双极膜电渗析的理论研究进展与应用
- 格式:pdf
- 大小:758.12 KB
- 文档页数:5
海南双极膜电渗析海南双极膜电渗析是一种利用膜分离技术进行物质分离的方法。
它是在电场作用下,通过膜的选择性渗透作用,将溶液中的离子或分子分离出来的一种方法。
双极膜电渗析技术在海南地区得到了广泛应用,并在水处理、海水淡化、废水处理、生物医药等领域取得了显著的效果。
双极膜电渗析技术的原理是基于膜的渗透性和电场的作用。
膜是由一层或多层选择性渗透性材料组成的,可以选择性地让溶质通过,而阻止其他组分通过。
在电场作用下,正负极电解液分别注入到两侧的电解槽中,形成电场。
当电解液中的离子或分子进入膜孔时,根据其电荷性质和大小,会受到电场力的作用,使其向相应的极板迁移。
通过调整电场强度和膜孔大小,可以实现对不同离子或分子的分离。
海南双极膜电渗析技术具有许多优点。
首先,它可以高效地分离多种离子或分子,具有很好的选择性。
其次,该技术操作简便,设备成本低,能耗小。
另外,该技术对处理水质的适应性强,可以处理高浓度的溶液,适用于不同的应用场景。
此外,双极膜电渗析还可以实现连续操作,提高了处理效率。
在海南地区,双极膜电渗析技术在水处理领域得到了广泛应用。
海南是一个海岛省份,水资源相对紧缺。
海水淡化成为解决供水问题的重要途径之一。
双极膜电渗析技术可以有效地去除海水中的盐分,使其变为可以使用的淡水。
此外,海南还有许多海水养殖场和海洋化工厂,产生大量的含盐废水。
通过双极膜电渗析技术处理这些废水,可以回收水资源和有价值的溶质,同时减少对环境的污染。
除了水处理领域,双极膜电渗析技术在生物医药领域也有应用。
例如,在药物制剂过程中,通过双极膜电渗析技术可以实现对药物溶液的浓缩和纯化,提高药物的纯度和产量。
此外,在生物分离和纯化过程中,双极膜电渗析技术也可以起到重要的作用。
海南双极膜电渗析技术是一种高效、经济、环保的物质分离方法。
在水处理、海水淡化、废水处理和生物医药等领域具有广泛的应用前景。
随着科技的不断进步和创新,相信双极膜电渗析技术在海南地区将会发挥更大的作用,为当地的可持续发展做出更大的贡献。
珠海双极膜电渗析1. 介绍珠海双极膜电渗析是一种高效的离子分离技术,通过使用特殊设计的双极膜,将溶液中的离子按照其电荷和大小进行分离。
该技术在环境保护、化工、制药等领域具有广泛的应用前景。
2. 原理珠海双极膜电渗析基于电渗析原理,利用电场作用将带电粒子(离子)从一侧向另一侧迁移。
其关键部分是双极膜,该膜由阳离子交换层和阴离子交换层组成,能够选择性地传递带正电荷或负电荷的离子。
在珠海双极膜电渗析中,通过施加外加电压,在膜内产生正负两个极化区域。
正极化区域吸引负离子向前移动,而负极化区域吸引正离子向前移动。
这样就实现了对溶液中带正、负电荷的离子进行有效分离。
3. 工艺流程珠海双极膜电渗析的工艺流程如下:1.原料准备:将需要进行分离的溶液准备好,确保其浓度适宜。
2.膜堆组装:将双极膜按照设计要求堆叠在一起,并且保证阳离子交换层和阴离子交换层正确对应。
3.施加电压:将膜堆两端连接到电源上,施加适当的电压。
4.离子分离:在施加电压的作用下,溶液中的带正、负电荷的离子被分离传递到阳离子交换层和阴离子交换层。
5.收集产物:从阳离子交换层和阴离子交换层收集分离出来的纯净溶液。
4. 应用领域珠海双极膜电渗析技术在多个领域具有广泛的应用前景:4.1 环境保护珠海双极膜电渗析可以用于处理含有重金属、有机物等污染物质的废水。
通过该技术,可以高效地将废水中的离子进行分离,达到水质净化的目的。
该技术还可以应用于海水淡化过程中,将海水中的盐分去除,提供大量可用水资源。
4.2 化工在化工领域,珠海双极膜电渗析可以用于溶液的分离和纯化。
在有机合成过程中,通过该技术可以将反应产物与副产物进行有效地分离,提高产品纯度和收率。
该技术还可以用于酸碱溶液、电镀液等的回收和再利用。
4.3 制药在制药领域,珠海双极膜电渗析可用于药物的纯化和浓缩。
通过该技术,可以将药物与杂质进行有效地分离,并且保留药物的活性成分。
该技术还可以应用于生物制品、蛋白质等高值产品的提纯过程。
海南双极膜电渗析海南双极膜电渗析是一种新型的膜分离技术,广泛应用于海南的水资源处理和海水淡化领域。
本文将介绍海南双极膜电渗析的原理、应用和优势等方面的内容。
一、原理海南双极膜电渗析是利用膜的选择性通透性和电场作用原理来实现溶液中离子的分离和浓缩。
它通过在两侧施加电场,使带电的离子迁移至相应的极板上,从而实现溶质的分离和富集。
在这个过程中,膜扮演着关键的角色,起到选择性通透的作用。
二、应用海南双极膜电渗析在海南的水资源处理和海水淡化领域有着广泛的应用。
首先,它可以用于处理含盐污水,将其中的有害离子去除,使水质得到改善。
其次,它可以应用于海水淡化过程中,将海水中的盐分去除,得到可供人们使用的淡水资源。
此外,海南双极膜电渗析还可以用于工业废水处理、电力工业中的溶液浓缩等领域。
三、优势相比传统的分离技术,海南双极膜电渗析具有以下优势。
首先,它具有高效率和高选择性,可以实现对溶质的精确控制。
其次,该技术可以实现连续操作,节约能源和成本。
此外,它还具有操作简便、设备占地面积小、无污染排放等特点,对环境友好。
四、发展前景海南双极膜电渗析作为一种新型的膜分离技术,具有广阔的发展前景。
随着海南水资源的日益紧张,水处理和海水淡化技术的需求将不断增加。
海南双极膜电渗析作为一种高效、环保的水处理技术,将会得到更广泛的应用和推广。
同时,随着技术的不断进步和创新,海南双极膜电渗析在效率、稳定性和成本等方面将会有更大的突破。
海南双极膜电渗析是一种具有潜力的膜分离技术,它在海南的水资源处理和海水淡化领域有着广泛的应用前景。
通过深入研究和不断创新,相信海南双极膜电渗析将为海南的水资源保护和可持续发展做出重要贡献。
双极膜电渗析法制备偏钨酸铵溶液的研究双极膜电渗析法制备偏钨酸铵溶液的研究偏钨酸铵是一种常见的无机化合物,具有广泛的应用领域,包括催化剂、电池材料、金属表面处理剂等。
但是,传统的化学合成方法存在着一些不足之处,如反应条件苛刻、产品纯度低等。
因此,寻求一种有效的制备方法是十分必要的。
近年来,双极膜电渗析法因其高效、环保、低成本等优点,成为了制备偏钨酸铵溶液的一种重要方法。
本文将着重探讨双极膜电渗析法制备偏钨酸铵溶液的研究进展。
1. 双极膜电渗析法的原理双极膜电渗析法是一种利用双极膜的溶液分离原理,通过外加电场将离子分离、移动及浓缩的方法。
它由中间储罐、阳离子膜、阴离子膜和极板四部分组成。
在外加电场的作用下,阳离子和阴离子从中间储罐分别进入不同的腔室,通过阴离子膜和阳离子膜中的离子交换,使其中的偏钨酸根离子向阴离子膜一侧浓缩,而铵离子向阳离子膜一侧浓缩,最终得到偏钨酸铵溶液。
2. 双极膜电渗析法制备偏钨酸铵溶液的研究现状近年来,许多学者采用双极膜电渗析法制备偏钨酸铵溶液进行了研究。
其中,焦晓云等(2015)在实验室中进行了双极膜电渗析制备偏钨酸铵溶液的实验研究。
结果表明,以0.8 M Na2WO4为起始溶液,pH值为5.0、温度为30°C、电场密度为4 mA/cm2的工艺条件下,可以获得高质量的偏钨酸铵溶液,半硫酸铵用量分别为1.2倍和1.8倍时,产品的离子选择性都较好,且均可以达到99%以上。
该研究证实了双极膜电渗析法在偏钨酸铵溶液制备中的高效和可行性。
3. 双极膜电渗析法制备偏钨酸铵溶液的优势相比传统的化学合成法,双极膜电渗析法有着很多优势。
首先,该方法无需使用有机溶剂或有毒的还原剂等物质,减少了环境污染和化学危险品的使用;其次,制备周期短,反应灵敏度高,具有反应控制精度高、重现性好等特点;再次,该方法能够提高偏钨酸铵的纯度和产率,得到了更优质的产品。
4. 双极膜电渗析法制备偏钨酸铵溶液的研究展望尽管双极膜电渗析法已经成为偏钨酸铵溶液制备的有效方法,但仍然需要进一步探索和研究。
双极膜电渗析可以应用于多个领域双极膜电渗析(Bipolar membrane electrodialysis,BMED)是一种新型的离子分别技术,它利用双极膜将水分子电解成氢离子和氢氧离子,从而实现溶液中离子的分别。
由于该技术具有良好的环保性、高效性以及经济性,因此在很多领域都得到了广泛的应用。
下面将认真介绍该技术在不同领域中的应用。
1. 废水处理领域废水处理是双极膜电渗析技术最紧要的应用领域之一、BMED技术可以有效地除去难以处理的有机物、重金属离子、异色污染物等,使废水达到国家排放标准。
值得一提的是,这种技术处理废水的效率高、成本低,具有紧要的市场应用前景。
双极膜电渗析技术的工作原理是利用电渗析和电解过程的耦合,其核心是由两个反相电场分界的双极膜,在它的上下两侧形成了两个电位的不同区域。
水分子在膜的正面上电解出氢离子,而在膜的反面上电解出氢氧离子,从而达到离子分别的效果。
由此可见,在废水处理领域中,该技术可用于各类离子的分别,包括难以处理的有机物、重金属离子、异色污染物等。
2. 发酵技术领域发酵工艺是现代生物技术中的一项紧要技术,它是利用微生物在特定条件下催化有机物转化成有用物质的过程。
BMED技术可以用于发酵废水和发酵液的离子分别,对于提高发酵利用率和产品纯度有侧紧要的作用。
发酵废水的紧要特点是含有大量的氨氮、有机物和少量的无机盐,其中氨氮和有机物是紧要的难点。
经过BMED技术处理后,可以通过离子分别获得含有大量氨氮和少量有机物的氮肥,同时将含有有机物较少的废水进一步处理,带动了环保型肥料的进展。
3. 电化学合成和分析领域电化学合成是一种绿色、环保的合成技术,在化学合成、生物化学等领域有着广泛的应用。
BMED技术与电化学合成技术相结合,可以用于有机合成、催化剂制备等方面。
同时,该技术还可以用于电化学分析,精准分别和测量目标离子种类。
通过BMED技术在电化学应用中的发挥,有效地提高了产品合成的选择性、活性和纯度,加速了分析和检测的过程,提升了分析和检测的精度和效率。
双极膜电渗析原理1. 介绍双极膜电渗析是一种通过电场作用将离子从溶液中分离的技术。
它利用了膜的选择性通透性和电场的作用,实现了对溶液中离子的有效分离和浓缩。
本文将详细介绍双极膜电渗析的原理、应用和优势。
2. 原理2.1 双极膜的结构双极膜由两层离子选择性膜和中间的隔离层组成。
离子选择性膜是一种半透膜,可以选择性地允许特定离子通过,而阻止其他离子的通过。
隔离层主要用于防止阳极和阴极之间的直接接触。
2.2 电场的作用当外加电场通过双极膜时,溶液中的离子会受到电场力的作用,向相应的极移动。
阳离子会向阴极移动,而阴离子则会向阳极移动。
这样,离子在膜中的传输就被实现了。
2.3 渗析效应双极膜电渗析的核心是渗析效应。
当离子在膜中移动时,由于离子的尺寸和电荷的不同,它们的迁移速率也不同。
这样,在膜中就会形成离子的浓度梯度,从而实现了离子的分离和浓缩。
3.1 水处理双极膜电渗析在水处理领域得到了广泛应用。
通过双极膜电渗析技术,可以高效地去除水中的离子污染物,如重金属离子、无机盐等。
同时,这种技术还可以实现水中离子的浓缩和回收,提高水资源的利用率。
3.2 医药工业在医药工业中,双极膜电渗析被用于药物的纯化和浓缩。
通过控制电场的强度和方向,可以实现对药物中离子的选择性分离和提纯。
这不仅提高了药物的纯度,还减少了生产成本。
3.3 环境保护双极膜电渗析在环境保护方面也有重要应用。
例如,在废水处理中,可以利用双极膜电渗析技术去除废水中的有害离子,减少对环境的污染。
此外,该技术还可以用于处理酸性废水、重金属废水等特殊废水。
4. 优势4.1 高效性双极膜电渗析技术具有高效分离和浓缩离子的能力。
通过调节电场的强度和方向,可以实现对不同离子的选择性分离,提高了分离效果。
4.2 温和性相比传统的分离技术,双极膜电渗析具有温和的操作条件。
不需要高温、高压等条件,减少了能源消耗和设备成本。
4.3 环保性双极膜电渗析技术是一种绿色环保的分离技术。
双极膜电渗析技术在新能源领域的应用研究进展摘要:双极膜电渗析技术(BMED)集成了双极膜和电渗析技术,充分利用了双极膜界面水解离速度快的性能,通过将双极膜与阴、阳单极模适当组合,实现不同的分离功能。
与传统工艺相比,BMED具有高效节能、环境友好、资源化利用率高等优点。
本文介绍了BMED的技术原理和设备构型,并对其在新能源领域的应用研究进展进行了综述,对BMED技术的未来研究与发展进行了展望。
关键词:双极膜;电渗析;酸碱;碳捕获;新能源近十年来,双极膜电渗析技术(Bipolar Membrane Electrodialysis, BMED)的理论和应用研究获得快速发展,双极膜材料及制备技术不断取得新的进步,应用领域已从化工领域的脱盐和酸碱制备拓展到环保领域的废水和废气处理及资源化利用。
近年来,BMED在化学储能、水电解制氢和太阳能利用等新能源领域也表现良好的应用潜力。
上世纪90年代中期,以美国为代表的西方国家就已开展了BMED的工业化应用,而目前国内还多停留在实验研究和小规模应用阶段。
因此,加强BMED的理论和应用研究,对于推动其在新能源利用领域的应用具有重大意义。
1. BMED的技术原理和设备构型1.1 BMED的技术原理双极膜(Bipolar Membrane,BPM)是一种新型的离子交换膜,通常由阴离子选择性层(AEL)、阳离子选择性层(CEL)和中间界面层(催化层)等3部分复合而成[1]。
当BPM两端施加反向电压时,阴、阳离子选择性层中的离子将分别通过阴、阳层向主体溶液迁移,由于固定电荷基团的静电排斥,溶液中同离子渗透进入离子交换层被阻止,于是在BPM中间界面层出现了一个狭窄区域,该区域的电场强度高达108V/m[2],此时该区域中的H2O分子快速解离生成H+和OH-[3],并通过膜层迁移到主体溶液之中,消耗的水分子通过扩散作用由膜外溶液向中间界面层补充,双极膜水解离的速率为常规水解离速率的5×107倍。
双极膜电渗析技术的研究进展电渗析(ED),作为膜分别中进展较早的分别技术,是在电场作用下,以电势差为驱动力,利用离子交换膜对料液进行分别和提纯的一种高效、环保的分别过程。
1956年,V. J. Frilette发觉在电渗析膜面上形成的钙镁垢是由膜面上的水解离造成的,从而首次提出利用双极膜(BPM)促进膜中水解离现象的想法。
随着膜分别技术和膜材料的进展,消失了由阴阳离子交换层和中间界面催化层复合而成的双极膜材料。
其与传统电渗析结合构成的双极膜电渗析(BMED)技术在近年来得到了快速进展,成为了ED工业进展的新增长点。
BMED是由BPM、阴离子交换膜(AEM)、阳离子交换膜(CEM)等基本单元根据肯定的排列方式组合而成的。
在电场作用下,双极膜中的H2O快速解离为H+和OH-,将盐溶液转化为酸和碱。
近年来,BMED多用于清洁生产、资源回收利用、污染零排放中,同时作为新兴的绿色技术,BMED与其他化工技术正朝着集成化的方向进展。
本文从BMED的基本工作原理动身,回顾BMED技术的进展过程,并总结其近年来在酸碱生产、资源分别和污染掌握等方面的讨论和应用进展,最终依据目前双极膜应用中存在的问题探讨其讨论的重点和将来进展的方向。
01 双极膜电渗析1.1 BMED的工作原理BMED运行时,在电场作用下离子进行定向迁移,当双极膜中的离子都迁向主体溶液时,中间层的水会解离产生H+和OH-对电流进行负载。
然而双极膜中发生的水解离现象不同于通常的水解离,讨论者们对其解离的过程机理开展了大量的理论讨论,但限于过程的简单性,目前还没有达成统一的结论。
依据水在双极膜中间层解离过程的不同,主要提出3种解释水解离机制的物理模型,见图 1。
SWE模型认为,在电场作用下,双极膜中间层(阴阳离子尖锐结合区)会因离子迁移而消失薄的无离子区域,认为水解离发生于此。
H2O 的解离跟弱电解质在高压条件下的解离过程相同,H+和OH-的产生速率为H2O的解离速率,解离常数与电压成正相关;在SWE模型的基础上,为了解膜上荷电基团对水解离的影响,进一步提出化学反应模型(CHR),该模型认为由膜基质中的羧酸基、叔胺基和膜内的金属离子等影响水解离速率的现象可知,膜上固定基团通过质子化反应进行水解离产生H+和OH-,且解离更易发生在AEM侧;为解释双极膜中间层较大的能量消耗,提出中和层模型(NL),结果发觉,双极膜的AEM、CEM界面处存在中和层区域,水解离发生在电荷区和电荷与中和层区域的界面处。
双极膜电渗析在钢铁行业酸洗废液处理中的应用研究摘要:将双极膜电渗析技术应用到钢铁行业酸洗废液处理领域,采用自主设计的双极膜电渗析器,以某钢带厂酸洗废液中和后的上清液(Na2SO4)为原料制备NaOH和H2SO4。
要求产生的硫酸(浓度大于10%),回用于酸洗生产线;产生的氢氧化钠(浓度大于8%)用来中和沉淀原酸洗废液。
实验结果表明:在电流密度57mA/cm2,中和处理后的上清液(Na2SO4 10%)条件下,实验范围内新产生的H2SO4 浓度约为15.4%,NaOH浓度为7.9%,满足要求。
因此将双极膜电渗析法应用到钢铁行业酸洗废液处理过程中是可行的、且具有较大的优势,能做到减少污染物排放,资源回收,节约原料成本的目的。
关键词:双极膜电渗析,钢铁行业,酸洗废液,资源回收前言:在钢材生产过程电镀和喷涂生产单元之前,应清除掉外表面的氧化铁皮。
目前除氧化铁皮的方式,基本使用酸洗技术。
所谓的废酸液是指经过酸洗后酸洗液中酸的浓度降低,铁盐的含量增加,从而使酸洗能力不能满足生产速度和质量要求的酸洗液,这时的溶液中仍含有5%左右的酸,也含有20%~24%的铁(FeSO4),由于严重的腐蚀性,已被列入《国家危险废物名录》。
如果对该废酸液不进行处理,排入下水道或者直接外排到附近受纳水体,残酸会腐蚀水泥和混凝土及周边土地,破坏水体中的碳酸钙平衡,而使水中动物死亡,有害于农作物,该类废液直接排放不仅严重污染周边环境,违反国家《环境保护法》,而且造成极大浪费。
目前国内外钢铁工业硫酸酸洗废液的处理方法主要有中和法、硫酸铁盐法、渗析法、生物法等方法。
中和法:一般采用石灰、电石渣或烧碱对其进行中和处理,使pH值达到国家排放标准后排放。
其缺点是中和药剂成本高,费用大,废酸处理量受限,而且酸洗废液中的硫酸、FeSO4等资源没有得到有效利用。
硫酸铁盐法采用浓缩、冷却、结晶等手段,使硫酸亚铁结晶析出,并烘干回收。
其缺点是设备投资大,操作麻烦,处理频繁,生产周期长,能耗高,只能回收硫酸亚铁,不能回收硫酸。
双极膜填充床电渗析技术应用试验双极膜由阴离子交换树脂层(AL)、阳离子交换树脂层(CL)及中间界面亲水层组成,在直流电场作用下,它能将水直接离解成H+和OH-[1]。
利用双极膜与其他阴、阳离子交换膜组合成的双极膜电渗析系统,能够在不引入组分的情况下将水溶液中的盐转化和分离成相应的酸和碱,用此原理对混床离子交换树脂电再生的试验研究显示了良好的技术可行性[2],现将双极膜和填充床电渗析技术相结合,组装成三隔室BPM—EDI装置,应用于复床离子交换树脂的电再生。
1原理将阳离子交换膜、双极膜、阴离子交换膜按一定的顺序排列,并在双极膜两侧分别填充阴、阳两种离子交换树脂,就组成了双极膜三隔室填充床电渗析装置,其原理如图1所示。
在一定电压下,双极膜能把水直接离解成OH-和H+。
阴树脂室内,在电场作用下阴树脂对水中阴离子起到吸附传导作用,使阴离子最终通过阴膜而进入浓水室,而双极膜对水离解产生的OH-在其他阴离子解吸时被阴树脂吸附,从而使树脂又具有了吸附和传导阴离子的活性,即得到再生;同理在阳树脂室内,阳离子在电场作用下,通过阳树脂的吸附传递最终通过阳膜进入浓水室,而双极膜对水离解产生的H+在其他阳离子解吸时被阳树脂吸附,使树脂得到再生。
当所用原水含盐量较低时,在一定的电压下(大于装置极限电流的操作电压),双极膜以及阴、阳膜和树脂颗粒界面层都发生不同程度的极化,而双极膜将更高效地将水离解为H+和OH-,使树脂室内的树脂得到更好的再生。
2试验装置与方法2.1装置双极膜三隔室EDI装置如图2所示,为三级三段组装。
双极膜为上海化工厂特制;阴、阳离子交换膜采用上海化工厂生产的3361—BW和3362—BW;离子交换树脂采用南开大学化工厂生产的001×7阳树脂和201×7阴树脂;树脂室隔板为硬聚氯乙烯板,规格为400 mm×150 mm×5 mm,加工成无回路暗道式进出水隔板,以便填充树脂;电极分别采用钛涂钌(阳极)和不锈钢板(阴极);0~100 V可控硅整流器;DDS—11A型电导仪;PHS—2C型酸度计。