4月2018届九年级第二次模拟大联考(湖北卷)数学卷(全解全析)
- 格式:pdf
- 大小:755.35 KB
- 文档页数:9
湖北省黄石市2018年中考数学二模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在小题给出的四个选项中,只有一项 是符合题目要求的)1.有理数-0.5的相反数是( )A.12B.1-2C.-2D.22.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.平行四边形C.正五边形D.正六边形 3.今年某市约有106500名应届初中毕业生参加中考,按四舍五入保留两位有效数字,106500用科学记数法表示为( )A.0.10×106B.1.0×105C.0.11×106D.1.1×1054.下列运算正确的是( )A.325a a a +=B.32a a a -=C.325a a a =D.()352aa =5.如图所示的几何体的俯视图应该是( )A B C D6.实施新课改亿来,某班学生采用“小组合作学习”的方式进行学习。
值周班长每周对各小组合作学习情况进行综合评分,下表是其中一周的评分结果:组别 一 二 三 四 五 六 七 分值90965990918590这组数据中的中位数和众数分别是( )A.89,90B.90,89C.88,95D.90,957.如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC ,若DE =10,AE =16,则BE 的长度为( )A.10B.11C.12D.138.如图,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( ) A.13B.13C.6D.2139.二次函数2y ax bx c =++的图象如下所示,对于下列结论:①0a <;②0b <;③0c >;④20b a +=;⑤0a b c ++<,其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个第7题图第8题图第9题图10.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1/cm s 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:2cm ),则y 与x(08x#)之间的函数关系可用图象表示为( )A B C D二、填空题:本大题共6小题,共18分 11.4a 2﹣16b 2因式分解得______. 12.方程x 2﹣9x=0的根是______.13.如图,在平行四边形ABCD 中,BE 平分∠ABC ,BC=6,DE=1,则平行四边形ABCD 的周长等于______.14.在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是______. 15.已知圆锥的底面半径是1cm ,母线长为3cm ,则该圆锥的侧面积为______cm 2.EDB CAOBCAxyx=1Ox y 884O x y 884O x y884O xy884O P A BCDQ16.一列数:a1,a2,a3,…a n,…,其中a1=,a2=,且当n≥3时,a n﹣a n﹣1=(a n﹣1﹣a n﹣2),用含n的式子表示a n的结果是______.三、简答题:本大题共9小题,共72分17.计算:|﹣3|+(﹣1)2016×(﹣π+3)0+tan60°+(﹣)﹣2.18.先化简,再求值:÷(﹣x﹣2),其中x=﹣3.19.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)20.解方程组:.21.甲、乙两校参加县教体局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分.依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数11 0 8(1)在图1中,“7分”所在扇形的圆心角等于______度;甲校成绩统计表中得分为9分的人数是______.求出乙校的参赛人数,并将图2的统计图补充完整.(2)如果该教体局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)23.在建设两型社会的过程中,为推进节能减排,发展低碳经济,某市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为26元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款n万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.24.如图1,在Rt△ABC中,∠B=90°,AB=BC=5,点D,E分别是边BC,AC的中点,连结DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=______;②当α=180°时,=______.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长(保留根号)及相应的旋转角α(精确到1°)的大小(参考数据:tan25°≈0.50,sin25°≈0.45,cos25°≈0.89).25.(10分)(2016•黄石二模)已知:直线l1:y=kx+b(k>0)过点F(﹣4,4),直线l1与过点(﹣2,4)的反比例函数y=(x<0)的图象交于A,B两点,点A的坐标为(x1,y1),点B的坐标为(x2,y2)(x2<x1<0)(1)求反比例函数的解析式;(2)若过A作AC⊥x轴于C,过点B作BD⊥y轴于D,交AC于点E,AE=4,试求直线l1的解析式;(3)如图2,把直线l1绕点F旋转,这条动直线始终与反比例函数y=(x<0)的图象交于P、Q两点.过点P、点Q分别作x轴的平行线,在这两条平行线上(P、Q两点的右侧如图所示)分别截取PM=PF,QN=QF,连接MN并延长交x轴于点H.试问∠MHO的大小是否随着直线l1的旋转变化而变化,请作出判断并证明你的结论.2018年湖北省黄石市中考数学二模试卷参考答案与试题解析一、选择题1—5 ADDCB 6—10 BCACB二、填空题:本大题共6小题,共18分11.4a2﹣16b2因式分解得4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式4,再利用平方差进行二次分解即可.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.方程x2﹣9x=0的根是x1=0,x2=9.【考点】解一元二次方程-因式分解法.【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【解答】解:x2﹣9x=0即x(x﹣9)=0,解得x1=0,x2=9.故答案为x1=0,x2=9.【点评】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.13.如图,在平行四边形ABCD中,BE平分∠ABC,BC=6,DE=1,则平行四边形ABCD 的周长等于22.【考点】平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+1=6,∴AE=5,∴AB=CD=5,∴▱ABCD的周长=5+5+6+6=22,故答案为:22.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.14.在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人打出相同标识手势的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两人打出相同标识手势的有3种情况, ∴两人打出相同标识手势的概率是: =. 故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.已知圆锥的底面半径是1cm ,母线长为3cm ,则该圆锥的侧面积为 3π cm 2. 【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解. 【解答】解:圆锥的侧面积=2π×3×1÷2=3π. 故答案为:3π.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.16.一列数:a 1,a 2,a 3,…a n ,…,其中a 1=,a 2=,且当n ≥3时,a n ﹣a n ﹣1=(a n ﹣1﹣a n ﹣2),用含n 的式子表示a n 的结果是 ﹣.【考点】规律型:数字的变化类.【分析】根据a n ﹣a n ﹣1=(a n ﹣1﹣a n ﹣2),依次写出相邻两项之差,再左右两边同时累加得出a n ﹣a 1=++…+,令++…+=A ,A ﹣A 得出A 的值,将其代入a n ﹣a 1中,表示出a n 即可.【解答】解:∵a n ﹣a n ﹣1=(a n ﹣1﹣a n ﹣2),∴有a n ﹣a n ﹣1==()n ﹣2(a 2﹣a 1),a n ﹣1﹣a n ﹣2==()n ﹣3(a 2﹣a 1),…,a 3﹣a 2=,a 2﹣a 1==,左右两边同时累加得a n ﹣a 1=++…+,令++…+=A ,则A=+…+,A ﹣A=﹣,解得:A=﹣.∴a n =A +a 1=﹣+=﹣.故答案为:﹣.【点评】本题考查了规律型中得数字的变化类,解题的关键是找出a n ﹣a 1=++…+.本题属于中档题,难度不大,因为初中没有学过等比数列的求和公式,故此处用错位相减法来推导出结论.三、简答题:本大题共9小题,共72分 17.计算:|﹣3|+(﹣1)2016×(﹣π+3)0+tan60°+(﹣)﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果. 【解答】解:原式=3﹣+1++4=8.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:÷(﹣x ﹣2),其中x=﹣3.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=﹣,当x=﹣3时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)【考点】切线的判定;扇形面积的计算.【分析】(1)由OD=OB得∠1=∠ODB,则根据三角形外角性质得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,则可根据切线的判定定理得到AC是⊙O的切线;(2)由∠A=60°得到∠C=30°,∠DOC=60°,根据含30度的直角三角形三边的关系得CD=OD=2,然后利用阴影部分的面积=S△COD﹣S扇形DOE和扇形的面积公式求解.【解答】(1)证明:连接OD,∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD⊥DC,∴AC是⊙O的切线;(2)解:∵∠A=60°,∴∠C=30°,∠DOC=60°,在Rt△DOC中,OD=2,∴CD=OD=2,∴阴影部分的面积=S△COD﹣S扇形DOE=×2×2﹣=2﹣.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了扇形面积的计算.20.解方程组:.【考点】高次方程.【分析】先由第二个方程得:x=③,再把③代入①得:2×()2﹣y2=,求出y1、y2,再代入③即可.【解答】解:,由②得:x=③,把③代入①得:2×()2﹣y2=﹣,化简得:9y2+y+5=0,即:(3y+)2=0解得:y1=y2=,代入③得:x1=x2=,∴原方程组的解为.【点评】此题考查了高次方程,关键是利用代入法把高次方程转化成低次方程,注意结果有两种情况.21.甲、乙两校参加县教体局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分.依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数11 0 8(1)在图1中,“7分”所在扇形的圆心角等于144度;甲校成绩统计表中得分为9分的人数是1.求出乙校的参赛人数,并将图2的统计图补充完整.(2)如果该教体局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【考点】扇形统计图;条形统计图;加权平均数.【分析】(1)根据扇形图中圆形角的度数可以直接求出,“7分”所在扇形的圆心角;(2)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数,即可得出8分的人数;(3)根据把分数从小到大排列,利用中位数的定义解答,根据平均数求法得出甲的平均数.【解答】(1)144,1.每空(1分),共(2分)乙校的参赛总人数为(2分)作图如图所示.(1分)(2)选择甲校,因为甲校满分的人数就是8人,而乙校满分的人数只有5人,也就是说甲校前八名的平均水平高于乙校前八名的平均水平,所以选择甲校.(3分)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【考点】解直角三角形的应用.【分析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x 米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3米.所以生命迹象所在位置C的深度约为3米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.在建设两型社会的过程中,为推进节能减排,发展低碳经济,某市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为26元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款n万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.【考点】二次函数的应用.【分析】(1)因为25<26<30,所以把x=26代入y=40﹣x即可求出该产品的年销售量为多少万件;(2)由(1)中y于x的函数关系式和根据年获利=年销售收入﹣生产成本﹣投资成本,得到w和x的二次函数关系,再有x的取值范围不同分别讨论即可知道该公司是盈利或亏损情况;(3)由题目的条件得到w和x在自变量x的不同取值范围的函数关系式,由w≥67.5,分别求出对应x的范围,结合y于x的关系中的x取值范围即可确定此时销售单价的范围.【解答】解:(1)∵25≤26≤30,y=,∴把x=26代入y=40﹣x得,y=14(万件),答:当销售单价定为26元时,该产品的年销售量为14万件;(2)①当25≤x≤30时,W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,故当x=30时,W最大为﹣25,即公司最少亏损25万;②当30<x≤35时,W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣x2+35x﹣625=﹣(x﹣35)2﹣12.5故当x=35时,W最大为﹣12.5,即公司最少亏损12.5万;综上,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万.(3)①当25≤x≤30时,W=(40﹣x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+61x﹣862.5≥67.5,﹣x2+61x﹣862.5≥67.5,化简得:x2﹣61x+930≤0解得:30≤x≤31,当两年的总盈利不低于67.5万元时,x=30;②当30<x≤35时,W=(25﹣0.5x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+35.5x﹣547.5≥67.5,化简得:x2﹣71x+1230≤0解得:30≤x≤41,当两年的总盈利不低于67.5万元时,30<x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x≤35.【点评】本题主要考查二次函数的实际应用能力及二次函数与一元二次不等式间关系,理解题意准确抓住相等关系是解题的关键,结合题意分类去求是解题的难点.24.如图1,在Rt△ABC中,∠B=90°,AB=BC=5,点D,E分别是边BC,AC的中点,连结DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长(保留根号)及相应的旋转角α(精确到1°)的大小(参考数据:tan25°≈0.50,sin25°≈0.45,cos25°≈0.89).【考点】三角形综合题.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少;②α=180°时,可得AB∥DE,然后根据=,求出的值是多少即可;(2)首先判断出∠ECA=∠DCB,再根据=,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E 所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC==5,∵点D、E分别是边BC、AC的中点,∴AE=,∴=.②如图1,当α=180°时,可得AB∥DE,∵=,∴=,故答案为:,;(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==;(3)①如图3,∵AC=5,CD=5,CD⊥AD,∴AD==10,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=5,②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,∵AC=5,CD=5,CD⊥AD,∴AD==10,∵点D、E分别是边BC、AC的中点,∴DE=AB=,∴AE=AD﹣DE=10﹣=,由(2),可得=,∴BD=3.综上所述,BD的长为5或3.【点评】此题主要考查了几何变换综合题,相似三角形、全等三角形的判定和性质的应用,线段长度的求法,以及矩形的判定和性质的应用,考查了分析推理能力,数形结合思想的应用,要熟练掌握.25.(10分)(2016•黄石二模)已知:直线l1:y=kx+b(k>0)过点F(﹣4,4),直线l1与过点(﹣2,4)的反比例函数y=(x<0)的图象交于A,B两点,点A的坐标为(x1,y1),点B的坐标为(x2,y2)(x2<x1<0)(1)求反比例函数的解析式;(2)若过A作AC⊥x轴于C,过点B作BD⊥y轴于D,交AC于点E,AE=4,试求直线l1的解析式;(3)如图2,把直线l1绕点F旋转,这条动直线始终与反比例函数y=(x<0)的图象交于P、Q两点.过点P、点Q分别作x轴的平行线,在这两条平行线上(P、Q两点的右侧如图所示)分别截取PM=PF,QN=QF,连接MN并延长交x轴于点H.试问∠MHO的大小是否随着直线l1的旋转变化而变化,请作出判断并证明你的结论.【考点】反比例函数综合题.【分析】(1)由点的坐标利用反比例函数图象上点的坐标特征即可得出结论;(2)将点F的坐标代入直线l1的解析式中找出k、b的关系,再将反比例函数解析式x=﹣代入直线l1的解析式中,由根与系数的关系找出y1+y2=4k+4,y1•y2=8k,结合AE=4,即可得出关于k的方程,解方程即可得出结论;(3)由点P、Q在直线l1上,可找出x1、y1以及x2、y2之间的关系,由PM=PF,QN=QF 找出点M、N的坐标,过点M作y轴的平行线,交QN的延长线于点K,分别找出MK、NK,由二者间的关系即可得出结论.【解答】解:(1)∵反比例函数y=(x<0)的图象过点(﹣2,4),∴k=﹣2×4=﹣8,∴反比例函数的解析式为y=﹣.(2)直线l1:y=kx+b(k>0)过点F(﹣4,4),∴4=﹣4k+b,即b=4k+4,∴直线l1:y=kx+4k+4(k>0).将x=﹣代入到y=kx+4k+4中,整理得:y2﹣(4k+4)y+8k=0,∴y1+y2=4k+4,y1•y2=8k,∴y1﹣y2===4,解得:k=1或k=﹣1(舍去),∴直线l1的解析式为y=x+8.(3)∵直线l1:y=kx+4k+4(k>0),P(x1,y1),Q(x2,y2)(x2<x1<0),∴y1=kx1+4k+4,y2=kx2+4k+4,PF=PM===(x1+4),QF=QN===﹣(x2+4).∴M[x1+(x1+4),y1],N[x2﹣(x2+4),y2].过点M作y轴的平行线,交QN的延长线于点K,如图所示.则MK=y1﹣y2,NK=(x1﹣x2)+(x1+4)+(x2+4)=(x1﹣x2)+(x1+x2+8),将y=﹣代入y=kx+4k+4中,整理得:kx2+(4k+4)x+8=0,∴x1+x2=﹣,x1•x2=,∴x1﹣x2===,NK=+(﹣+8)=+=4,MK=y1﹣y2=k(x1﹣x2)=4,故MK=NK,∴直线MN与x轴的夹角∠MHO为定值45°.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、根与系数的关系以及两点间的距离公式,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出k值;(2)得出关于k的方程;(3)找出MK=NK.本题属于中档题,难度不小,解决该题型题目时,巧妙的利用线段相等找出点M、N的坐标,再将反比例函数解析式代入一次函数解析式中利用根与系数的关系表示出来线段的长度是关键.。
2018年数学中考模拟试题一、选择题.(本大题共10小题,每小题3分,共30分)1. ﹣的相反数是()A. ﹣5B. 5C. ﹣D.【答案】D【解析】解:﹣的相反数是.故选D.2. 下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【答案】D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3. 下列计算正确的是()A. 2x+3y=5xyB. (m+3)2=m2+9C. (xy2)3=xy6D. a10÷a5=a5【答案】D【解析】A. 2x与3y不是同类项,不能合并,故错误;B. (m+3)2=m2+6m+9,故错误;C. (xy2)3=x3y6,故错误;D. a10÷a5=a5,正确,故选D.【点睛】本题考查了完全平方公式、积的乘方、同底数幂的除法等,熟知相关的运算法则是解题的关键.4. 某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A. 50,8B. 50,50C. 49,50D. 49,8【答案】B【解析】分析:把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.详解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选B.点睛:本题考查了一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.5. 如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是( )A. ∠CAD=30°B. AD=BDC. BD=2CDD. CD=ED【答案】D【解析】试题分析:在△ABC中,∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,只有D错误,选项A、B、C的答案都正确.故选D.考点:1.含30度角的直角三角形2.角平分线的性质3.等腰三角形的判定与性质.6. 不等式的解集在数轴上表示正确的是()A. B.C. D.【答案】D【解析】试题分析:,解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:.故选D.考点:在数轴上表示不等式组的解集.7. 分式方程的解为()A. x=-2B. x=2C. x=1D. 无解【答案】A【解析】分析:本题需先根据解分式方程的步骤,先乘以最简公分母,再去掉分母,即可求出x的值,再进行检验即可求出答案.详解:两边同时乘以(x﹣2)得:5=(x﹣1)﹣2(x﹣2),解得:x=﹣2,检验:当x=﹣2时,x﹣2≠0,∴x=﹣2是原方程的根.故选A.点睛:本题主要考查了解分式方程,在解题时要注意把分式方程转化为整式方程进行解答是本题的关键.8. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 6【答案】C【解析】试题分析:如图所示,∵,∴=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.考点:勾股定理的证明.9. 如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF 的长为()A. 5B. 6C. 7D. 8【答案】B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.考点:作图—基本作图;含30度角的直角三角形.10. 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】试题解析:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y>0,即a-b+c>0,所以①正确;∵抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac-4an=4a(c-n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选B.二.填空题.(本大题共6个小题,每小题3分,共18分)11. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km.用科学计数法表示1个天文单位是______________km.【答案】1.4960×108【解析】试题分析:科学技术是指a×,1≤<10,n为原数的整数位数减一.考点:科学计数法.12. 已知实数m,n满足,则m+2n的值为__________.【答案】3【解析】∵|n-2|+=0,∴,解得:,∴ m+2n=-1+4=3.故答案为:3.点睛:(1)一个数的绝对值和算术平方根都是非负数;(2)两个非负数的和为0,则这两个数都为0.13. 已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是____cm2.【答案】65π【解析】∵圆锥底面直径为10cm,∴圆锥底面半径为5cm.又∵圆锥高为12cm,∴圆锥母线长为:(cm).∴圆锥侧面展开图的面积为:(cm2).点睛:当圆锥的底面半径为,圆锥高为,母线长为时,(1);(2)圆锥侧面积为:S测=,S全=.14. 一个等腰三角形的两边长是方程x2-6x+8=0的两个根,那么这个等腰三角形的周长是__________.【答案】10【解析】分析:求出方程的解,得出三角形的三边长,即可得出答案.详解:解x2﹣6x+8=0得:x=4或2,当三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,三角形的周长为2+4+4=10.故答案为:10.点睛:本题考查了等腰三角形的性质,三角形的三边关系定理,解一元二次方程的应用,能求出方程的解是解答此题的关键.15. 如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D的坐标为(2,-3),点B是线段AD的中点.则不等式k1x+b—>0的解集是___________.【答案】x<—4或0<x<2【解析】分析:把点D的坐标代入y2=利用待定系数法即可求得反比例函数的解析式,作DE⊥x轴于E,根据题意求得A的坐标,然后利用待定系数法求得一次函数的解析式,联立方程求得C的坐标,根据图象即可求得结论.详解:∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;作DE⊥x轴于E.∵D(2,﹣3),点B是线段AD的中点,∴A(﹣2,0).∵A(﹣2,0),D (2,﹣3)在y1=k1x+b的图象上,∴,解得:k1=﹣,b=﹣,∴y1=﹣x﹣;由,解得:,∴C(﹣4,),由图象可知:当x<﹣4或0<x<2时,y1>y2.故答案为:x<—4或0<x<2.点睛:本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得A点的坐标是解题的关键.16. 如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=,其中正确的是______.(填写所有正确结论的序号)【答案】①③④【解析】分析:根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC==,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2,根据相似三角形的性质得到AE=;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°﹣∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2,故④正确.详解:在矩形ABCD中,∵∠BAD=90°.∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB.∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC==,∴∠DBC≠30°,故②错误;∵BD==2.∵AB=CD=2,AD=BC=4.∵△ABE∽△DBA,∴,即,∴AE=;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°﹣∠ACB.∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°﹣2∠ACB,∴∠EAC=2∠ACF.∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC.∵AC=BD=2,∴AF=2,故④正确;故答案为:①③④.点睛:本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.三.解答题.(本题共8小题,共72分)17. 先化简,再求值:,其中x的值从﹣1、0、1、2中选取.【答案】0【解析】分析:先根据分式的混合运算顺序和法则化简原式,由分式有意义得出符合条件的x的值,代入求解可得.详解:原式=(+)÷=•=•=,∵分式有意义时x≠±1、0,∴x=2,则原式=0.点睛:本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则、分式有意义的条件是解题的关键.18. 已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【答案】(1) k≤;(2)-2.【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1x2=16+x1x2中,解之即可得出k的值.试题解析:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1x2=16+x1x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.考点:一元二次方程根与系数的关系,根的判别式.19. 今年四月份,某校在我市争创“全国文明城市” 活动中,组织全体学生参加了“弘扬炎帝文化,争做文明学生”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:,;扇形统计图中,等级对应的圆心角等于度;(2)该校决定从本次抽取的等级学生(记为甲、乙、丙、丁)中,随机选择名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【答案】(1)80,12,28,36;(2).【解析】试题分析:(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.试题解析:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.考点:1.列表法;2.树状图法;3.扇形统计图;4.频数分布表.20. 如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)【答案】篮框D到地面的距离是3.05米.【解析】试题分析:延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论............... .......答:篮框D到地面的距离是3.05米.考点:解直角三角形的应用.21. 如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=,求AE的长.【答案】(1)证明见解析;(2)3.【解析】试题分析:(1)连接OC,利用切线的性质和已知条件推知OC∥AD,根据平行线的性质和等角对等边证得结论;(2)AE=AD﹣ED,通过相似三角形△ADC∽△ACB的对应边成比例求得AD=4,DC=2.在直角△DCE中,由勾股定理得到DE==1,故AE=AD﹣ED=3.试题解析:(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD,∴∠1=∠3.又OA=OC,∴∠2=∠3,∴∠1=∠2,∴CE=CB;(2)解:∵AB是直径,∴∠ACB=90°,∵AC=,CB=CE=,∴AB===5.∵∠ADC=∠ACB=90°,∠1=∠2,∴△ADC∽△ACB,∴,即,∴AD=4,DC=2.在直角△DCE中,DE==1,∴AE=AD﹣ED=4﹣1=3.考点:切线的性质;勾股定理;相似三角形的判定与性质.22. 鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【解析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.试题解析:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∵-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.23. 阅读理解题:定义:如果一个数的平方等于,记为,这个数叫做虚数单位,把形如(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:;根据以上信息,完成下列问题:(1)填空:,;(2)计算:;(3)计算:.【答案】(1)-i,1;(2)7-i;(3)i【解析】分析:(1)把i2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i2=﹣1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.详解:(1)i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1.故答案为:﹣i,1;(2)(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=3﹣i+4=7﹣i;(3)i+i2+i3+…+i2017=i﹣1﹣i+1+…+i=i.24. 如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN 为正方形时,请求出t的值.【答案】(1)B(10,4),C(0,4),;(2)3;(3)或.【解析】试题分析:(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)当四边形PMQN为正方形时,则可证得△COQ∽△QAB,利用相似三角形的性质可求得CQ的长,在Rt△BCQ中可求得BQ、CQ,则可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值.试题解析:解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2+x+4;(2)由题意可设P(t,4),则E(t,t2+t+4),∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,∵∠BPE=∠COD=90°,当∠PBE=∠OCD时,则△PBE∽△OCD,∴,即BP•OD=CO•PE,∴2(10﹣t)=4(t2+t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;当∠PBE=∠CDO时,则△PBE∽△ODC,∴,即BP•OC=DO•PE,∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合题意,舍去)综上所述∴当t=3时,∠PBE=∠OCD;(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ=t,PN=PB•sin∠CBQ=(10﹣t),∴t=(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或.点睛:本题为二次函数的综合应用,涉及矩形的性质、待定系数法、相似三角形的判定和性质、勾股定理、解直角三角形、方程思想等知识.在(1)中注意利用矩形的性质求得B点坐标是解题的关键,在(2)中证得△PBE∽△OCD是解题的关键,在(3)中利用Rt△COQ∽Rt△QAB求得CQ的长是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2018年湖北省武汉市九年级四月调研数学试卷(二)一、选择题(本大题共小10题,每小题3分,共30分)1.计算﹣5+1的结果为()A.﹣6B.﹣4C.4D.62.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4B.a>4C.a<4D.a≠43.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a24.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33B.0.34C.0.20D.0.355.计算(x﹣1)(x﹣2)的结果为()A.x2+3x﹣2B.x2﹣3x﹣2C.x2+3x+2D.x2﹣3x+26.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是()A.(1,5)B.(1,﹣3)C.(﹣5,5)D.(﹣5,﹣3)7.下列如图表示一个由若干相同小立方块搭成的几何体的俯视图,小正方形的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如表:根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为()A.13、15、14B.14、15、14C.13.5、15、14D.15、15、159.如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图100中有100个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S100,则S1+S2+S3+…+S100=()A.πB.πC.πD.2π10.如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C 移动到点D的过程中,则点F运动的路径长为()A.πB.πC.πD.π二、填空题(本大题共6小题,每小题3分,共18分)11.化简:=.12.计算结果是.13.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为.14.如图,▱ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在▱ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为.15.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S=四边形ABCD 18,则BD的最小值为.16.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,y a)为抛物线C 上一点,当点A在抛物线y=x2上任意移动时,则y a的取值范围是.三、解答题(本大题共8小题,共72分)17.(8分)解方程组:.18.(8分)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.19.(8分)雾霾天气时常会影响市民的生活质量.前不久,我校气候先锋队的同学对“雾霾天气的主要成因”随机调查了部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)补全条形统计图,并将扇形统计图B、D两区域对应的圆心角的度数分别为、;(3)若武汉城区有1000万人口,请估计持有A或B种观点的市民共约有多少人20.(8分)武商量贩销售A,B两种商品,售出4件B种商品所得利润为400元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A,B两种商品很快售完,武商量贩决定再一次购进A,B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么武商量贩至少需购进多少件A种商品?21.(8分)如图,△ABC内接于⊙O,AB=AC,BO的延长线交AC于点D.(1)求证:△OAD∽△ABD;(2)记△AOB、△AOD、△COD的面积分别为S l、S2、S3,若S22=S1•S3,求的值.22.(10分)如图,双曲线y1=与直线y2=4x交于点A(1,m)、B.(1)直接写出:①k的值为;②m的值为;(2)点C是双曲线y1=(x>0)上异于点A的一点,作直线AC、BC与x轴分别交于E、D.①若OA=OC,求DE的值;②若CE:CB=1:4,直接写出△CDE的面积为.23.(10分)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB 于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若==2,求的值;(3)若==n,当n为何值时,MN∥BE?24.(12分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.2018年湖北省武汉市九年级四月调研数学试卷(二)参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分)1.【分析】绝对值不相等的异号两数加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣5+1=﹣(5﹣1)=﹣4.故选:B.【点评】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.【分析】直接利用合并同类项的法则分析得出答案.【解答】解:2a2+3a2=5a2.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项的法则是解题关键.4.【分析】用“和为7”的频率估计概率即可得.【解答】解:由于出现“和为7”的频率稳定在0.33附近,所以出现“和为7”的概率为0.33.故选:A.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.5.【分析】原式利用多项式乘多项式法则计算即可得到结果.【解答】解:原式=x2﹣2x﹣x+2=x2﹣3x+2,故选:D.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.【分析】根据点的平移:左减右加,上加下减解答可得.【解答】解:将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(﹣2+3,1+4),即(1,5),故选:A.【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为2,3,据此可得到图形.【解答】解:主视图应有2列,左边一列有2个立方块,右侧有3个立方块,B选项符合要求,故选:B.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.8.【分析】根据加权平均数的计算公式列出算式,再进行计算即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或最中间两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这个排球队员年龄的平均数是(12×2+13×4+14×6+15×8)÷20=14(岁);∵15岁出现的次数最多,出现了8次,∴众数是15岁;把这些数从小到大排列,最中间的两个数的平均数是:=14,则中位数是14岁;故选:B.【点评】此题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.9.【分析】先找出计算直角三角形内切圆半径的规律:半径r=长特殊到一般,探究规律后,利用规律即可解决问题.【解答】解:如图1,过O点作OE⊥AC于点E,过O点作OF⊥BC于点F,AC=3,BC=4,则AB=5,∴⊙O的半径r=OE=OF===2,∴S l=πr2=π,同理,如图2,等面积法可求得CD=,∴AD=,BD=,∴⊙O的半径r1==,⊙E的半径r2==,∴S1+S2=π(r+r)=π,以此类推,可以得到S1+S2+S3+…+S n=π,∴当n=100时,S1+S2+S3+…+S100=π.故选:A.【点评】本题考查了直角三角形的内切圆,这是一个图形变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解;解决此题的思路为:①先找出计算直角三角形内切圆半径的规律:半径r=a、b是直角边,c为斜边);②利用面积相等计算斜边上的高;③运用勾股定理计算直角三角形的边长.10.【分析】如图,E点运动过程中,F点的轨迹为.运用弧长公式进行解答.【解答】解:如图,E点运动过程中,F点的轨迹为.在Rt△ABC中,∵∠B=90°,∴tan∠BAC==,∴∠BAC=30°,当点E与C重合时,∠BAF=2∠BAC=60°∠FAF1=120°∴点F运动的路径长为:×2π×=π.故选:D.【点评】考查了轨迹,矩形的性质,翻折变换,根据题意,画出点F运动轨迹示意图是解题的难点.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】根据算术平方根的定义求出即可.【解答】解:=3.故答案为:3.【点评】此题主要考查了算术平方根的定义,是基础题型,比较简单.12.【分析】根据同分母的分式相加的法则,分母不变分子相加减,再约分即可得出结果.【解答】解:原式==1,故答案为1.【点评】本题是基础题,考查了分式的加减法,同分母的分式相加减的法则:分母不变,分子相加.13.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式即可求得答案.【解答】解:如图所示,由树状图知共有12种等可能结果,其中都是红球的有6种结果,∴都是红球的概率为,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.14.【分析】设∠FBE=α,则∠ABC=α+25°,由折叠的性质和平行四边形的性质可得AE=BE=EF,∠A=∠DFE=155°﹣α,由四边形内接和为360°,可求∠FDA的度数.【解答】解:设∠FBE=α,则∠ABC=α+25°∵E是BA的中点,∴AE=BE∵四边形ABCD是平行四边形,∴BC∥AD∴∠A+∠CBA=180°∴∠A=180﹣α﹣25°=155°﹣α,∵折叠∴AE=BE=EF,∠A=∠DFE=155°﹣α∴∠FBE=∠BFE=α∵∠AEF=∠FBE+∠BFE∴∠AEF=2α∵∠A+∠DFE+∠AEF+∠FDA=360°∴155°﹣α+155°﹣α+2α+∠FDA=360°∴∠FDA=50°故答案为:50°【点评】本题考查了翻折变换,平行四边形的性质,四边形内角和为360°,熟练运用折叠的性质是本题的关键.15.【分析】由勾股定理可得AB 2+AD 2=BD 2,BC 2+CD 2=BD 2,由S 四边形ABCD =S △ABD +S △BCD ,可得18=+S △BCD ,即当S △BCD 值最大时,BD 最小,则可求BD 的最小值.【解答】解:∵AB =AD ,∠BAD =∠BCD =90°, ∴AB 2+AD 2=BD 2,BC 2+CD 2=BD 2, ∴2AB 2=BD 2,∵S 四边形ABCD =S △ABD +S △BCD ,∴18=+S △BCD ,∴当S △BCD 值最大时,BD 最小, ∵(CD ﹣BD )2≥0 ∴CD 2+BD 2≥2BD ×CD∴BD ×CD ≤∴S △BCD ≤∴当S △BCD =时,BD 的长度最小,∴18=∴BD =6 故答案为:6【点评】本题考查了直角三角形的性质,勾股定理,三角形的面积公式,熟练运用完全平方公式是本题的关键.16.【分析】设点A 的坐标为(m ,n ),由题意可知n =m 2,从而可知抛物线C 为y =(x ﹣m )2+n ,化简为y =x 2﹣2mx +2m 2,将x =2代入y =x 2﹣2mx +2m 2,利用二次函数的性质即可求出答案. 【解答】解:设点A 的坐标为(m ,n ),m 为全体实数, 由于点A 在抛物线y =x 2上, ∴n =m 2,由于以A 为顶点的抛物线C 为y =x 2+bx +c , ∴抛物线C 为y =(x ﹣m )2+n化简为:y =x 2﹣2mx +m 2+n =x 2﹣2mx +2m 2,∴令x=2,∴y a=4﹣4m+2m2=2(m﹣1)2+2≥2,∴y a≥2,故答案为:y a≥2【点评】本题考查二次函数的性质,解题的关键是根据题意求出y a=4﹣4m+2m2=2(m﹣1)2+2,本题属于中等题型.三、解答题(本大题共8小题,共72分)17.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:y=6,把y=6代入①得:x+6=10,解得:x=4,方程组的解为.【点评】本题考查了解二元一次方程组的,正确掌握解二元一次方程组的方法是解题的关键.18.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.19.【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200×360°=108°,200×40%﹣60=20,20÷200×360°=36°,区域B、D所对应的扇形圆心角的度数为:108°,36°,故答案为:108°;36°;(3)(60÷200+45%)×1000=750万人,∴若武汉城区有1000万人口,持有A、B两组主要成因的市民有750万人.【点评】本题考查的是条形统计图和扇形统计图的知识,正确获取图中信息并准确进行计算是解题的关键.20.【分析】(1)等量关关系:利润=单件产品利润×数量,总利润=总利润A+总利润B;(2)不等量关系:总利润A+总利润B≥4000.【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y 元,根据题意得:,解得:,(2)设购进A种商品a件,则购进B种商品(34﹣a)件,根据题意得:200a+100(34﹣a)≥4000,解得:a≥6,答:每件A种商品售出后所得的利润为200元,每件B种商品售出后所得利润为100元;武商量贩至少需购进6件A种商品.【点评】本题考查二元一次方程组和一元一次不等式的综合运用,重点掌握解应用题的步骤.难点是正确列出不等量关系.21.【分析】(1)由OA=OA,OB=OC,AB=AC可证出△ABO≌△ACO(SSS),根据全等三角形的性质可得出∠ABO=∠ACO,由OA=OC可得出∠ACO=∠CAO,进而可得出∠ABD=∠OAD,结合∠ADO=∠ADB可证出△OAD∽△ABD;(2)过O作OE⊥AB于E,OF⊥AC于F,由(1)可得知∠BAO=∠CAO,利用角平分线的性质可得出OE=OF,利用三角形的面积公式可得出=,=,结合S22=S1•S3可得出=,设AD=1,CD=x,则AB=AC=x+1,进而可得出x(x+1)=1,解之取其正值,再将其代入===中即可求出结论.【解答】(1)证明:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠ABO=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠ABD=∠OAD.又∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)解:过O作OE⊥AB于E,OF⊥AC于F.由(1)知∠BAO=∠CAO,∴OE=OF,∴==,=.又∵S22=S1•S3,∴=.设AD=1,CD=x,则AB=AC=x+1,∴x(x+1)=1,解得:x1=,x2=(舍去),∴====.【点评】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、角平分线的性质、三角形的面积以及解一元二次方程,解题的关键是:(1)利用全等三角形的性质及等腰三角形的性质,找出∠ABD=∠OAD;(2)通过解一元二次方程,找出CD与AD的关系.22.【分析】(1)由点A在直线y2=4x上,利用一次函数图象上点的坐标特征可求出m的值,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征可求出k的值;(2)①由OA=OC可得出点C的坐标,由正、反比例函数的对称性可得出点B的坐标,根据点B,C的坐标利用待定系数法可求出直线BC的解析式,由直线BC的解析式利用一次函数图象上点的坐标特征可求出点D的坐标,同理可求出直线AC的解析式及点E的坐标,再由点D,E的坐标可求出DE的长度;②过C作CQ⊥x轴于Q,过B作x轴的平行线BM,BM交CQ于M点,设点C的坐标为(n,),则点M的坐标为(n,n+1),利用待定系数法可求出直线AC的解析式,在Rt△BCM中利用勾股定理可得出BC2=(n+1)2+(4+)2,由直线AC的解析式利用一次函数图象上点的坐标特征可得出点E的坐标,在Rt△CEQ中利用勾股定理可得出CE2=()2+1,结合CE:CB=1:4可得出关于n的方程,解之取其正值即可得出点C的坐标,由点B,C的坐标利用待定系数法可求出直线BC的解析式,由直线BC的解析式利用一次函数图象上点的坐标特征可求出点D的坐标,再利用三角形的面积公式可求出△CDE的面积.【解答】解:(1)∵点A(1,m)在直线y2=4x上,∵点A(1,m)在双曲线y1=上,∴k=1×4=4.故答案为:①4;②4.(2)①∵OA=OC,点A,C均在双曲线y1=上,点A的坐标为(1,4),∴点C的坐标为(4,1).∵双曲线y1=与直线y2=4x交于点A(1,4),B,∴点A,B关于原点O对称,∴点B的坐标为(﹣1,﹣4).设直线BC的解析式为y=ax+b(a≠0),将B(﹣1,﹣4),C(4,1)代入y=ax+b,得:,解得:,∴直线BC的解析式为y=x﹣3,∴点D的坐标为(3,0);同理,可得:直线AC的解析式为y=﹣x+5,∴点E的坐标为(5,0),∴DE=OE﹣OD=5﹣3=2.②如图,过C作CQ⊥x轴于Q,过B作x轴的平行线BM,BM交CQ于M点.设点C的坐标为(n,),则点M的坐标为(n,n+1),直线AC的解析式为y=﹣x+4+(可利用待定系数法求出).∵BC2=CM2+BM2,∴BC2=(n+1)2+(4+)2.当y=0时,﹣x+4+=0,解得:x=n+1,∴OE=n+1,EQ=1,∴EQ2+CQ2=CE2=()2+1.∵CE:CB=1:4,∴BC 2=16CE 2,∴(n +1)2+(4+)2=16[()2+1], 解得:n 1=3,n 2=﹣5(舍去),∴点C 的坐标为(3,),∴BC 的解析式为y =x ﹣, ∴点D 的坐标为(2,0), ∴OD =2, ∴DE =2,∴S △CDE =×2×=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、两点间的距离公式、勾股定理以及三角形的面积,解题的关键是:(1)利用正、反比例函数图象上点的坐标特征求出k ,m 的值;(2)①利用一次函数图象上点的坐标特征求出点D ,E 的坐标;②利用勾股定理结合CE :CB =1:4,找出关于n 的方程. 23.【分析】(1)如图1,易证△BMF ≌△ECF ,则有BM =EC ,然后根据E 为CD 的中点及AB =DC 就可得到AM =EC ;(2)如图2,设MB =a ,易证△ECF ∽△BMF ,根据相似三角形的性质可得EC =2a ,由此可得AB =4a ,AM =3a ,BC =AD =2a .易证△AMN ∽△BCM ,根据相似三角形的性质即可得到AN =a ,从而可得ND =AD ﹣AN =a ,就可求出的值;(3)如图3,设MB =a ,依据相似三角形的性质可得BC =2a ,CE =na .由MN ∥BE ,MN ⊥MC 可得∠EFC =∠HMC =90°,从而可证到△MBC ∽△BCE ,然后根据相似三角形的性质即可求出n的值.【解答】解:(1)当F为BE中点时,如图1,则有BF=EF.∵四边形ABCD是矩形,∴AB=DC,AB∥DC,∴∠MBF=∠CEF,∠BMF=∠ECF.在△BMF和△ECF中,,∴△BMF≌△ECF,∴BM=EC.∵E为CD的中点,∴EC=DC,∴BM=EC=DC=AB,∴AM=BM=EC;(2)如图2所示:设MB=a,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,∴△ECF∽△BMF,∴==2,∴EC=2a,∴AB=CD=2CE=4a,AM=AB﹣MB=3a.∵=2,∴BC=AD=2a.∵MN⊥MC,∴∠CMN=90°,∴∠AMN+∠BMC=90°.∵∠A=90°,∴∠ANM +∠AMN =90°, ∴∠BMC =∠ANM , ∴△AMN ∽△BCM ,∴=,∴=,∴AN =a ,ND =AD ﹣AN =2a ﹣a =a ,∴==3;(3)当==n 时,如图3:设MB =a .∵△MFB ∽△CFE ,∴=,即,解得EC =an .∴AB =2an .又∵=n ,∴,∴BC =2a .∵MN ∥BE ,MN ⊥MC , ∴∠EFC =∠HMC =90°, ∴∠FCB +∠FBC =90°. ∵∠MBC =90°, ∴∠BMC +∠FCB =90°, ∴∠BMC =∠FBC . ∵∠MBC =∠BCE =90°, ∴△MBC ∽△BCE ,∴=,∴=,∴n=4.【点评】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,利用相似三角形的性质得到线段之间的关系是解决本题的关键.24.【分析】(1)将A、B、C三点坐标表示为线段长,OA=m,OB=2,OC=2m,然后根据面积公式建立关于m的方程,解方程即可;(2)过点D作DF∥OC,可以通过平行构造八字型的相似关系,将DE与OE的比转换为DF与OC的比,OC为定值,所以设点D坐标,表示DF线段长度,从而得到表示线段长度之比的二次函数关系式,转换成顶点式,则的最大值可求;(3)分析条件AM∥PH可知应有等角,所以从M、Q向x轴作垂直,构造相似,利用直线解析式设M、N、Q三点坐标,将直线与抛物线解析式联立,用韦达定理表示x1+x2,x1x2,根据相似关系建立参数方程,因式分解讨论取值.【解答】解:(1)y=x2+(m﹣2)x﹣2m=(x+m)(x﹣2)令y=0,则(x+m)(x﹣2)=0,解得x1=﹣m,x2=2∴A(﹣m,0)、B(2,0)令x=0,则y=﹣2m∴C(0,﹣2m)∴AB=2+m,OC=2m=×(2+m)×2m=8,解得m1=2,m2=﹣4∵S△ABC∵m>0∴m=2(2)如图1,过点D作DF∥y轴交BC于F由(1)可知:m=2∴抛物线的解析式为y=x2﹣4∴B(2,0)、C(0,﹣4)∴直线BC的解析式为y=2x﹣4设D(t,t2﹣4),则F(t,2t﹣4)∴DF=2t﹣4﹣(t2﹣4)=﹣t2+2t,OC=4∵DF∥y轴∴===当t=1时,∵,∴,此时D(1,﹣3).(3)设M(x1,kx1+b)、N(x2,kx2+b)联立,整理得x2+(m﹣2﹣k)x﹣2m﹣b=0∴x1+x2=2+k﹣m,x1x2=﹣2m﹣b设点Q的横坐标为n,则Q(n,kn+b)∵MA∥PH如图2,过点M作MK⊥x轴于K,过点Q作QL⊥x轴于L∵△MKA∽△QLH∴=即,整理得kx1x2+b(x1+x2)+kmn+bm﹣bn=0∴k(﹣2m﹣b)+b(2+k﹣m)+kmn+bm﹣bn=0∴(km﹣b)(n﹣2)=0①当km﹣b=0,此时直线为y=k(x+m),过点A(﹣m,0),不符合题意②当n﹣2=0,此时n=2,Q点的横坐标为2.【点评】此题考查了因式分解,相似构造,一元二次方程根与系数之间的关系,二次函数的极值求法以及一次函数与二次函数的关系,前两问属于常规问题,难度不大,解法比较常见,第三问难度较大,条件中没有已知数值,需要学生设多个参数,用韦达定理和因式分解的方法来解决问题,难度较大.。
2018年湖北省武汉二中、广雅中学中考数学二模试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高()A.10℃B.-10℃C.6℃D.-6℃2、(3分) 若代数式1在实数范围内有意义,则x的取值范围是()2−xA.x>2B.x<2C.x≠-2D.x≠23、(3分) 运用乘法公式计算(3-a)(a+3)的结果是()A.a2-6a+9B.a2-9C.9-a2D.a2-3a+94、(3分) 在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.5B.10C.15D.205、(3分) 下列计算正确的是()A.x2+2x=3x2B.x6÷x2=x3C.x2•(2x3)=2x5D.(3x2)2=6x26、(3分) 已知点A(-2,4)关于y轴对称的点的坐标是()A.(-2,-4)B.( 2,-4)C.(2,4)D.(-2,4)7、(3分) 有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是()A. B. C. D.8、(3分) 某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示,已知这15个数据的中位数为5.这15名员工每人所创年利润的众数、平均数分别是()A.10,5B.7,8C.5,6.5D.5,69、(3分) 如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()A.n(n+1)2B.n(n+2)2C.n(n+3)2D.n(n+4)210、(3分) 如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.√2B.2√2C.2D.4√3二、填空题(本大题共 6 小题,共 18 分)11、(3分) √6+(√2−√6)=______.12、(3分) 化简1a−2-2aa 2−4的结果等于______.13、(3分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是______. 14、(3分) 如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于______°.15、(3分) 如图,在四边形ABCD 中,AD∥BC ,∠B=90°,AD=8cm ,AB=6cm ,BC=10cm ,点Q 从点A 出发以1cm/s 的速度向点D 运动,点P 从点B 出发以2cm/s 的速度向C 点运动,P 、Q 两点同时出发,其中一点到达终点时另一点也停止运动.若DP≠DQ ,当t=______s 时,△DPQ 是等腰三角形.16、(3分) 已知抛物线y=x 2-mx-3与直线y=2x-5m 在-2≤x <2之间有且只有一个公共点,则m 的取值范围是______.三、计算题(本大题共 1 小题,共 8 分) 17、(8分) 解方程组:{x +2y =4x −y =1四、解答题(本大题共 7 小题,共 64 分)18、(8分) 如图,已知AB=AD ,AC=AE ,∠BAD=∠CAE .求证:BC=DE .19、(10分) 武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“B-比较喜欢”、“C-不太喜欢”、“D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是______,图②中A所在扇形对应的圆心角是______;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?20、(8分) 某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表.(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?21、(8分) 如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E . (1)求证:DE⊥AC ;(2)连接OC 交DE 于点F ,若sin∠ABC=34,求OFFC 的值.22、(10分) 在平面直角坐标系中,点A (1,0),B (0,2),将直线AB 平移与双曲线y=kx (x >0)在第一象限的图象交于C 、D 两点.(1)如图1,将△AOB 绕O 逆时针旋转90°得△EOF (E 与A 对应,F 与B 对应),在图1中画出旋转后的图形并直接写出E 、F 坐标; (2)若CD=2AB ,①如图2,当∠OAC=135°时,求k 的值;②如图3,作CM⊥x 轴于点M ,DN⊥y 轴于点N ,直线MN 与双曲线y=kx 有唯一公共点时,k 的值为______.23、(10分) 如图,Rt△ABC 中,∠ACB=90°,CE⊥AB 于E ,BC=mAC=nDC ,D 为BC 边上一点.(1)当m=2时,直接写出CE BE =______,AEBE =______.(2)如图1,当m=2,n=3时,连DE 并延长交CA 延长线于F ,求证:EF=32DE .(3)如图2,连AD 交CE 于G ,当AD=BD 且CG=32AE 时,求mn 的值.24、(10分) 如图,已知二次函数y=x 2-2mx+m 2+38m −14的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C ,顶点为D .(1)当m=-2时,求四边形ADBC 的面积S ;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点P ,使∠PBA=2∠BCO ,求点P 的坐标;(3)如图2,将(1)中抛物线沿直线y=38x −14向斜上方向平移√734个单位时,点E 为线段OA上一动点,EF⊥x 轴交新抛物线于点F ,延长FE 至G ,且OE•AE=FE•GE ,若△EAG 的外角平分线交点Q 在新抛物线上,求Q 点坐标.2018年湖北省武汉二中、广雅中学中考数学二模试卷【答案】A【解析】解:8-(-2)=8+2=10℃.故选:A.用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.本题利用有理数的减法运算法则求解.【第 2 题】【答案】D【解析】解:由题意,得2-x≠0,解得x≠2,故选:D.根据分母不能为零,可得答案.本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.【第 3 题】【答案】C【解析】解:(3-a)(a+3)=32-a2=9-a2,故选:C.根据平方差公式计算可得.本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.【第 4 题】【答案】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,=0.5,∴5m解得:m=10.故选:B.利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.【第 5 题】【答案】C【解析】解:A、x2与2x不是同类项,不能合并,此选项错误;B、x6÷x2=x4,此选项错误;C、x2•(2x3)=2x5,此选项正确;D、(3x2)2=9x4,此选项错误;故选:C.根据合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方分别计算可得.本题主要考查合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方,熟练掌握其运算法则是解题的关键.【第 6 题】【答案】C【解析】解:点A(-2,4)关于y轴对称的点的坐标是:(2,4).故选:C.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.【第 7 题】【答案】解:从正面看一个正方形被分成三部分,两条分式是虚线,故C 正确; 故选:C .根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,主视图是从正面看得到的图形.【 第 8 题 】 【 答 案 】 D 【 解析 】解:∵这15个数据的中位数是第8个数据,且中位数为5, ∴x=5,则这15个数据为3、3、3、3、5、5、5、5、5、5、5、8、8、8、19,所以这组数据的众数为5万元,平均数为1×19+3×8+7×5+4×315=6万元,故选:D .先根据中位数为5得出x=5,据此可得这15个数据,再利用众数和平均数的定义求解可得. 本题考查众数和中位数、平均数,解答本题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.【 第 9 题 】 【 答 案 】 C 【 解析 】解:∵第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个, …,∴第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=n(n+3)2个, 故选:C .由第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,得第n 个图形中面积为1的正方形有2+3+4+…+(n+1)个.此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.【 第 10 题 】【 答 案 】 C 【 解析 】解:设⊙O 与MN 相切于点K ,设正方形的边长为2a .∵BC 、CD 、MN 是切线,∴BE=CE=CF=DF=a ,MK=ME ,NK=NF ,设MK=ME=x ,NK=NF=y , 在Rt△CMN 中,∵MN=x+y ,CN=a-y ,CM=a-x , ∴(x+y )2=(a-y )2+(a-x )2, ∴ax+ay+xy=a 2,∵S △AMN =S 正方形ABCD -S △ABM -S △CMN -S △ADN =4,∴4a 2-12×2a×(a+x )-12(a-x )(a-y )-12×2a×(a+y )=4, ∴32a 2-12(ax+ay+xy )=4,∴a 2=4,∴a=2或-2(负值舍去), ∴AB=2a=4,∴⊙O 的半径为2. 故选:C .设⊙O 与MN 相切于点K ,设正方形的边长为2a .因为BC 、CD 、MN 是切线,可得BE=CE=CF=DF=a ,MK=ME ,NK=NF ,设MK=ME=x ,NK=NF=y ,在Rt△CMN 中,因为MN=x+y ,CN=a-y ,CM=a-x ,可得到(x+y )2=(a-y )2+(a-x )2,推出ax+ay+xy=a 2,根据S △AMN =S 正方形ABCD -S △ABM -S △CMN -S △ADN ,构建方程求出a 即可解决问题.本题考查正方形的性质、勾股定理切线长定理等知识,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.【 第 11 题 】 【 答 案 】 √2 【 解析 】解:原式=√6+√2−√6 =√2故答案为:√2根据二次根式的性质即可求出答案本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.【 第 12 题 】【 答 案 】-1a+2【 解析 】解:原式=a+2(a+2)(a−2)-2a (a+2)(a−2)=2−a (a+2)(a−2)=−(a−2)(a+2)(a−2)=-1a+2,故答案为:-1a+2.根据异分母分式的加减运算顺序和运算法则计算可得.本题主要考查分式的加减法,解题的关键是掌握异分母分式的加减运算顺序和法则.【 第 13 题 】【 答 案 】59【 解析 】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:59.故答案为:59. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与至少有一辆汽车向左转的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【 第 14 题 】【 答 案 】50【 解析 】解:∵AD∥BC ,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF=65°,∴∠D′EF=65°,∴∠AED′=180°-65°-65°=50°.故答案是:50.先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D′EF 的度数,根据平角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.【 第 15 题 】【 答 案 】83或74【 解析 】解:由运动知,AQ=t ,BP=2t ,∵AD=8,BC=10,∴DQ=AD -AQ=(8-t )(cm ),PC=BC-BP=(10-2t )(cm ),∵△DPQ 是等腰三角形,且DQ≠DP ,∴①当DP=QP 时,∴点P 在DQ 的垂直平分线上, ∴AQ+12DQ=BP ,∴t+12(8-t )=2t ,∴t=83, ②当DQ=PQ 时,如图,Ⅰ、过点Q 作QE⊥BC 于E ,∴∠BEQ=∠OEQ=90°,∵AD∥BC ,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ 是矩形,∴EQ=AB=6,BE=AQ=t ,∴PE=BP -BE=t ,在Rt△PEQ 中,PQ=√PE 2+EQ 2=√t 2+36,∵DQ=8-t∴√t 2+36=8-t , ∴t=74,∵点P 在边BC 上,不和C 重合,∴0≤2t <10,∴0≤t <5,∴此种情况符合题意, 即t=83或74s 时,△DPQ 是等腰三角形.故答案为:83或74. 先由运动速度表示出AQ ,BP ,再分两种情况讨论计算,求出时间,判断时间是否符合题意. 主要考查了勾股定理,平行线的性质,等腰三角形的判定,关键是分情况讨论,是一道中等难度的题目.【 第 16 题 】【 答 案 】−57≤m <1或m=8-4√3【 解析 】解:联立{y =x 2−mx −3y =2x −5m可得:x 2-(m+2)x+5m-3=0,令y=x 2-(m+2)x+5m-3,∴抛物线y=x 2-mx-3与直线y=2x-5m 在-2≤x <2之间有且只有一个公共点,即y=x 2-(m+2)x+5m-3的图象在-2≤x <2上只有一个交点,当△=0时,即△=(m+2)2-4(5m-3)=0解得:m=8±4√3,当m=8+4√3时,x=m+22=5+2√3>2当m=8-4√3时,x=m+22=5-2√3,满足题意,当△>0,∴令x=-2,y=7m+5,令x=2,y=3m-3,∴(7m+5)(3m-3)<0,∴−57<m <1 令x=-2代入0=x 2-(m+2)x+5m-3解得:m=−57,此该方程的另外一个根为:−237,故m=−57也满足题意, 故m 的取值范围为:−57≤m <1或m=8-4√3根据二次函数图象与系数之间的关系即可求出答案.本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于难题.【第 17 题】【答案】解:{x+2y=4①x−y=1②,①-②,得:3y=3,解得:y=1,将y=1代入①,得:x+2=4,解得:x=2,则方程组的解为{x=2 y=1.【解析】利用加减消元法求解可得.本题考查了二元一次方程的解法.解二元一次方程实际上是通过消元,将二元一次方程转化为一元一次方程,通过解一元一次方程解得原方程组的解.【第 18 题】【答案】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≌△ADE(SAS),∴BC=DE.【解析】先求出∠BAC=∠DAE,再利用“边角边”证明△ABC和△ADE全等,根据全等三角形对应边相等证明即可.本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.【第 19 题】【答案】(1)∵被调查的学生总人数为6÷5%=120人,∴C 程度的人数为120-(18+66+6)=30人, 则A 的百分比为18120×100%=15%、B 的百分比为66120×100%=55%、C 的百分比为30120×100%=25%,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是B 、图②中A 所在扇形对应的圆心角是360°×15%=54°,故答案为:B 、54°;(3)估算该年级学生中对数学学习“不太喜欢”的有960×25%=240人.【 解析 】解:(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以得选C 的学生数和选AB 、C 的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数. 本题考查众数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.【 第 20 题 】【 答 案 】解:(1)设生产A 种产品x 件,则生产B 种产品(10-x )件,依题意得:x+3(10-x )=14,解得 x=8,则10-x=2,答:生产A 产品8件,生产B 产品2件;(2)设生产A 产品y 件,则生产B 产品(10-y )件{2y +5(10−y )≤44y +3(10−y )>22, 解得:2≤y <4.因为x 为正整数,故y=2或3;方案①,A种产品2件,则B种产品8件;方案②,A种产品3件,则B种产品7件.【解析】(1)设生产A种产品x件,则生产B种产品有(10-x)件,根据计划获利14万元,即两种产品共获利14万元,即可列方程求解;(2)根据计划投入资金不多于35万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数.本题考查了一元一次方程的应用,一元一次不等式组的应用.关键从表格种获得成本价和利润,然后根据利润这个等量关系列方程,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.【第 21 题】【答案】(1)证明:连接OD.∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC;(2)解:连接AD.∵OD∥AC,∴OF FC =ODEC.∵AB为⊙O的直径,∴∠ADB=∠ADC=90°.又∵D为BC的中点,∴AB=AC.∵sin∠ABC=ADAB =3 4,故设AD=3x,则AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴AD AE =ACAD.∴AD2=AE•AC.∴AE=94x.∴EC=74x.∴OF FC =ODEC=87.【解析】(1)连接OD.根据三角形中位线定理判定OD是△ABC的中位线,则OD∥AC,所以∠DEC=∠ODE=90°,即DE⊥AC;(2)连接AD.通过解直角三角形得到sin∠ABC=ADAB =34,故设AD=3x,则AB=AC=4x,OD=2x;由相似三角形△ADC∽△AED的对应边成比例得到AD2=AE•AC.则AE=94x,EC=74x,所以OF FC =ODEC=87.本题考查了切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.【第 22 题】【答案】(1)∵点A (1,0),B (0,2),∴OA=1,OB=2,如图1,由旋转知,∠AOE=∠BOF=90°,∴点E在y轴正半轴上,点F在x轴负半轴上,由旋转知,△EOF≌△AOB,∴OE=OA=1,OF=OB=2,∴E(0,1),F(-2,0);(2)过点D作DG⊥x轴于G,过点C作CH⊥x轴于H,过点C作CP⊥DG于P,∴PC=GH,∠CPD=∠AOB=90°,∵CD∥AB,∴∠OAB=∠OQD,∵CP∥OQ,∴∠PCD=∠AQD,∴∠PCD=∠OAB,∵∠CPD=∠AOB=90°,∴△PCD∽△OAB,∴PC OA =PDOB=CDAB,∵OA=1,OB=2,CD=2AB,∴PC=2OA=2,PD=2OB=4,∴GH=PC=2,设D(m,n),∴C(m+2,n-4),∴CH=n-4,AH=m+2-1=m+1,∵点C,D在双曲线y=kx (x>0)上,∴mn=k=(m+2)(n-4),∴n=2m+4(Ⅰ)①∵∠OAC=135°,∴∠CAQ=45°,∵∠OHC=90°,∴AH=CH,∴m+1=n-4(Ⅱ),联立(Ⅰ)(Ⅱ)解得,m=1,n=6,∴k=mn=6;②如图3,∵D(m,n),C(m+2,n-4),∴M(m+2,0),N(0,n),∵n=2m+4,∴N(0,2m+4),∴直线MN的解析式为y=-2x+2m+4(Ⅲ),∵双曲线y=kx =mnx=m(2m+4)x(Ⅳ),联立(Ⅲ)(Ⅳ)得,-2x+2m+4=m(2m+4)x,即:x2-(m+2)x+(m2+2m)=0,∴△=(m+2)2-4(m2+2m),∵直线MN与双曲线y=kx 有唯一公共点,∴△=0,∴△=(m+2)2-4(m2+2m)=0,∴m=-2(舍)或m=23,∴n=2m+4=2×23+4=163,∴k=mn=329,故答案为:329.【 解析 】解:(1)利用旋转的性质得出点E 在y 轴坐标轴上,点F 在x 轴的负半轴上,再判断出OE=1,OF=2,即可得出结论;(2)先判断出△PCD∽△OAB ,进而得出PC=2OA=2,PD=2OB=4,设出D (m ,n ),得出C (m+2,n-4),进而判断出n=2m+4;①先判断出AH=CH ,得出m+1=n-4联立即可求出m ,n 的值,即可得出结论;②先确定出直线MN 的解析式,联立得出方程x 2-(m+2)x+(m 2+2m )=0,此方程△=0,进而求出m ,n 的值,即可得出结论.此题是反比例函数综合题,主要考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的性质,待定系数法,一元二次方程根的判别式,平行线的性质和判定,表示出点C ,D 坐标是解本题的关键.【 第 23 题 】【 答 案 】(1)解:如图1中,当m=2时,BC=2AC . ∵CE⊥AB ,∠ACB=90°,∴△BCE∽△CAE∽△BAC , ∴CE EB =AC BC =AE EC =12,∴EB=2EC ,EC=2AE , ∴AE EB =14,故答案为12,14.(2)证明:如图1-1中,作DH∥CF 交AB 于H .∵m=2,n=3,∴BE=4AE ,BD=2CD ,设AE=a ,则BE=4a , ∵DH∥AC , ∴BH AH =BD CD =2, ∴AH=53a ,FH=53a-a=23a ,∵DH∥AF , ∴EF DF =AE EH =a 23a=32,∴EF=32DF .(3)解:如图2中,作DH⊥AB 于H .∵∠ACB=∠CEB=90°,∴∠ACE+∠ECB=90°,∠B+∠ECB=90°, ∴∠ACE=∠B ,∵DA=DB ,∠EAG=∠B ,∴∠EAG=∠ACE ,∵∠AEG=∠AEC=90°, ∴△AEG∽△CEA ,∴AE 2=EG•EC , ∵CG=32AE ,设CG=3a ,AE=2a ,EG=x , 则有4a 2=x (x+3a ),解得x=a 或-4a (舍弃),∴tan∠EAG=tan∠ACE=tan∠B=EG AE =12,∴EC=4a ,EB=8a ,AB=10a ,∵DA=DB ,DH⊥AB ,∴AH=HB=5a ,∴DH=52a ,∵DH∥CE ,∴BD :BC=DH :CE=5:8,设BD=AD=5m ,BC=8m ,CD=3m ,在Rt△ACD 中,AC=√AD 2−CD 2=4m ,∴AC :CD=4:3,∵mAC=nDC ,∴AC :CD=n :m=4:3, ∴m n =34.【 解析 】(1)利用相似三角形的性质即可解决问题;(2)如图1-1中,作DH∥CF 交AB 于H .由m=2,n=3,推出BE=4AE ,BD=2CD ,设AE=a ,则BE=4a ,由DH∥AC ,推出BH AH =BD CD =2,推出AH=53a ,FH=53a-a=23a ,由DH∥AF ,推出EF DF =AE EH =a 23a=32; (3)如图2中,作DH⊥AB 于H .首先证明△AEG∽△CEA ,可得AE 2=EG•EC ,由CG=32AE ,设CG=3a ,AE=2a ,EG=x ,则有4a 2=x (x+3a ),解得x=a 或-4a (舍弃),推出tan∠EAG=tan∠ACE=tan∠B=EG AE =12,推出EC=4a ,EB=8a ,AB=10a ,由DA=DB ,DH⊥AB ,推出AH=HB=5a ,推出DH=52a ,由DH∥CE ,推出BD :BC=DH :CE=5:8,设BD=AD=5m ,BC=8m ,CD=3m ,在Rt△ACD 中,AC=√AD 2−CD 2=4m ,可得AC :CD=4:3,延长即可解决问题;本题考查相似三角形综合题、直角三角形的性质、勾股定理、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考压轴题.【 第 24 题 】【 答 案 】(1)当m=-2时,得到y=x 2+4x+3=(x+2)2-1,∴顶点D (-2,-1),由x 2+4x+3=0,得x 1=-3,x 2=-1;令x=0,得y=3;∴A (-3,0),B (-1,0),C (0,3),∴A B=2 ∴S=S △ABC +S △ABD =12AB×3+12AB×1=2AB=4.(2)如图1,设点P (t ,t 2+4t+3)是第二象限抛物线对称轴左侧上一点,将△BOC 沿y 轴翻折得到△COE ,点E (1,0),连接CE ,过点B 作BF⊥CE 于F ,过点P 作PG⊥x 轴于G ,由翻折得:∠BCO=∠ECO ,∴∠BCF=2∠BCO ;∵∠PBA=2∠BCO ,∴∠PBA=∠BCF ,∵PG⊥x 轴,BF⊥CE ,∴∠PGB=∠BFC=90°, ∴△PBG∽△BCF ,∴PG BG =BF CF 由勾股定理得:BC=EC=√OE 2+OC 2=√12+32=√10, ∵CO×BE=BF×CE ∴BF =OC×BE CE =√10=3√105, ∴CF =√BC 2−BF 2=√(√10)2−(3√105)2=4√105, ∴PG BG =BF CF =34,∴4PG=3BGPG=t 2+4t+3,BG=-1-t ,∴4(t 2+4t+3)=3(-1-t ),解得:t 1=-1(不符合题意,舍去),t 2=−154;∴P (−154,3316).(3)原抛物线y=(x+2)2-1的顶点D (-2,-1)在直线y=38x −14上, 直线y=38x −14交y 轴于点H (0,−14),如图2,过点D 作DN⊥y 轴于N ,DH=√DN 2+NH 2=√22+(34)2=√734; ∴由题意,平移后的新抛物线顶点为H (0,−14),解析式为y=x 2−14,设点E (m ,0),T (n ,0),则OE=-m ,AE=m+12,EF=14−m 2,过点Q 作QM⊥EG 于M ,QS⊥AG 于S ,QT⊥x 轴于T ,∵OE•AE=FE•GE ,∴GE=2m 2m−1,∴AG =√AE 2+EG 2=√(m +12)2+(2m2m−1)2=4m 2+12−4m∵GQ 、AQ 分别平分∠AGM ,∠GAT ,∴QM=QS=QT , ∵点Q 在抛物线上,∴Q (n ,n 2−14), 根据题意得:{m −n =n 2−144m 2+12−4m +12+n =n 2−14−2m 2m−1 解得:{m =−14n =−1 ∴Q (-1,34) 【 解析 】(1)当m=-2时,得到y=x 2+4x+3=(x+2)2-1,S=S △ABC +S △ABD =12AB×3+12AB×1,即可求解;(2)证明△PBG∽△BCF ,则PG BG =BF CF ,BC=EC=√OE 2+OC 2=√12+32=√10,CO×BE=BF×CE ,即可求解;(3)DH=√DN 2+NH 2=√22+(34)2=√734,而OE•AE=FE•GE ,QM=QS=QT ,即可求解. 本题考查的是二次函数综合运用,重点考查了二次函数图象平移,相似三角形,几何变换等,其中(3),GQ 、AQ 分别平分∠AGM ,∠GAT ,则QM=QS=QT ,是本题解题的关键,本题难度较大.。
2017~2018学年武汉市九年级四月调考数学试卷考试时间:2018年4月17日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( )A .22℃B .15℃C .8℃D .7℃2.若代数式41x 在实数范围内有意义,则实数x 得取值范围就是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2得结果就是( )A .1B .x 2C .x 4D .5x 24.下表记录了一名球员在罚球线上投篮得结果,这名球员投篮一次,投中得概率约就是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4356078104123152251投中频率0、40 0、70 0、60 0、52 0、52 0、49 0、51 0、50A .0、7B .0、6C .0、5D .0、4 5.计算(a +2)(a -3)得结果就是( )A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称得点得坐标就是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体得三视图如左图所示,则该几何体就是( )8.某公司有10名工作人员,她们得月工资情况如下表(其中x 为未知数).她们得月平均工资就是2、22万元.根据表中信息,计算该公司工作人员得月工资得中位数与众数分别就是( )A .2,4B .1、8,1、6C .2,1、6D .1、6,1、89.某居民小区得俯视图如图所示,点A 处为小区得大门,小方块处就是建筑物,圆饼处就是花坛,扇形处就是休闲广场,空白处就是道路.从小区大门口向东或向南走到休闲广场, 走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB ,CD 就是互相垂直得两条直径,点E 在弧BC 上,CF ⊥AE 于点F .若点F职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人) 532x0、8三等分弦AE ,⊙O 得直径为12,则CF 得长就是( )A .552 B .5102 C .556 D .5106 二、填空题(共6个小题,每小题3分,共18分)11.计算:2)32(-+得结果就是__________. 12.计算1112+--x x x得结果就是__________. 13.两个人玩“石头、剪子、布”得游戏,随机出手一次,其中一人获胜得概率就是________.14.一副三角板如图所示摆放,含45°得三角板得斜边与含30°得三角板得较长直角边重合.AE ⊥CD 于点E ,则∠ABE 得度数就是__________°.第14题图 第15题图15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为 1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB .16.已知二次函数y =x 2-2hx +h ,当自变量x 得取值在-1≤x ≤1得范围中时,函数有最小值n .则n 得最大值就是__________. 三、解答题(共8小题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE .求证:AB ∥DE .19.(本题8分)学校食堂提供A ,B ,C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐得人数,得到如下统计图.订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图(1) 一共抽查了_________人;(2) 购买A 套餐人数对应得扇形得圆心角得度数就是_________;(3) 如果A ,B ,C 套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐得总销售额大约就是多少元.20.(本题8分)下表中有两种移动电话计费方式.月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0、20 方式二884000、25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费. (1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB ,AD ,DC相切,切点分别为E ,G ,F ,其中E 为边AB 得中点. (1) 求证:BC 与⊙O 相切;(2) 如图2,若AD =3,BC =6,求EF 得长.22.(本题10分)如图,点A ,B 分别就是x 轴,y 轴上得动点,A ( p ,0)、B (0,q ).以AB 为边,画正方形ABCD .(1) 在图1中得第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C ,D 得坐标;(2) 如图2,若点C ,D 在双曲线xky(x >0)上,且点D 得横坐标就是3,求k 得值; (3) 如图3,若点C ,D 在直线y =2x +4上,直接写出正方形ABCD 得边长.23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点P ,CD 2=DP ·DB .(1) 求证:∠BAC =∠CBD ;(2) 如图2,E ,F 分别为边AD ,BC 上得点,PE ∥DC ,EF ⊥BC .① 求证:∠PFC =∠CPD ;② 若BP =2,PD =1,锐角∠BCD 得正弦值为33,直接写出BF 得长.24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0), B (3,0)两点,与y 轴交于点C .P 为抛物线得对称轴上得动点,且在x 轴得上方,直线AP 与抛物线交于另一点D .(1) 求抛物线得解析式;(2) 如图1,连接AC ,DC ,若∠ACD =60°,求点D 得横坐标;(3) 如图2,过点D 作直线3-=y 得垂线,垂足为点E ,若PD PE 2=,求点P 得坐标.2018年武汉市九年级四调数学(含答案)。
2018年九年级数学第二次月考试卷选择题1.下列等式一定成立的是( )A. B. C. × = D. 2.下列平面图案中,既是轴对称又是中心对称的是( )A .B .C .D .3.已知a <b,化简二次根式 的结果正确的是( )A. –aB. –aC. aD. a4.两实根之积为3的方程是( )A. x2+2x+3=0B. 2x2—2x+3=0C. —2x2+5x+6=0D. x2+5x+3=05.①等弧所对的弦相等 ②在同圆或等圆中,相等的两条弦所对的圆周角相等 ③平分弦的直径垂直于弦 ④ =x —1不是一元二次方程 ⑤正三角形至少绕中心旋转60º与自身重合,上面正确的个数为( )A. 1B. 2C. 3D. 4 6.已知点P(x, y)满足等式x2+y2—4x+6y+13=0, 则点P 关于原点对称的点的坐标为( ) A. (—2, 3) B. (—2. —3) C. (2, —3) D. (2, 3)7.已知x 是实数且满足(x2+3x )2+2(x2+3x )—3=0, 那么x2+3x 的值为( ) A. 3 B. —3或1 C. 1 D. —1或3 8.如图,把△ABC 绕点C 顺时针旋转某个角度θ后得到△A′B′C,若∠A=30°,∠1=70°,则旋转角θ可能等于下列哪一个角度( ) A .4A. 40B .50°C .70°D .100º9.已知⊙O 过正方形的顶点A, B 且与CD 相切,若正方形的边长为2,则该圆的半径为( )A. B. C. D. 1 10.十年后,某班同学聚会,见面时相互间均握了一次手,好事者统计,一共握了780次,则这次聚会的同学共有( )人. A. 38 B. 39 C. 40 D. 41(第8题图) (第9题图)ba 3-ab -ab ab ab-x 2344525169169+=+ba b a --22=4994⨯)(b a b a +=+2填空题11.y= 中x 的取值范围是____________________12.若x, y 为实数,且y= +3, 则 =______________.13.已知方程x2+bx+a=0有一根是—a,(a ≠0), 则a —b=________. 14. 若关于x 一元二次方程(m —1)x2+ x+1=0有两个实数根,则m 的取值范围是___________.15.Rt △ABC 中,已知∠C=90º, ∠B=50º,点D 在边BC 上,且BD=2CD,把△ABC 绕点D 逆时针旋转m(0<m <180º﹚度后,如果点B 刚好落在初始Rt △ABC 的边上,那么m=______________. 16. 如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC=5cm ,弦DE=8cm ,则直尺的宽度___________________17. 以正方形ABCD 的AB边为直径作半圆O ,过点C 作直线切半圆于点F ,交AB 边于点E ,若△CDE 的周长为12,则直角梯形ABCE 周长为_______________. (第15题图) (第16题图) (第17题图)18. 观察下列各式: , , , …请你将猜想的规律用含自然数n(n ≥1)的代数式表示出来_________________.19. 设m, n 是方程x2—x —2001=0的两个实数根,则m2+2mn+n 的值为______________ 20.已知AB 是半径为20cm 的⊙O 中的一条弦,∠AOB=120º, 点C 在⊙O 上,且到 弦AB 所在直线的距离为10cm,则∠CAB 的度数是______________________.解答题 21. 化简与计算① —﹙ ﹚-1+3﹙3-1﹚-2018º-︱3-2②先化简再求值 ﹙21+x -1﹚÷-41222 x x x ++, 其中x=3—22-1x x +xx -26-3+y x1+m 2143-1=32951=-542591=-431671=-1233EBC BA(第23题图)22 . 已知关于x 的方程x2+2(a —1)x+a2—7a —4=0的两根为x1, x2, 且满足x1x2—3x1—3x2—2=0, 求 ∣1—a ∣+ 的值。
湖北省大冶市2018届中考数学二模试题九年级数学试题卷(答案)1-5、CBDCC 6-10、C ADCA11、2(a +1)(a -1) 12、x = - 1 13、160° 14、 15、5616、692--=x x y xy 3= 17、解:原式=)133(3223212018-+-⨯-- =133********-+--- 5分 =2016 7分 18、解:原式=2)2(11)1()1(3++⋅++++-x x x x x x=22)2(114++⋅+-x x x x =2)2(11)2)(2(++⋅+-+x x x x x =22+-x x4分当x =3时,原式=51- 7分19、解:由①得:1->x 2分由②得:2≤x 4分∴此不等式组的解集为21≤<-x 5分 ∴此不等式组的所有整数解是:0,1,2. 7分 20、解:(1)由方程有两个实数根,可得△=b 2-4ac=4(k-1)2-4k 2=4k 2-8k+4-4k 2=-8k+4≥0,解得,k ≤21(2)依据题意可得,x 1+x 2=2(k-1),x 1•x 2=k 2, 由(1)可知k ≤21 ∴2(k-1)<0,x 1+x 2<0, ∴-x 1-x 2=-(x 1+x 2)=x 1•x 2-1, ∴-2(k-1)=k 2-1,解得k 1=1(舍去),k 2=-3, 8分∴k 的值是-3.答:(1)k 的取值范围是k ≤21;(2)k 的值是-3. 21、(1)证明:连接OD .∵OD =OB ∴ ∠OBD =∠ODB∵BD 是∠ABC 的角平分线 ∴ ∠OBD =∠CBD∵ ∠CBD =∠ODB ∴OD ∥BC∵∠C=90º ∴∠ODC=90º∴ OD ⊥AC∵点D 在⊙O 上,∴ AC 是⊙O 的切线 4分(2)解:过圆心O 作OM ⊥BC 交BC 于M .∵BE 为⊙O 的弦,且OM ⊥BE ∴BM =EM ∵∠ODC =∠C =∠OMC = 90°∴四边形ODCH 为矩形,则OM =DC =4 ∵ OB =5 ∴BM =2245-=3=EM∴BE =BM +EM =6 8分 22、(1) 120 , 108 ;(每空2分) 4分 (2)6分(3) 450. 8分23、解:(1)若派往A 地区的乙型收割机为x 台,则派往A 地区的甲型收割机为(30-x )台,派往B 地区的乙型收割机为(30-x )台,派往B 地区的甲型收割机为20-(30-x )=(x-10)台. ∴y=1600x+1800(30-x )+1200(30-x )+1600(x-10)=200x+74 000, 2分 x 的取值范围是:10≤x ≤30,(x 是正整数); 3分 (2)由题意得200x+74 000≥79 600,解不等式得x ≥28,由于10≤x ≤30,x 是正整数,∴x 取28,29,30这三个值,∴有3种不同的分配方案. ①当x=28时,即派往A 地区的甲型收割机为2台,乙型收割机为28台;派往B 地区的甲型收割机为18台,乙型收割机为2台;②当x=29时,即派往A 地区的甲型收割机为1台,乙型收割机为29台;派往B 地区的甲型收割机为19台,乙型收割机为1台;③当x=30时,即30台乙型收割机全部派往A 地区;20台甲型收割机全部派往B 地区; 6分 (3)由于一次函数y=200x+74 000的值y 是随着x 的增大而增大的, 所以当x=30时,y 取得最大值,如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74 000=80 000. 8分建议农机租赁公司将30台乙型收割机全部派往A 地区;20台甲型收割机全部派往B 地区,可使公司获得的租金最高.24、(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ , ∴点B 与点E 关于PQ 对称, ∴PB =PE ,BF =EF ,∠BPF =∠EPF , 又∵EF ∥AB , ∴∠BPF =∠EFP , ∴∠EPF =∠EFP , ∴EP =EF , ∴BP =BF =EF =EP ,∴四边形BFEP 为菱形; 3分 (2)解:①∵四边形ABCD 是矩形, ∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°, ∵点B 与点E 关于PQ 对称, ∴CE=BC =5cm ,在Rt △CDE 中,DE =22CD CE =4cm , ∴AE =AD ﹣DE =5cm ﹣4cm =1cm ;在Rt △APE 中,AE =1,AP =3﹣PB =3﹣PE , ∴EP 2=12+(3﹣EP )2, 解得:EP =cm ,∴菱形BFEP 的边长为cm ; 6分②当点Q 与点C 重合时,如图2: 点E 离点A 最近,由①知,此时AE =1cm ; 当点P 与点A 重合时,如图3所示:点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm ,∴点E 在边AD 上移动的最大距离为2cm . 9分 25、解:(1)21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A在21410189y x x =--中,令0x =得10y =即(0,10)B - 由于BC ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x =即(8,10)C -于是,(18,0),(0,10),(8,10)A B C --,。
2018~2019学年度武汉市部分学校九年级四月调研测试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.有理数-2的相反数是( ) A .2B .-2C .21D .21-2.式子2-x 在实数范围内有意义,则x 的取值范围是( )A .x ≥0B .x ≥-2C .x ≥2D .x ≤-2 3.下列说法:① “掷一枚质地均匀的硬币,朝上一面可能是正面”;② “从一副普通扑克牌中任意抽取一张,点数一定是3”( ) A .只有①正确 B .只有②正确 C .①②都正确 D .①②都错误 4.下列四个图案中,是中心对称图形的是( )A B C D 5.下列立体图形中,主视图是三角形的是( )A B C D6.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问长木多少尺?如果设长木长x 尺、绳长y 尺,则可以列方程组是( )A .⎪⎩⎪⎨⎧=-=-1215.4x y x y B .⎪⎩⎪⎨⎧=-=-1215.4x y y x C .⎪⎩⎪⎨⎧=-=-1215.4y x y x D .⎪⎩⎪⎨⎧=-=-1215.4y x x y 7.某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和记为返现金额.童威刚好消费200元,则该顾客所获得返现金额不低于30元的概率是( ) A .43B .32C .21D .318.若点A (x 1,-3)、B (x 2,-2)、C (x 3,1)在反比例函数xk y 12+-=的图象上,则x 1、x 2、x 3的大小关系是( ) A .x 1<x 2<x 3 B .x 3<x 1<x 2 C .x 2<x 1<x 3 D .x 3<x 2<x 19.如图,等腰△ABC 中,AB =AC =5 cm ,BC =8 cm .动点D 从点C 出发,沿线段CB 以2 cm /s 的速度向点B 运动,同时动点O 从点B 出发,沿线段BA 以1 cm /s 的速度向点A 运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为t (s ),以点O 为圆心,OB 长为半径的⊙O 与BA 交于另一点E ,连接ED .当直线DE 与⊙O 相切时,t 的取值是( ) A .916 B .23C .34D .310.我们探究得方程x +y =2的正整数解只有1组,方程x +y =3的正整数解只有2组,方程x +y =4的正整数解只有3组,……,那么方程x +y +z =10的正整数解得组数是( ) A .34 B .35 C .36 D .37 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:9的结果是__________12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是__________13.化简yx yx x 816422---的结果是__________14.如图,D 为△ABC 中BC 边上一点,AB =CB ,AC =AD ,∠BAD =27°,则∠C =__________15.抛物线y =a (x -h )2+k 经过(-1,0),(5,0)两点,则关于的一元二次方程a (x -h +1)2+k =0的解是__________16.如图,在矩形ABCD 中,AB =6,BC =9,点E ,F 分别在BC ,CD 上.若BE =3,∠E AF =45°,则DF 的长是__________ 三、解答题(共8题,共72分) 17.(本题8分)计算:3a 2·a 4+(2a 3)2-7a 618.(本题8分)如图,AB∥CD,EF分别交AB,CD于点G,H,∠BGH,∠DHF 的平分线分别为GM,HN,求证:GM∥HN19.(本题8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,诵读经典”活动,学习随机抽查了部分学生,对他们每天的课外阅读时间进行调查,并将调查统计的结果分为四类:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类,收集的数据绘制如下两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:各类学生人数条形统计图各类学生人数扇形统计图(1) 这次共抽取了_________名学生进行调查统计,扇形统计图中D类所对应的扇形圆心角大小为_________(2) 将条形统计图补充完整(3) 如果该校共有2000名学生,请你估计该校C类学生约有多少人?20.(本题8分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点(1) 直接写出△ABC的形状(2) 要求在下图中仅用无刻度的直尺作图:将△ABC绕点A顺时针旋转角度α得到△AB1C1,α=∠BAC,其中B,C的对应点分别为B1,C1,操作如下:第一步:找一个格点D,连接AD,使∠DAB=∠CAB第二步:找两个格点C1,E,连接C1E交AD于B1第三步:连接AC1,则△AB1C1交即为所做出的图形请你按步骤完成作图,并直接写出D、C1、E三点的坐标21.(本题8分)如图,在等腰△ABC中,AB=AC,AD是中线,E为边AC的中点,过B,D,E三点的⊙O交AC于另一点F,连接BF(1) 求证:BF=BC(2) 若BC=4,AD=34,求⊙O的直径22.(本题10分)某公司计划购买A、B两种计算器共100个,要求A种计算器数量不低于B种的41,且不高于B种的31.已知A、B两种计算器的单价分别是150元/个、100元/个,设购买A种计算器x个(1) 求计划购买这两种计算器所需费用y(元)与x的函数关系式(2) 问该公司按计划购买者两种计算器有多少种方案?(3) 由于市场行情波动,实际购买时,A种计算器单价下调了3m(m>0)元/个,同时B种计算器单价上调了2m元/个,此时童威购买这两种计算器所需最少费用为12150元,求m的值23.(本题10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=n1BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE(1) 求证:OF=OG(2) 用含有n的代数式表示tan∠OBG的值(3) 若∠GEC=90°,直接写出n的值24.(本题12分)已知抛物线y=x2+bx+c经过点A(2,-3)(1) 如图,过点A分别向x轴,y轴作垂线,垂足分别为B,C,得到矩形ABOC,且抛物线经过点C①求抛物线的解析式②将抛物线向左平移m(m>0)个单位,分别交线段OB,AC于D,E两点.若直线DE刚好平分矩形ABOC的面积,求m的值(2) 将抛物线平移,使点A的对应点为A1(2-n,3b),其中n≥1.若平移后的抛物线仍然经过点A,求平移后的抛物线顶点所能达到最高点时的坐标。
2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。