数据结构《单链表》
- 格式:doc
- 大小:46.50 KB
- 文档页数:7
数据结构实验报告--单链表数据结构实验报告--单链表1.引言1.1 研究目的本实验旨在通过实践的方式,深入了解单链表的数据结构以及相关操作,提升对数据结构的理解和应用能力。
1.2 实验内容本实验主要包括以下几个方面的内容:●单链表的基本定义和实现●单链表的插入、删除、遍历操作●单链表的逆置操作●单链表的查找和修改操作2.理论基础2.1 单链表的定义单链表是一种常见的线性数据结构,它由一系列的节点组成,每个节点包含数据和指向下一个节点的指针。
2.2 单链表的基本操作①单链表的插入操作在单链表中,可以通过插入操作在指定位置插入一个新节点,该操作主要包括以下步骤:●创建一个新的节点,并为其赋值●将新节点的next指针指向插入位置的后一个节点●将插入位置的前一个节点的next指针指向新节点②单链表的删除操作在单链表中,可以通过删除操作删除指定位置的节点,该操作主要包括以下步骤:●将删除位置的前一个节点的next指针指向删除位置的后一个节点●释放删除节点的内存③单链表的遍历操作单链表的遍历操作主要是依次访问链表中的每一个节点,并执行相应的操作。
④单链表的逆置操作单链表的逆置操作可以将一个单链表中的节点顺序进行颠倒。
⑤单链表的查找操作在单链表中,可以通过查找操作找到指定值的节点。
⑥单链表的修改操作在单链表中,可以通过修改操作修改指定位置的节点的值。
3.实验过程3.1 实验环境本次实验使用C语言进行编程,需要先安装相应的编程环境,如gcc编译器。
3.2 实验步骤①单链表的创建和初始化首先创建一个空链表,并初始化链表的头指针。
②单链表的插入操作按照需求,在链表的指定位置插入一个新节点。
③单链表的删除操作按照需求,删除链表中的指定位置的节点。
④单链表的遍历操作依次访问链表中的每一个节点,并输出其值。
⑤单链表的逆置操作将单链表中的节点顺序进行逆置。
⑥单链表的查找操作按照需求,在链表中查找指定值的节点。
3.2.7 单链表的修改操作按照需求,修改链表中指定位置的节点的值。
数据结构与算法——单链表的实现及原理1. 单链表的原理 链表是线性表的链式存储⽅式,逻辑上相邻的数据在计算机内的存储位置不必须相邻,那么怎么表⽰逻辑上的相邻关系呢?可以给每个元素附加⼀个指针域,指向下⼀个元素的存储位置。
如图所⽰: 从图中可以看出,每个结点包含两个域:数据域和指针域,指针域存储下⼀个结点的地址,因此指针指向的类型也是结点类型链表的核⼼要素:Ø 每个节点由数据域和指针域组成 Ø 指针域指向下⼀个节点的内存地址。
1.1 结构体定义1 Typedef struct LinkNode2 {3 ElemType data; //节点中存放数据的类型4struct LinkNode* next; //节点中存放下⼀节点的指针5 }LinkList, LinkNode;2. 单链表初始化链表的节点均单向指向下⼀个节点,形成⼀条单向访问的数据链1//单链表的初始化2 typedef struct _LinkNode3 {4int data; //结点的数据域5struct _LinkNode* next; //结点的指针域6 }LinkNode, LinkList; //链表节点、链表78bool InitList(LinkList*& L) //构造⼀个空的单链表 L9 {10 L = new LinkNode; //⽣成新结点作为头结点,⽤头指针 L 指向头结点11if(!L)return false; //⽣成结点失败12 L->next=NULL; //头结点的指针域置空13return true;14 }3. 单链表增加元素 - 单链表前插法插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。
1//前插法2bool ListInsert_front(LinkList * &L, LinkNode * node) //参数1 链表指针参数2 要插⼊的节点元素3 {4if (!L || !node) return false; //如果列表或节点为空返回 false5 node->next = L->next; //将头节点指向节点1的地址赋值给要插⼊节点的指针域,使要插⼊的节点先与后部相连6 L->next = node; //将插⼊节点的地址赋值给头结点的指针域,使要插⼊节点与头结点相连78return true;9 }4. 单链表增加元素 - 单链表尾插法1//尾插法2bool ListInsert_back(LinkList*& L, LinkNode* node)3 {4 LinkNode* last = NULL; //创建空指针,5if (!L || !node) return false; //如果列表或节点为空返回 false67 last = L;8while (last->next) last = last->next; //使⽤ last 找到最后⼀个节点910 node->next = NULL; //要插⼊节点由于在尾部,指针域置为 NULL11 last->next = node; //将要插⼊节点的地址赋值给之前的尾部节点的指针域,将要插⼊节点放置到尾部12return true;13 }5. 单链表增加元素 - 单链表任意位置插⼊插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。
数据结构单链表实验报告实验目的:掌握单链表的基本操作,学会使用单链表实现各种算法。
实验内容:实现单链表的基本操作,包括创建、插入、删除、访问等。
利用单链表完成以下算法:- 单链表逆序- 查找单链表中的中间节点- 删除单链表中的倒数第K个节点- 合并两个有序单链表为一个有序单链表实验步骤:1. 创建单链表在创建单链表时,先定义一个结构体Node来表示链表中的节点,节点包括数据域和指针域,指针域指向下一个节点。
然后,用指针p指向链表的头节点,将头节点的指针域初始化为NULL。
2. 插入节点在单链表中插入节点的操作分为两种情况:- 在链表头插入节点- 在链表中间或尾部插入节点无论是哪种情况,先将新节点的指针域指向要插入的位置的下一个节点,再将要插入的位置的指针域指向新节点即可。
3. 删除节点删除链表节点的操作同样分为两种情况:- 删除头节点- 删除中间或尾部节点要删除头节点,先用一个指针将头节点指向的下一个节点保存起来,再将头节点释放掉。
要删除中间或尾部节点,先用一个指针指向要删除节点的前一个节点,然后将指向要删除节点的前一个节点的指针域指向要删除节点的下一个节点,最后将要删除的节点释放掉。
4. 单链表逆序单链表逆序可以使用三个指针来完成,分别为pre指针、cur指针和next指针。
首先将pre指针和cur指针指向NULL,然后循环遍历链表,将cur指针指向当前节点,将next指针指向当前节点的下一个节点,然后将当前节点的指针域指向pre指针,最后将pre指针和cur指针向前移动一个节点,继续进行循环。
5. 查找单链表中的中间节点查找单链表中的中间节点可以使用双指针法,将两个指针p1和p2都指向链表头,然后p1每次向前移动一个节点,而p2每次向前移动两个节点,当p2指向了链表尾部时,p1指向的节点即为中间节点。
6. 删除单链表中的倒数第K个节点删除单链表中的倒数第K个节点可以使用双指针法,在链表中定义两个指针p1和p2,p1指向链表头,p2指向第K个节点,然后p1和p2同时向前移动,直到p2指向链表尾部,此时p1指向的节点即为要删除的节点。
数据结构-单链表基本操作实现(含全部代码)今天是单链表的实现,主要实现函数如下:InitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
最坏是O(n),即从头查找p之前的结点,然后删除p所指结点LocateElem(LinkList L,ElemType e) 参数:单链表L,元素e 功能:查找第⼀个等于e的元素,返回指针时间复杂度O(n)代码:/*Project: single linkeed list (数据结构单链表)Date: 2018/09/14Author: Frank YuInitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。
单链表实验报告一、实验目的1、帮助读者复习C++语言程序设计中的知识。
2、熟悉线性表的逻辑结构。
3、熟悉线性表的基本运算在两种存储结构上的实现,其中以熟悉链表的操作为侧重点。
二、实验内容[问题描述]实现带头结点的单链表的建立、求长度,取元素、修改元素、插入、删除等单链表的基本操作。
[基本要求](1)依次从键盘读入数据,建立带头结点的单链表;(2)输出单链表中的数据元素(3)求单链表的长度;(4)根据指定条件能够取元素和修改元素;(5)实现在指定位置插入和删除元素的功能。
三、算法设计(1)建立带表头结点的单链表;首先输入结束标志,然后建立循环逐个输入数据,直到输入结束标志。
(2)输出单链表中所有结点的数据域值;首先获得表头结点地址,然后建立循环逐个输出数据,直到地址为空。
(3)输入x,y在第一个数据域值为x的结点之后插入结点y,若无结点x,则在表尾插入结点y;建立两个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,建立循环扫描链表。
当当前结点指针域不为空且数据域等于x的时候,申请结点并给此结点数据域赋值为y,然后插入当前结点后面,退出函数;当当前结点指针域为空的时候,申请结点并给此结点数据域赋值为y,插入当前结点后面,退出函数。
(4)输入k,删除单链表中所有的结点k,并输出被删除结点的个数。
建立三个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,最后一个备用;建立整形变量l=0;建立循环扫描链表。
当当前结点指针域为空的时候,如果当前结点数据域等于k,删除此结点,l++,跳出循环,结束操作;如果当前结点数据域不等于k,跳出循环,结束操作。
当当前结点指针域不为空的时候,如果当前结点数据域等于k,删除此结点,l++,继续循环操作;如果当前结点数据域不等于k,指针向后继续扫描。
循环结束后函数返回变量l的值,l便是删除的结点的个数。
四、实验结果1、新建一个链表:2、输出链表的数据:(4)插入数据:在数据为3后面插入一个数据100:(5)删除数据:删除刚刚插入的数据100:五、总结实验之前由于准备不够充分,所以堂上实验时只完成了建立单链表和数据的输出,而后面两个实验要求也是用来很多时间长完成的。
数据结构单链表实验报告范本:数据结构单链表实验报告一、引言本实验旨在掌握数据结构中单链表的基本概念、操作和应用。
通过实际操作,理解单链表的结构与实现,提高数据结构的编程能力和问题解决能力。
二、实验目的1. 理解单链表的概念和特点;2. 掌握单链表的基本操作,包括插入、删除、遍历;3. 学会使用单链表解决实际问题。
三、实验内容1. 单链表的定义和结构设计;2. 单链表的基本操作的实现,包括插入节点、删除节点、遍历;3. 针对具体的问题,设计相应的单链表操作。
四、实验步骤1. 单链表的定义和结构设计:(1)定义单链表的结构体,包含数据域和指针域;(2)实现单链表的初始化函数;(3)实现单链表的销毁函数。
2. 单链表的基本操作的实现:(1)实现单链表的插入节点操作;(2)实现单链表的删除节点操作;(3)实现单链表的遍历操作。
3. 针对具体问题的单链表操作:(1)根据具体需求,设计并实现相应的操作函数;(2)利用单链表解决具体问题。
五、实验结果与分析1. 在实验过程中,成功实现了单链表的定义和结构设计,包括数据域和指针域的正确设置。
2. 实验中实现了插入节点、删除节点和遍历等基本操作。
3. 针对具体问题,通过单链表操作解决了相应的问题。
六、实验总结通过本次实验,加深了对单链表的理解和掌握。
掌握了单链表的基本操作和应用实现,提高了数据结构的编程能力和问题解决能力。
附件:1. 本文所涉及的代码文件;2. 实验过程中所用到的数据文件。
法律名词及注释:1. 数据结构:指的是一组数据的表示方法和相应的操作。
在计算机科学中,数据结构是计算机中存储、组织数据的方式。
2. 单链表:是一种链式存储结构,每个节点包含数据域和指针域。
数据域用于存储数据,指针域用于指向下一个节点。
数据结构单链表中确定单链表中的最小数的原理(一)单链表中确定最小数引言单链表是一种常见的数据结构,在某些情况下需要确定单链表中的最小数。
本文将介绍如何通过遍历单链表来确定最小数。
数据结构-单链表单链表是一种常见的数据结构,由多个节点构成。
每个节点包含一个数据元素和一个指向下一个节点的指针。
定义节点类我们首先需要定义一个节点类,节点类包含一个数据元素和指向下一个节点的指针。
以下是一个简单的节点类的定义:class Node:def __init__(self, data):= data= None创建单链表在确定最小数之前,我们首先需要创建一个单链表。
以下是一个简单的创建单链表的函数:def create_linked_list(arr):head = Noneprev = Nonefor data in arr:curr = Node(data)if prev is not None:= currelse:head = currprev = currreturn head遍历单链表确定最小数之前,我们需要遍历单链表,以便找到最小数。
以下是一个遍历单链表的函数:def traverse_linked_list(head):curr = headwhile curr is not None:print(, end=" ")curr =确定最小数在遍历单链表的过程中,我们可以通过比较节点的数据元素来确定最小数。
以下是一个确定最小数的函数:def find_min(head):curr = headmin_val = float('inf')while curr is not None:if < min_val:min_val =curr =return min_val示例下面是一个示例,展示了如何创建单链表、遍历单链表以及确定最小数:arr = [5, 3, 8, 2, 9]head = create_linked_list(arr)traverse_linked_list(head)print("The minimum value is:", find_min(head))输出结果为:5 3 8 2 9The minimum value is: 2结论通过遍历单链表,我们可以确定出最小数。
数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
// 链表功能:创建、插入、删除、查找、输出、销毁、结束的验证// 源代#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define NULL 0#define LEN sizeof(struct LINK)typedef struct LINK{double data;struct LINK *next;}LINK;LINK *CREAT( LINK *rear) // 创建函数{LINK *p=NULL,*q=NULL;double data=0;printf(" You select 1-CREAT !\n");// 输入0 ,结束创建printf(" Input 0 is creat finish ! **********\n");p=( struct LINK *)malloc(LEN);if(!p){printf(" You new the space failure !!!!!!!!!\n");exit(0);}q=rear=p;p->data=-999; // 创建空结点p->next=NULL;printf(" Input (double) data: ");scanf("%ld",&data);while(data!=0){p=( struct LINK *)malloc (LEN);if(!p){printf(" You new the space failure !!!!!!!!!\n"); exit(0);} // ifp->data=data;q->next=p; // 尾插法q=p;scanf("%ld",&data);} // whileq->next=rear; // 循环单链表printf(" You input data success !\n");printf(" ----------------------------------------\n");return (rear);}LINK *INSERT( LINK *rear) // 插入函数{if(rear==NULL){printf(" You no creat the link or delete the link !\n");printf(" ----------------------------------------");}else{int i;double data=0;LINK *p=NULL,*q=NULL;printf(" You select 2-INSERT !\n");printf(" Insert position: '1'-head, '2'-rear.\n");printf(" Input (int) select: ");scanf("%d",&i);while((i<1) || (i>2)){printf(" You input have error ! < 1--2 >\n");printf(" --------------------------------------\n");printf(" Insert position: 1-head, 2-rear.\n");printf(" Input (int) select: ");scanf("%d",&i);} // while// 输入0 ,结束插入printf(" Input 0 is insert finish ! ********************\n");printf(" Input (double) data:");scanf("%ld",&data);while(data!=0){p=( struct LINK*)malloc(LEN);if(!p){printf(" You new the space failure !!!!!!!!!\n");exit(0);}p->data=data;if(i==1){p->next=rear->next; // 头插法rear->next=p;}else{q=rear->next;while(q->next!=rear){q=q->next;}q->next=p;p->next=rear; // 尾插法}printf(" You insert data success !\n");scanf("%ld",&data);} // whileprintf(" ----------------------------------------\n");} // elsereturn (rear);}LINK *DEL_DATA( LINK *rear) // 删除函数{if(rear==NULL){printf(" No information to delete !\n");printf(" ----------------------------------------");} // ifelse{int i;int judg=0;double data=0;LINK *p=NULL,*q=NULL;printf(" You select 3-DELETE !\n");a: printf(" Input delete (double) data:");scanf("%ld",&data);judg=0;for(p=rear;p->next->data!=-999;p=p->next){if(p->next->data==data){printf(" You delete data success ++++++++++++++++\n");q=p->next;p->next=q->next;free(q);judg=1; // judg=1 删除成功break;}}if(judg==0){printf(" You delete data: failure--------------\n");}// 是否继续删除:零-结束,其他-继续printf(" Input delete: '0'-finish, '1'-continue.\n");printf(" Input (int) selecct:");scanf("%d",&i);if(i!=0){goto a;} // ifprintf(" ----------------------------------------\n");} // elsereturn (rear);}LINK *FIND(LINK *rear) // 查找函数{if(rear==NULL){printf(" No information to find !\n");printf(" ----------------------------------------");}else{int i;int judg=0;double data=0;LINK *p=NULL;printf(" You select 4-FIND !\n");a: printf(" Input find (double) data:");scanf("%ld",&data);judg=0;for(p=rear->next;p!=rear;p=p->next){if(p->data==data){printf(" Find (double) data:++++%ld+++++\n",p->data);judg=1; // 查找成功}}if(judg==0) // 查找失败{printf(" No you find (double) data: !!!!!!\n");printf(" ----------------------------------------\n");}printf(" Input find: '0'-finish, '1'-continue.\n");printf(" Input (int) select: ");scanf("%d",&i);if(i!=0){goto a;}printf(" ----------------------------------------\n");} // elsereturn(rear);}void PRINT( LINK *rear) // 输出函数{if(rear==NULL){printf(" No information to print !\n");printf(" ----------------------------------------\n");}else{LINK *p=NULL;printf(" You select 5-PRINT !\n");printf(" Link (double) data:\t");for(p=rear->next;p->data!=-999;p=p->next){printf("%ld\t",p->data);}printf("\n");printf(" ----------------------------------------\n");}}LINK *DEL_LINK(LINK *rear){if(rear==NULL){printf(" No data to delete !\n");printf(" ----------------------------------------\n");}else{LINK *p=NULL,*q=NULL;printf(" You select 6-DEL_LINK !\n");p=rear->next;for(;p!=rear;){q=p;p=p->next;free (q);}free (rear);rear=NULL;printf(" Delete the link success !\n");printf(" ----------------------------------------\n");} // elsereturn(rear);}void FUNCTION(void) // main()调用{int n;LINK *rear=NULL;printf("\n");for(;;){ // 链表功能printf("1-CREAT,2-INSERT,3-DEL_DATA,4-FIND,5-PRINT,6-DEL_LINK,other-END.\n");printf(" Input (int) select: ");scanf("%d",&n);switch(n){case 1:rear=CREAT(rear);break;case 2:rear=INSERT(rear);break;case 3:rear=DEL_DA TA(rear);break;case 4:rear=FIND(rear);break;case 5:PRINT(rear);break;case 6:rear=DEL_LINK(rear);break;default:exit(0);} // switch} // for}void main(){FUNCTION();}。