:由题意可知10月2日外出旅游的人数为:a+1.6+0.8=(a+2.4)万人(2)3;7(3)3600。
第 一 章 有 理 数班级 学号 姓名 得分一、选择题(4分³10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334³710人B 、33.4³510人C 、3.34³210人D 、3.34³610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)³51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ²y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1³20)mmB 、(0.1³40)mmC 、(0.1³220)mmD 、(0.1³202)mm二、填空题(5分³4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .14、观察下列各数,按规律在横线上填上适当的数。
一、选择题1.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43B .98C .65D .22.定义运算“*”,其规则为2*3a ba b +=,则方程4*4x =的解为( ) A .3x =- B .3x =C .2x =D .4x =3.下列变形中,正确的是( )A .变形为B .变形为C .变形为D .变形为4.下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---= D .由()217x x +=+去括号、移项、合并同类项得5x = 5.下列变形不正确的是( ) A .由2x-3=5得:2x=8 B .由-23x=2得:x=-3 C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x6.已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2B .x =2C .x =-12D .x =127.已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b = D .2ab= 8.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣69.对于ax+b=0(a ,b 为常数),表述正确的是( ) A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.10.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D11.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( ) A . B . C .D .12.四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题13.关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________.14.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.16.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.17.一个长方形周长是44cm,长比宽的3倍少10cm,则这个长方形的面积是______.18.在方程1322x-=-的两边同时_________,得x=__________.19.完成下列的解题过程:用两种方法解方程:11 (31)1(3) 43x x-=-+.(1)解法一:去分母,得______________.去括号,得_________________.移项、合并同类项,得________________.系数化为1,得_____________.(2)解法二:去括号,得______________.去分母,得________________.移项、合并同类项,得____________.系数化为1,得_______________.20.若关于x的方程3x m-2-m=0是一元一次方程,则m=________,方程的解为________.三、解答题21.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?22.解方程3232 4343x x-=-.23.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案. 24.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人? 25.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值.26.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+,解得,98x =, 故选B . 【点睛】本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.2.D解析:D 【分析】根据新定义列出关于x 的方程,解之可得. 【详解】 ∵4*x=4,∴234x⨯+=4, 解得x=4, 故选:D . 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.3.B解析:B 【解析】 【分析】利用等式的性质对每个等式进行变形即可找出答案. 【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x ;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.4.D解析:D 【分析】根据解一元一次方程的步骤计算,并判断. 【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误; D 、由()217x x +=+去括号得:227x x +=+, 移项、合并同类项得5x =,故正确. 故选:D . 【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.5.C解析:C 【分析】根据等式的性质逐一进行判断即可得答案. 【详解】A.由2x-3=5的两边同时加上3得:2x=8,故该选项正确,B.由-23x=2的两边同时乘以32-得:x=-3,故该选项正确, C.由2x=5的两边同时除以2得:x=52,故该选项错误, D.由x+5=3x-2的两边同时加上(2-x )得:7=2x ,故该选项正确, 故选:C . 【点睛】本题考查了等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.A解析:A 【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得. 【详解】两边同乘以6去分母,得62(23)x x -=+, 去括号,得646x x -=+, 移项,得646x x -=+, 合并同类项,得510x -=, 系数化为1,得2x =-, 故选:A . 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.7.D解析:D 【分析】根据等式的性质判断即可. 【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确; B 、因为a=2b ,所以a-m=2b-m ,正确; C 、因为a=2b ,所以2a=b ,正确; D 、因为a=2b ,当b≠0,所以ab=2,错误; 故选D . 【点睛】此题考查比例的性质,关键是根据等式的性质解答.8.D解析:D 【详解】因为xΔy =xy +x +y ,且2Δm =-16, 所以2m+2+m=-16, 解得m=- 6, 故选D.考点:1.新定义题2.一元一次方程.9.D解析:D 【分析】ax+b=0(a ,b 为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论. 【详解】A 、当a≠0时,方程的解是x=-ba,故错误; B 、当a=0,b≠0时,方程无解,故错误; C 、当a=0,b=0,方程有无数解,故错误; D 、以上都不正确. 故选D . 【点睛】此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.10.A解析:A【分析】设运动x秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入2x中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x秒后,乌龟和兔子第2020次相遇,依题意,得:2x+6x=2×4×2020,解得:x=2020,∴2x=4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A.故选:A.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】由题意可知:.故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.12.D解析:D【解析】【分析】把分母中的根式化去的过程称为分母有理化,所有分母的最小公倍数是6,因此两边同时乘6;把得到的方程去括号得到另一个形式的方程,由此判断.【详解】把分母中的根式化去的过程称为分母有理化,分母的最简公分母是6,则两边同时乘6得:2(x-1)-(x+2)=3(4-x),故③正确;去括号得:2x-2-x-2=12-3x,故②正确,故选:D.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.二、填空题13.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方解析:0或6或8【分析】先解方程,得到一个含有字母k的解,然后根据解是自然数解出k的值即可.【详解】解:移项得,9x-kx=2+7合并同类项得,(9-k)x=9,因为方程有解,所以k≠9,则系数化为1得,x=99-k,又∵关于x的方程9x-2=kx+7的解是自然数,∴k的值可以为:0、6、8.其自然数解相应为:x=1、x=3、x=9.故答案为:0或6或8.【点睛】本题考查解一元一次方程、方程的解,解答的关键是根据方程的解对整数k进行取值,注意不要漏解.14.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15 【点睛】考核知识点:解一元一次方程.理解程序意义是关键.15.20【分析】设王老师家三月份用水x 吨根据水费=10×2+超出10吨的部分×3及水费=50即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设王老师家三月份用水x 吨依题意:解得故答案为20【点睛解析:20 【分析】设王老师家三月份用水x 吨,根据水费=10×2+超出10吨的部分×3及水费=50,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设王老师家三月份用水x 吨.依题意:102(10)350x ⨯+-⨯=,解得20x,故答案为20. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题解析:100 【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得. 【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件) ∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x 解得:100x =答:该商品每件的进价为100元. 故答案为:100 【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.17.112cm2【分析】根据长方形的特征对边平行且相等长方形的周长=(长+宽)×2已知长是宽的3倍少10cm 也就是长=3宽-10再根据长方形的面积公式s=ab 列式解答【详解】解:设长方形的宽为xcm 则长解析:112cm 2.【分析】根据长方形的特征,对边平行且相等,长方形的周长=(长+宽)×2,已知长是宽的3倍少10cm ,,也就是长=3宽-10,再根据长方形的面积公式s=ab ,列式解答.【详解】解:设长方形的宽为xcm,则长为(3x-10)cm,依题意得:2x+2(3x-10)=44解得:x=8∴长方形的长=38⨯-10=14cm.∴这个长方形的面积=14⨯8=112cm 2.故答案为112 cm 2.【点睛】此题主要考查长方形的周长公式、面积公式的综合运用.18.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x =-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:加12 1- 【解析】【分析】根据等式的性质2,方程的两边加12即可. 【详解】 方程1322x -=-的两边同时加12得:x =-1, 故答案为:加12;1-. 【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.19.【解析】【分析】解一元一次方程的一般步骤是:去分母去括号移项合并同类项系数化1但步骤也并不是固定不变的要灵活掌握【详解】两种方法解方程:解法1:去分母得去括号得9x -3=12-4x -12移项合并同类解析:3(31)124(3)x x -=-+, 9312412x x -=--, 133x =, 313x =, 31111443x x -=--, 9312412x x -=--, 133x =, 313x = 【解析】解一元一次方程的一般步骤是:去分母,去括号,移项合并同类项,系数化1,但步骤也并不是固定不变的,要灵活掌握.【详解】 两种方法解方程:11(31)1(3)43x x -=-+ 解法1:去分母,得3(31)124(3)x x -=-+. 去括号,得9x -3=12-4x -12移项、合并同类项,得13x=3.系数化为1,得313x =. 解法2:去括号,得31111443x x -=-- 去分母,得9312412x x -=--移项、合并同类项,得13x=3系数化为1,得313x =故答案为:(1) 3(31)124(3)x x -=-+(2) 9312412x x -=--(3) 133x = (4) 313x =(5) 31111443x x -=-- (6) 9312412x x -=--(7) 133x = (8) 313x =. 【点睛】 本题考查解方程,熟练掌握解方程的步骤及计算法则是解题关键.20.x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M 结合m 的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M ,结合m 的值可得原方程为3x-3=0,求解可得方程的解由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键三、解答题21.(1)购进甲种水果65千克,乙种水果75千克;(2)获得的利润为495元.【分析】(1)设购进甲种水果x 千克,则购进乙种水果(140)x -千克,根据表格中的数据和意义列出方程并解答;(2)总利润=甲的利润+乙的利润.【详解】解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000解得:x=65∴140﹣x=75;答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:获得的利润为495元.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.1x =【分析】方程去分母,去括号,移项合并,将y 系数化为1即可求出解.【详解】 解:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即32(1)(1)043x x -+-=. 将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-=⎪⎝⎭,所以10x -=,移项,得1x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.23.(1)960件(3)方案三【分析】(1)由题意设这批校服共有x 件,并根据题意建立一元一次方程进行求解即可;(2)根据题意设甲工厂加工a 天,则乙工厂共加工(24)a +天,并根据题意建立一元一次方程进行求解即可;(3)根据题意分别计算三种方案所需的时间与费用,并进行比较即可得出答案.【详解】解:(1)设这批校服共有x 件. 由题意,得201624x x -=.解得960x =. 答:这批校服共有960件.(2)设甲工厂加工a 天,则乙工厂共加工(24)a +天.依题意得 (1624)24(125%)(24)960a a a ++⨯++-=.解得12a =.2424428a +=+=.答:乙工厂共加工28天.(3)①方案一:需要耗时9601660÷=(天),费用为60(1080)5400⨯+=(元); ②方案二:需要耗时9602440÷=(天),费用为40(12010)5200⨯+=(元); ③方案三:甲工厂耗时12天,乙工厂耗时28天,故需要耗时28天,费用为12(1080)28(10120)4720⨯++⨯+=(元).综上,方案三既省时又省钱.【点睛】本题考查一元一次方程的实际应用,读懂题干并依据题干条件建立一元一次方程求解是解题的关键.24.七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x 人,则另一班有学生(67-x )人,依题意得5060(67)3650x x +-=6730x -=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =- 解得:331m x =-, 4(37)1935x x -=-4747x =1x = 由题意得:31131m --= 解得:623m =-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m 的式子表示x ,然后根据题意列出方程.26.《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.。
最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
人教版七年级数学上册第二单元《整式的加减》测试卷(一)(附答卷)时间:120分钟总分:120分一、选择题(每小题3分,共30分)1.下列各式中,去括号正确的是 ( )A.a+(b-c+d)=a-b+c-dB.a-(b-c+d)=a-b-c+dC.a-(b-c+d)=a-b+c+dD.a-(b-c+d)=a-b+c-d2.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是 ( )A.6B.7C.8D.93.制造一种产品,如果原来每件成本为a元,上涨5%后,又下降5%,则此时该产品的成本为 ( )A.不变B.(1+5%)2aC.(1+5%)(1-5%)aD.(1-5%)2a4.某次数学课上,老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一题目:(2a2+5ab-b2)-(-3a2+ab+5b2)=5a2-6b2,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab5.一个教室有2扇门和4扇窗户,则n个这样的教室有 ( )A.2n扇门和4扇窗户B.4扇门和4n扇窗户C.2n扇门和4n扇窗户D.6n扇门和6n扇窗户6.3个连续偶数,中间一个用2n(n为整数)表示,则这3个连续偶数为 ( )A.2n,4n,6nB.n,2n,3nC.2n-1,2n,2n+1D.2(n-1),2n,2(n+1)7.下列运算正确的是 ( )A.2a+4b=7abB.1+2a=3aC.5x-5y=0D.-3a+a-(-2a)=08.把整式3x3-3x2+x-x2+2x3-x合并同类项,得 ( )A.5x3-4B.5x3-4x2C.x3-4x2-2xD.-x3-2x2-2x9.下列合并同类项的结果正确的是 ( )A.7a2-2a2=5B.-2xy-2xy=0C.3m2+2n2=5m2n2D.3x2y-3yx2=010.如图,空白部分的面积用代数式表示是 ( ) A.a 2-b 2 B.a -4bC.a 2-πb 2D.a 2-2πb 2二、填空题(每空3分,共36分)1.a 与b 的积的 37与x ,y 的平方差的和是 . 2.用语言叙述2(x 2+y 2)的意义是 . 3.若-3x 2m -5y 5与0.7y 2n x 3是同类项,则m = , .4.一个三位数,个位上数字是a ,十位上数字是b ,百位上数字是c ,这个三位数可表为 ;当a =4,b =7,c =8时,这个三位数是 .5.请写出一个关于字母x 的二次三项式: .6.-3a 2b -2a +5b -1的项分别是 .7.某礼堂共有25排座位,第1排有20个座位,后面每排都比前一排多一个座位,则第n 排有 个座位,第23排有 个座位.8观察这样一列数:121,231,341,451,… 第n 个数可表示为 . 9.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来,②中多边形(边数为20)是由正方形“扩展”而来,依此类推,则由正n 边形“扩展”而来的多边形的边数为 .三、解答题(共54分)1.(6分)化简下列各式(1)6x 4+2x 2y -10+x 4-3x 2y -1 (2)m -{n -2m +[3m -(6m +3n )+5n ]}2.(5分)已知(x+3)2+|y-7|=0,求代数5x2y-[2x2y-(3xy-xy2)-3x2]-2xy2-y2的值.3.(5分)已知k为常数,化简关于y的代数式:4y+3[k y2-2(2y2-3y)-5(y2+2y-3)]-4(1-2y).当k为何值时,此代数式的值与y 的取值无关?4.(6分)小明做作业时,做了这样一道题:已知x-y=6,x y=-8,求多项式(2x+ 3y-2xy)-(x+4y+x y)-(3xy+2y-2x)的值.他想通过x-y=6,x y=-8,把x,y的值求出来,再把x,y的值代入多项式就可以求出答案了.可是想了好久也未能把x,y的值求出来.你能帮他想一个先不求x,y的值,又能解出这道题的方法吗?5.(6分)小宁购买了一套经济适用房,他准备将地面铺上地砖,地面结构如下图所示,根据图中的数据(单位:m),用含x,y的代数式表示地面总面积.6.(6分)如图所示:(1)用式子表示图中阴影部分的面积;(2)当a=3,b=2时,求式子的值.7.(6分)某公园的门票价格是:成人20元,学生10元,满40人可以按8折优惠设个旅游团共有x(x>40)人,其中学生y人.(1)用整式表示该旅游团应付的门票费;(2)如果旅游团有47个成人,12个学生,那么他们应付多少门票费?8.(8分)3个球队进行单循环比赛(参加比赛的每个队都与其他参赛队各赛一场),那么总的比赛场数是多少?若有4个球队呢?若有5个球队呢?写出m个球队进行单循环比赛时总的比赛场数的公式.9.(6分)足球与玻璃球比“腰带”:假定我们要在足球的“腰”上打一个箍,也在一个小小的玻璃球的“腰”上打一个箍,要求这两个箍要不大不小,恰好套住这两个“球”,结果由于工匠不小心把这两个箍都打长了1cm(周长长了1cm).试问:把这两个打长了的箍分别往这两个球上套时,它们和球的间隙是足球上的大还是玻璃球上的大?人教版七年级数学上册第二单元《整式的加减》测试卷(一)(答卷)时间:120分钟总分:120分一、选择题(每小题3分,共30分)1.下列各式中,去括号正确的是 (D)A.a+(b-c+d)=a-b+c-dB.a-(b-c+d)=a-b-c+dC.a-(b-c+d)=a-b+c+dD.a-(b-c+d)=a-b+c-d2.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是 (B)A.6B.7C.8D.93.制造一种产品,如果原来每件成本为a元,上涨5%后,又下降5%,则此时该产品的成本为 (C)A.不变B.(1+5%)2aC.(1+5%)(1-5%)aD.(1-5%)2a4.某次数学课上,老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一题目:(2a2+5ab-b2)-(-3a2+ab+5b2)=5a2-6b2,空格的地方被墨水弄脏了,请问空格中的一项是(C)A.+2abB.+3abC.+4abD.-ab5.一个教室有2扇门和4扇窗户,则n个这样的教室有 (C)A.2n扇门和4扇窗户B.4扇门和4n扇窗户C.2n扇门和4n扇窗户D.6n扇门和6n扇窗户6.3个连续偶数,中间一个用2n(n为整数)表示,则这3个连续偶数为 (D)A.2n,4n,6nB.n,2n,3nC.2n-1,2n,2n+1D.2(n-1),2n,2(n+1)7.下列运算正确的是 (D)A.2a+4b=7abB.1+2a=3aC.5x-5y=0D.-3a+a-(-2a)=08.把整式3x3-3x2+x-x2+2x3-x合并同类项,得 (B)A.5x3-4B.5x3-4x2C.x3-4x2-2xD.-x3-2x2-2x9.下列合并同类项的结果正确的是 (D)A.7a2-2a2=5B.-2xy-2xy=0C.3m2+2n2=5m2n2D.3x2y-3yx2=010.如图,空白部分的面积用代数式表示是 (C ) A.a 2-b 2 B.a -4bC.a 2-πb 2D.a 2-2πb 2二、填空题(每空3分,共36分)1.a 与b 的积的 37与x ,y 的平方差的和是 37ab+(x2-y2) . 2.用语言叙述2(x 2+y 2)的意义是 x 与y 的平方和的2倍 . 3.若-3x 2m -5y 5与0.7y 2n x 3是同类项,则m = 4 , n = 25 .4.一个三位数,个位上数字是a ,十位上数字是b ,百位上数字是c ,这个三位数可表为 100c+10b+a ;当a =4,b =7,c =8时,这个三位数是 874 .5.请写出一个关于字母x 的二次三项式:x 2-2x+1 . (答案不唯一)6.-3a 2b -2a +5b -1的项分别是 -3a 2b ,-2a , 5b ,-1 .7.某礼堂共有25排座位,第1排有20个座位,后面每排都比前一排多一个座位,则第n 排有 20+(n -1) 个座位,第23排有 42 个座位.8观察这样一列数:121,231,341,451,… 第n 个数可表示为 n +11n . 9.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来,②中多边形(边数为20)是由正方形“扩展”而来,依此类推,则由正n 边形“扩展”而来的多边形的边数为 n (n +1) .三、解答题(共54分)1.(6分)化简下列各式(1)6x 4+2x 2y -10+x 4-3x 2y -1 (2)m -{n -2m +[3m -(6m +3n )+5n ]} =7x 4-x 2y -11 =m -[n -2m +(3m -6m -3n +5n ) =m -(3n -5m ) =m -3n +5m =6m -3n2.(5分)已知(x+3)2+|y-7|=0,求代数5x2y-[2x2y-(3xy-xy2)-3x2]-2xy2-y2的值.解:∵(x+3)2+|y-7|=0,∴x+3=0,y-7=0∴x=-3,y=7而原式可化为3x2y-3xy2+3xy+3x2-y2当x=-3.y=7时,原式=3×(-3)2-3×(-3)×72+3×(-3)×7+3(-3)2-72=5453.(5分)已知k为常数,化简关于y的代数式:4y+3[k y2-2(2y2-3y)-5(y2+2y-3)]-4(1-2y).当k为何值时,此代数式的值与y 的取值无关?4.(6分)小明做作业时,做了这样一道题:已知x-y=6,x y=-8,求多项式(2x+ 3y-2xy)-(x+4y+x y)-(3xy+2y-2x)的值.他想通过x-y=6,x y=-8,把x,y的值求出来,再把x,y的值代入多项式就可以求出答案了.可是想了好久也未能把x,y的值求出来.你能帮他想一个先不求x,y的值,又能解出这道题的方法吗?5.(6分)小宁购买了一套经济适用房,他准备将地面铺上地砖,地面结构如下图所示,根据图中的数据(单位:m),用含x,y的代数式表示地面总面积.6.(6分)如图所示:(1)用式子表示图中阴影部分的面积;(2)当a=3,b=2时,求式子的值.7.(6分)某公园的门票价格是:成人20元,学生10元,满40人可以按8折优惠设个旅游团共有x(x>40)人,其中学生y人.(1)用整式表示该旅游团应付的门票费;(2)如果旅游团有47个成人,12个学生,那么他们应付多少门票费?8.(8分)3个球队进行单循环比赛(参加比赛的每个队都与其他参赛队各赛一场),那么总的比赛场数是多少?若有4个球队呢?若有5个球队呢?写出m个球队进行单循环比赛时总的比赛场数的公式.9.(6分)足球与玻璃球比“腰带”:假定我们要在足球的“腰”上打一个箍,也在一个小小的玻璃球的“腰”上打一个箍,要求这两个箍要不大不小,恰好套住这两个“球”,结果由于工匠不小心把这两个箍都打长了1cm(周长长了1cm).试问:把这两个打长了的箍分别往这两个球上套时,它们和球的间隙是足球上的大还是玻璃球上的大?。
人教版七年级上第三章一元一次方程达标训练
一.填空。
(每小题4分,共32分)
1.在方程①32x x -=
,②0.31y =,③2560x x -+=,④0x =,⑤69x y -=,⑥21136
x x +=中,是一元一次方程的有 . 2.当x = 时,式子256x +与114
x x ++的值互为相反数. 3.已知2
21(2)0x y -++=,则2006()xy = . 4.写出一个一元一次方程,使它的解为―23
,未知数的系数为正整数,方程为 .
5.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件 元.
6.某种中草药含甲、乙、丙、丁四种草药成分,这四种草药成分的质量比是0.7∶1∶2∶4.7。
现在要配制这种中药1400克,这四种草药分别需要多少克?设每份为x 克,根据题意,得 .
7.有一列数,按一定的规律排列:―1,2,―4,8,―16,32,―64,128,…,其中某三个相邻数之和为384,这三个数分别是 .
8.一项工程,甲单独完成要20天,乙单独完成要25天,则由甲先做2天,然后甲、乙合做余下的部分还要 天才能完成.
二.选择(每小题3分,共24分)
1.若23(2)6m m x --=是一元一次方程,则x 等于( ).
(A )1 (B )2 (C )1或2 (D )任何数
2.关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).
(A )-2 (B )43 (C )2 (D )-43
3.解方程21101136
x x ++-=时,去分母正确的是( ). (A )21(101)1x x +-+= (B )411016x x +-+=
(C )421016x x +--= (D )2(21)(101)1x x +-+=
4.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( ).
(A )65- (B )65 (C )56- (D )56
5.x 是一个两位数,y 是一个三位数,把x 放在y 的左边构成一个五位数,则这个五位数的表达式是( ).
(A )xy (B )10x y +(C )1000x y +(D )1001000x y +
6.某试卷由26道题组成,答对一题得8分,答错一题倒扣5分。
今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有( ).
(A )10道 (B )15道 (C )20道 (D )8道
7.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ).
(A )不赚不赔 (B )赚9元 (C )赔18元 (D )赚18元
8.有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是( ).
(A )1000元 (B )800元 (C )600元 (D )400元
三.解答(本大题共64分)
1.(8分)解方程:
0.40.90.030.0250.50.032x x x ++--=.
2.(10分)如果方程
42832x x -+-=-的解与方程4(31)621x a x a -+=+-的解相同,求式子1a a
-
的值 .
3.(10分)展开你想象的翅膀,尽可能多地从方程
2
1
1015
x x+
+=中猜想出它可能会是
哪种类型的实际问题,将其编写出来,并解答之.
4.(11分)甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度是
17.5千米/时,乙的速度为15千米/时,经过几小时,两人相距32.5千米?
5.(12分)右图的数阵是由一些奇数排成的. 1 3 5 7 9 (1)右图框中的四个数有什么关系?(设框中第一行第一个数 11 13 15 17 19 为
x)………………
(2)若这样框出的四个数的和是200,求这四个数.91 93 95 97 99
(3)是否存在这样的四个数,它们的和为420,为什么?
6.(13分)商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同
型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一
下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?
答案:
一.1.②④⑥ 2.-4319 3.1 4.1
13x -=-等 5.40 6.0.72 4.71400
x x x x +++=
7.128, -256,512 8.10
二.ACCDC ACB
三.1.整理,得49325532x x x ++--=,
去分母,得6(49)10(32)15(5)x x x +-+=-,
去括号,得245430201575x x x +--=-,
移项,得242015755430x x x --=--+,
合并,得1199x -=-,
系数化为1,得9x =.
2.解方程42
832x x -+-=-,得10x =.
把10x =代入方程4(31)621x a x a -+=+-,得
410(31)61021a a ⨯-+=⨯+-,
解得4a =-,所以1a a -=334
-. 3.略.
4.本题有两种情况: 情况1:第一次相距32.5千米
设经过x 小时两人相距32.5千米,根据题意,得
(17.515)6532.5x +=-,
解得1x =.
情况2:第二次相距32.5千米
设经过x 小时两人相距32.5千米,根据题意,得
(17.515)6532.5x +=+,
解得3x =.
答:经过1小时或3小时两人相距32.5千米.
5.(1)设第一行第一个数为x ,则其余3个数依次为2,8,10x x x +++.
(2)根据题意,得2810200x x x x ++++++=,
解得x =45,所以这四个数依次为45,47,53,55.
(3)不存在.
因为420420,x +=解得x =50,为偶数,不合题意,故不存在.
6.(1)①设购进甲种电视机x 台,则购进乙种电视机(50-x )台,根据题意,得 1500x +2100(50-x )=90000.
解这个方程,得
x =25,
则50-x =25.
故第一种进货方案是购甲、乙两种型号的电视机各25台. ②设购进甲种电视机
y 台,则购进丙种电视机(50- y )台,根据题意,得
1500y +2500(50-y )=90000.
解这个方程,得 y =35,
则50-y =15. 故第二种进货方案是购进甲种电视机35台,丙种电视机15台.
③设购进乙种电视机z 台,则购进丙种电视机(50-z )台,购进题意,得 2100z +2500(50-z )=90000.
解这个方程,得 z =87.5(不合题意)
. 故此种方案不可行.
(2)上述的第一种方案可获利:150×25+200×25=8750元,
第二种方案可获利:150×35+250×15=9000元,
因为8750<9000,故应选择第二种进货方案.。