3.2解一元一次方程(一)练习题及答案
- 格式:doc
- 大小:172.00 KB
- 文档页数:4
《3.2 解一元一次方程(一)——合并同类项与移项》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在学习一元一次方程时,掌握合并同类项与移项的基本方法。
通过实际操作,提高学生的计算能力和逻辑思维能力,为后续学习一元一次方程的解法打下坚实的基础。
二、作业内容本作业主要包括以下几个部分:1. 复习与巩固:要求学生回顾并复习一元一次方程的基本概念,包括合并同类项的定义和方法。
2. 实践操作:设计一系列练习题,让学生通过实际操作,掌握合并同类项的技巧。
练习题包括填空题、选择题和计算题等。
3. 移项练习:设计一系列关于移项的练习题,包括将常数项移至等式另一侧的练习,以及将未知数项移至等式另一侧的练习。
4. 实际问题应用:设计一些实际问题,让学生运用所学知识解决实际问题,如购物找零、行程问题等。
三、作业要求为确保学生能够有效地完成本作业,特提出以下要求:1. 学生在完成作业时,需按照步骤和顺序进行,先复习巩固基础知识,再逐一完成实践操作部分的练习题。
2. 学生在合并同类项时,应理解同类项的概念,准确判断同类项并进行合并。
在移项时,应正确运用移项的规则,确保等式两边的平衡。
3. 在实际问题应用部分,学生应理解问题的背景和要求,运用所学知识进行解答。
在解答过程中,应注重解题思路的清晰和解题步骤的规范。
4. 学生在完成作业后,需进行自我检查和修正,确保答案的准确性。
如有疑问或困难,可向老师或同学请教。
四、作业评价本作业的评价标准主要包括以下几个方面:1. 基础知识的掌握程度;2. 实践操作的准确性和熟练程度;3. 解题思路的清晰度和规范性;4. 实际问题的解决能力和应用能力。
五、作业反馈为确保学生能够及时了解自己的学习情况并加以改进,老师需在批改作业后进行以下反馈:1. 对学生的作业进行逐一评价,指出优点和不足;2. 对学生的解题思路和步骤进行点评和指导;3. 对学生的实际问题的解决能力进行评价和建议;4. 对学生的学习提出进一步的建议和要求。
七年级数学上册3-2解一元一次方程(一)——合并同类项与移项同步练习题(含答案)1、下列叙述中,正确的是().A. 含有一个未知数的等式叫一元一次方程B. 未知数的次数是1的方程是一元一次方程C. 含有一个未知数,且未知数的次数是1,系数不等于0的整式方程叫一元一次方程D. 含有一个未知数,次数是1的代数式叫一元一次方程2、请你写出一个解为x=−1的一元一次方程.3、关于x的方程(k−4)x|k|−3+1=0是一元一次方程,则k的值是.4、解方程中的移项就是“把等式一边的某项后移到”.例如,把方程3x+20=8x中的3x变号后移到等号的右边,得.5、方程3x−4=−2x−1移项正确的是().A. 3x−2x=−1−4B. 3x+2x=−1+4C. 2x−3x=1+4D. 3x+2x=1+46、下列解方程的过程中,移项错误的是().A. 方程2x+6=−3移项,得2x=−3+6B. 方程2x−6=−3移项,得2x=−3+6C. 方程3x=4−x移项,得3x+x=4D. 方程4−x=3x移项,得x+3x=47、对方程8x+6x−10x=8合并同类项正确的是().A. 3x=8B. 4x=8C. 8x=8D. 2x=88、方程3x−4=3−2x的解答过程的正确顺序是().①合并同类项,得5x=7;②移项,得3x+2x=3+4;③系数化为1,得x=75.A. ①②③B. ③②①C. ②①③D. ③①②9、一元一次方程6x−8=8x−4的解是().A. x=−2B. x=−67C. x=27D. x=610、下列是一元一次方程的是().A. 2x +2=5 B. 3x−12+4=2x C. y2+3y=0 D. 9x−y=211、写出一个根为x=3的一元一次方程.12、已知(2m−3)x2−(2−3m)x=1是关于x的一元一次方程,则m=.13、解方程中,移项法则的依据是().A. 加法交换律B. 减去一个数等于加上这个数的相反数C. 等式的基本性质1D. 等式的基本性质214、方程3x+4=2x−5移项后,正确的是().A. 3x+2x=4−5B. 3x−2x=4−5C. 3x−2x=−5−4D. 3x+2x=−5−415、下列方程移项正确的是().A. 4x−2=−5移项,得4x=5−2B. 4x−2=−5移项,得4x=−5−2C. 3x+2=4x移项,得3x−4x=2D. 3x+2=4x移项,得4x−3x=216、按要求完成下列各题.(1) 解方程:3x+5=x+2请按所给导语,填写完整解:移项,得3x=2(依据:)合并同类项,得:,系数化为1,得,(依据:).(2) 解方程:2(x+15)=18−3(x−9).17、将方程2x+3=−2−3x,移项,得,合并同类项,得,方程两边同时除以,得.18、解方程3x+6=31−2x1 、【答案】 C;【解析】2 、【答案】x+1=0(答案不唯一);【解析】解:x+1=0的解为x=−1.故答案是:x+1=0(答案不唯一).3 、【答案】−4;【解析】由题意,得|k|−3=1,且k−4≠0,解得k=−4.4 、【答案】变号;另一边;20=8x−3x;【解析】5 、【答案】 B;【解析】3x−4=−2x−1,移项后为:3x+2x=−1+4.故选B.6 、【答案】 A;【解析】 A选项 : 移项,得2x=−3−6,故A错误;B选项 : 移项,得2x=−3+6,故B正确﹔C选项 : 移项,得3x+x=4,故C正确;D选项 : 移项,得−x−3x=−4,或3x+x=4,故D正确.7 、【答案】 B;【解析】8 、【答案】 C;【解析】3x−4=3−2x,移项,3x+2x=3+4;合并同类项,5x=4;,系数化为1,x=75综上:正确顺序为②、①、③.故选C.9 、【答案】 A;【解析】6x−8=8x−4,移项得6x−8x=−4+8,得−2x=4x=−2.故选A.10 、【答案】 B;【解析】 A选项 : 方程中的分母中含有未知数,故A不是一元一次方程;B选项 : 由于方程中含有一个未知数x,且未知数的次数为1,故B是一元一次方程;C选项 : 由于方程中未知数的次数最高为2次,所以C不是一元一次方程;D选项 : 含有两个未知数x和y,故D不是一元一次方程.11 、【答案】x−3=0;【解析】答案不唯一.x−3=0,x=3.故答案为:x−3=0.;12 、【答案】32【解析】2m−3=0,2−3m不等于0,解的m=3.213 、【答案】 C;【解析】根据等式的基本性质1,在等式两边都加上或减去同一个数或整式,所得结果仍然是等式,可得出结果,解方程时,移项法则的依据是等式的基本性质1.故选C.14 、【答案】 C;【解析】已知3x+4=2x−5,移项可得:3x−2x=−5−4.故选C.15 、【答案】 D;【解析】 A选项 : 4x−2=−5移项,得4x=−5+2,故本选项错误.B选项 : 4x−2=−5移项,得4x=−5+2,故本选项错误.C选项 : 3x+2=4x移项,得3x−4x=−2,故本选项错误.D选项 : 3x+2=4x移项,得3x−4x=−2,所以,4x−3x=2,故本选项正确.16 、【答案】 (1) −x;−5;等式两边同时加上或者减去一个相同的数,等式仍成立;2x=−3;x=−3;等式两边同时乘以一个不为0的数,等式仍成立;2(2) x=3.;【解析】 (1) 3x−x=2−5,等式两边同时加上或者减去一个相同的数,等式仍成立!2x=−3x=−3.等式两边同时乘以一个不为0的数,等式仍成立.2(2) 2(x+15)=18−3(x−9)2x+30=18−3x+275x=15x=3.17 、【答案】2x+3x=−2−3;5x=−5;5;x=−1;【解析】略.18 、【答案】x=5;【解析】移项,得:3x+2x=31−6合并同类项,得:5x=25将系数化为1得:x=5。
小学三年级解方程练习题及答案题目一:解一元一次方程1. 将以下方程中的x解出来:a) 3x + 4 = 7b) 5x - 2 = 18c) 2(x + 1) = 102. 解方程:4(x - 3) = 8x - 123. 解以下方程:a) 2x + 1 = x - 4b) 3(x - 2) = 2(x + 1)4. 将方程2(x - 5) + 3 = 3(x - 2) - 2x + 7简化后解出x。
5. 解以下方程,并检验你的解:a) 3(x + 2) - 2 = 5b) 4x + 5 = 3(x - 1) + 2(x + 4)题目二:应用方程解题1. 小明的年龄比他的弟弟多4岁,他们两人的年龄加起来是26岁。
求他们各自的年龄。
2. 一辆汽车每小时行驶60公里的速度,开了x小时后,行驶了总共180公里。
求x的值。
3. 小红买了一箱苹果,苹果的总重量是24千克。
当她拿出了5千克苹果后,箱子里的苹果重量是原来的四分之三。
求原本箱子里的苹果重量。
4. 小明用x元钱买了6个苹果和4个橙子,苹果每个2元,橙子每个3元。
他用完了全部钱。
求x的值。
5. 一架飞机从城市A飞往城市B,飞行了x小时后,距离B的还有320公里。
从城市B到城市C的距离是飞行A到B距离的三倍,已知城市C到B的距离是城市A到B距离的一半。
求从城市A到城市C的距离。
题目三:解两步方程1. 解以下方程:a) 2(x + 3) - 5 = 3x + 2b) 2(3x - 1) + 4 = x + 82. 解方程:2(x - 3) + 3(2x + 1) = 5x - 43. 用解方程的方法求出下列问题的答案:a) 一本书重4/5千克,比一本论文重2/3千克更重一些。
这本书的重量是多少千克?b) 假设小红现在的年龄是x岁,五年前的年龄是现在的四分之三。
求小红现在的年龄。
4. 将方程3(4x - 2) + 2(x - 7) = 5x + 8简化后解出x。
人教版七年级上册第三章一元一次方程练习卷2一、选择题(本大题共10道小题)1. 下列方程变形中,正确的是( )A .方程4554x =-,未知数系数化为1,得1x =- B .方程3541x x +=+,移项,得3415x x -=-+C .方程37(1)32(3)x x x --=-+,去括号,得377323x x x -+=--D .方程1231337x x -+=-,去分母,得7(12)3(31)63x x -=+- 2. 方程2395123x x x +--=+去分母得( ) A .3(23)2(95)1x x x +-=-+B .3(23)62(95)6x x x +-=-+C .3(23)2(95)6x x x +-=-+D .3(23)62(95)1x x x +-=-+ 3. 已知一元一次方程3(2)3212x x --=-,则下列解方程的过程正确的是( ) A .去分母,得3(2)32(21)x x --=-B .去分母,得3(2)621x x --=-C .去分母,去括号,得63642x x --=-D .去分母,去括号,得63621x x +-=+4. 解方程2(31)(4)1x x ---=时,去括号正确的是( )A .6141x x ---=B .6141x x --+=C .6241x x ---=D .6241x x --+=5. 某书中一道方程题:()231x x --∆=+,∆处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是9x =,那么∆处应该是数字( )A .1B .2C .3D .46. 从4-,2-,1-,1,2,4中选一个数作为k 的值,使得关于x 的方程22143x k x k x -+-=-的解为整数,则所有满足条件的k 的值的积为( )A .32-B .16-C .32D .64 7. 如果1x =是方程250x m +-=的解,那么m 的值是( )A .-4B .2C .-2D .48. 已知方程384x x a +=-的解满足20x -=,则a 的值为( ) A .272-B .128-C .114- D .4 9. 一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏10. 2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( )A .2140-B .2140C .5615-D .5615二、填空题(本大题共5道小题)11. 为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有________台.12. 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = . 13. 若x =2是关于x 的方程22x a x -=+的解,则21a -的值是____. 14. 若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .15. 如图,按下列程序进行计算,经过三次输入,最后输出的数是12,则最初输入的数是 ________.三、计算题(本大题共2道小题)16. 解下列方程:(1)312x x -=-;(2)12(1)3x x --=-;(3)211136x x +--=;(4)312[2()]5 223x x-+=.17. (1)512(69)8128323xx x-⎛⎫--=-⎪⎝⎭(2)4353146x xx-+-=-四、解答题(本大题共6道小题)18. 某服装店两件衣服都以900元卖出,其中一件赚了15,而另一件亏了15,这两件衣服合在一起是赚了还是亏了?赚或亏了多少?19.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?20. 某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21. 我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算- “*运算”,定义是*()a b ab a b =-+.根据定义,解决下面的问题:(1)计算:3*4;(2)我们知道,加法具有交换律,请猜想“*运算”是否具有交换律,并说明你的猜想是否正确; (3)类比数的运算,整式也有“*运算”.若*34(2)*12x -的值为2,求x .22.渔夫在静水划船总是每小时5里,现在逆水行舟,水流速度是每小时3里;一阵风把他帽子吹落在水中,假如他没有发现,继续向前划行;等他发觉时人与帽子相距2.5里;于是他立即原地调头追赶帽子,原地调转船头用了10分钟.计算:(1)求顺水速度,逆水速度是多少?(2)从帽子丢失到发觉经过了多少时间?(3)从发觉帽子丢失到捡回帽子经过了多少时间?23. 解方程:0.20.450.0150.010.5 2.50.250.015x x x ++-=-人教版七年级上册第三章一元一次方程练习卷2-讲评卷一、选择题(本大题共10道小题)1. 下列方程变形中,正确的是( )A .方程4554x =-,未知数系数化为1,得1x =- B .方程3541x x +=+,移项,得3415x x -=-+C .方程37(1)32(3)x x x --=-+,去括号,得377323x x x -+=--D .方程1231337x x -+=-,去分母,得7(12)3(31)63x x -=+- 【答案】D【分析】A 、根据等式的性质1即可得到答案;B 、根据等式的性质1即可得到答案;C 、根据去括号法则即可得到答案;D 、根据等式的性质,两边同时乘21,可得答案.【详解】解:A. 方程4554x =-,未知数系数化为1,两边同时乘以54得2516x =-,原选项计算错误,不符合题意; B. 方程3541x x +=+,移项得3415x x -=-,原选项计算错误,不符合题意;C. 方程37(1)32(3)x x x --=-+,去括号,得377326x x x -+=--,原选项计算错误,不符合题意;D. 方程1231337x x -+=-,去分母,得7(12)3(31)63x x -=+-,正确,符合题意; 故选:D .【点拨】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.2. 方程2395123x x x +--=+去分母得( )A .3(23)2(95)1x x x +-=-+B .3(23)62(95)6x x x +-=-+C .3(23)2(95)6x x x +-=-+D .3(23)62(95)1x x x +-=-+【答案】方程的两边都乘以6,得3(23)62(95)6x x x +-=-+.故选:B .3. 已知一元一次方程3(2)3212x x --=-,则下列解方程的过程正确的是( )A .去分母,得3(2)32(21)x x --=-B .去分母,得3(2)621x x --=-C .去分母,去括号,得63642x x --=-D .去分母,去括号,得63621x x +-=+【答案】去分母得3(2)62(21)x x --=-去括号得,63642x x --=-,移项得,34266x x --=--+合并同类项得,72x -=-,系数化为1得27x =,故选:C .4. 解方程2(31)(4)1x x ---=时,去括号正确的是( )A .6141x x ---=B .6141x x --+=C .6241x x ---=D .6241x x --+=【答案】去括号得:6241x x --+=,故选:D .5. 某书中一道方程题:()231x x --∆=+,∆处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是9x =,那么∆处应该是数字( )A .1B .2C .3D .4【答案】B【分析】设∆处数字为a ,把9x =代入方程计算即可求出a 的值.【详解】解:设∆处数字为a ,把9x =代入方程,得:()29391a ⨯--=+,解得:2a =故选:B【点拨】此题考查了一元一次方程的解及解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.易组卷:103656 难度:3 使用次数:1 入库日期:2021/8/1考点:3.2 解一元一次方程(一)-合并同类项与移项6. 从4-,2-,1-,1,2,4中选一个数作为k 的值,使得关于x 的方程22143x k x k x -+-=-的解为整数,则所有满足条件的k 的值的积为( )A .32-B .16-C .32D .64 【答案】D【分析】通过去分母,移项,合并同类项,未知数系数化为1,用含k 的式子表示x ,再根据条件,得到满足条件的k 值,进而即可求解.【详解】 由22143x k x k x -+-=-,解得:122k x -=, ∵关于x 的方程22143x k x k x -+-=-的解为整数, ∴满足条件的k 的值可以为:4-,2-,2,4,∴(4-)×(2-)×2×4=64,故选D .【点拨】本题主要考查一元一次方程的解法,把k 看作常数,掌握解一元一次方程的步骤,是解题的关键.易组卷:103661 难度:3 使用次数:1 入库日期:2021/8/1考点:3.2 解一元一次方程(一)-合并同类项与移项7. 如果1x =是方程250x m +-=的解,那么m 的值是( )A .-4B .2C .-2D .4【答案】B【分析】把x=1代入方程x+2m ﹣5=0,可求出m.【详解】当x=1时,1+2m-5=0,解得:m=2.故选B .【点拨】解一元一次方程8. 已知方程384x x a +=-的解满足20x -=,则a 的值为( ) A .272- B .128- C .114- D .4【答案】A【解析】试题分析:有题意可知,带入方程得求出考点:绝对值,方程9.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏【答案】C【解析】【分析】设进价为x,根据按进价加20%作为定价,可得:定价=1.2x,后来老板按定价8折出售,可得售价=1.2x×0.8=0.96x,根据售价是192元,可得0.96x=192,算出进价,从而得到盈亏情况.【详解】设进价为x 元,由题意可得: ()120%0.8192x +⨯=, 0.96x=192,解得: x=200,200-192=8(元)故选C.【点睛】本题主要考查一元一次方程解决商品销售问题,解决本题的关键是要熟练掌握商品销售问题中进价,标价,售价,利润之间的关系.10. 2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( )A .2140-B .2140C .5615-D .5615【答案】C二、填空题(本大题共5道小题)11.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有________台.【答案】16【解析】设购置的笔记本电脑有x 台,则购置的台式电脑为4(x +5)台,根据两种电脑的台数共100台,列方程得4(x +5)+x =100,解得x =16台.12. 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ; (3)683x y =+,则x = ; (4)122x y =+,则x = . 【答案】(1)4;(2)5;(3)836y +;(4)24y +. 【解析】(1)4a b =+,在等式两端同时加上b ;(2)395x =+,在等式两端同时加上5;(3)836y +,在等式的两端同时乘以16;(4)24y +,在等式的两端同时乘以2.13. 若x=2是关于x 的方程22x a x -=+的解,则21a -的值是____. 【答案】8【分析】根据方程的解的定义,代入求得a 的值,后转化为代数式的值问题解决即可.【详解】解:∵x=2是关于x 的方程22x a x -=+的解, ∴2222a -=+, 解得:a=﹣3,则21a -=2(-3)1-=9﹣1=8.故答案为:8.【点拨】本题考查了一元一次方程的解,一元一次方程的解法,代数式的值,准确将方程的解转化关于a的一元一次方程求得a的值是解题的关键.14. 若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .【答案】0k =,54x =15. 如图,按下列程序进行计算,经过三次输入,最后输出的数是12,则最初输入的数是 ________.【答案】6932 【解析】【分析】先根据所给的程序图列出一元一次方程,再根据等式的性质求出x 的值即可.【详解】由程序图可知:4[4(4x ﹣6)﹣6]﹣6=12移项、合并同类项得:64x =138化系数为1得:x 6932=. 故答案为6932. 【点拨】本题考查了解一元一次方程,根据题意列出方程式是解答此题的关键.三、计算题(本大题共2道小题)16. 解下列方程:(1)312x x -=-;(2)12(1)3x x --=-;【答案】(1)移项合并得:43x =, 解得:34x =;(2)去括号得:1223x x -+=-,移项合并得:3x =-;17. (1)512(69)8128323x x x -⎛⎫--=- ⎪⎝⎭ (2)4353146x x x -+-=- 【答案】(1)1x =-;(2)611x =; 【分析】(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;【详解】解:(1)512(69)8128323x x x -⎛⎫--=- ⎪⎝⎭, 去分母,得:()4812103484(69)x x x --=--,去括号,得:4812036482436x x x -+=-+,移项合并,得:4848x -=,系数化为1,得:1x =-;(2)4353146x x x -+-=-, 去分母,得:()()1234325312x x x --=+-,去括号,得:1212910612x x x -+=+-,移项合并,得:116x =,系数化为1,得:611x =;四、解答题(本大题共6道小题)18. 某服装店两件衣服都以900元卖出,其中一件赚了15,而另一件亏了15,这两件衣服合在一起是赚了还是亏了?赚或亏了多少? 【答案】亏了,亏了75元 【解析】一件赚了15,设该件衣服成本为x 元 ∴19005x x -= ∴750x =∴赚的利润为150元 一件亏了15,设该件衣服成本为y 元 ∴19005y y -=-y=∴1125∴亏得钱为225元∴总共的利润为15022575-=-元∴这两件衣服合在一起是亏了,亏了75元.19.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?【答案】(1)购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【解析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.20. 某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【答案】⑴购进甲种商品400件,乙种商品800件.(2)9折.【解析】【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,根据甲乙两种灯的总进价为46000元列出一元一次方程,解方程即可;(2)设乙型节能灯需打a折,根据利润=售价-进价列出a的一元一次方程,求出a的值即可.【详解】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200-x)只,由题意,得25x+45(1200-x)=46000解得:x=400购进乙型节能灯1200-x=1200-400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a-45=45×20%,解得a=9,答:乙型节能灯需打9折.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.21. 我们已经学过有理数的加减乘除以及乘方运算,下面再给出有理数的一种新运算- “*运算”,定义是*()a b ab a b =-+.根据定义,解决下面的问题:(1)计算:3*4;(2)我们知道,加法具有交换律,请猜想“*运算”是否具有交换律,并说明你的猜想是否正确;(3)类比数的运算,整式也有“*运算”.若*34(2)*12x -的值为2,求x .【答案】(1)“*运算”具有交换律,理由是:*()a b ab a b =-+,*()()b a ba b a ab a b =-+=-+,**a b a b ∴=, 即“*运算”具有交换律;(2)*34(2)*12x -的值为2,338(42)[(1)]222x x ∴-+--+=, 35842222x x ---+=, 即65x =,56x =. 22.渔夫在静水划船总是每小时5里,现在逆水行舟,水流速度是每小时3里;一阵风把他帽子吹落在水中,假如他没有发现,继续向前划行;等他发觉时人与帽子相距2.5里;于是他立即原地调头追赶帽子,原地调转船头用了10分钟.计算:(1)求顺水速度,逆水速度是多少?(2)从帽子丢失到发觉经过了多少时间?(3)从发觉帽子丢失到捡回帽子经过了多少时间?【答案】(1)顺水速度是每小时8里,逆水速度是每小时2里;(2)从帽子丢失到发觉经过了0.5小时;(3)从发觉帽子丢失到捡回帽子经过2330小时【解析】(1)∵顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度,∴顺水速度是5+3=8,逆水速度是5﹣3=2,答:顺水速度是每小时8里,逆水速度是每小时2里;(2)设从帽子丢失到发觉经过了x小时.根据题意,得:()533 2.5x x-+=,解得:x=0.5,答:从帽子丢失到发觉经过了0.5小时;(3)设原地调转船头后到捡回帽子经过了y小时,则从发觉帽子丢失到捡回帽子经过(y+1060)小时.根据题意,得:(5+3)y=2.5+3×(y+10 60)解得:y=35.∴y+1060=2330答:从发觉帽子丢失到捡回帽子经过2330小时.方法或规律点拨本题主要考查了一元一次方程的应用,根据已知表示出小船与了、帽子行驶路程是解题关键.。
专题3.2-3.3解一元一次方程一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·河南南召·月考)若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣82.(2020·福建宁化·期末)若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-33.(2019·山西浑源·初一期末)下列解方程的变形中,正确的是( ) A .方程3x ﹣5=x +1移项,得3x ﹣x =1﹣5B .方程3x +4x=1去分母,得4x +3x =1 C .方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x D .方程﹣15x =5 两边同除以﹣15,得x = -34.(2020·全国单元测试)如果代数式312x +与213x --互为相反数,那么x 的值是( ) A .1B .-1C .32D .05.(2020·全国初一课时练习)某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x 人,则下列方程正确的是( ) A .4x ﹣20=5x +30 B .4x +20=5x ﹣30 C .4x ﹣20=5x ﹣30D .4x +20=5x +306.(2020·全国初一课时练习)方程435x x -=+移项后正确的是( ) A .354x x +=+B .345x x -=--C .354x x -=-D .354x x -=+7.(2020·河北文安·初一期末)在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1 B .3(x ﹣1)+2(2x+3)=1 C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x+3)=68.(2020·全国初一课时练习)“☆”表示一种运算符号,其定义是a ☆2b a b =-+,例如:3☆7237=-⨯+,如果x ☆(5)3-=,那么x 等于( ) A .-4B .7C .-1D .19.(2020·河南南召·月考)下列方程变形中,正确的是( ) A .方程3x -2=2x+1,移项,得3x -2x=-1+2 B .方程3-x=2-5(x -1),去括号,得3-x=2-5x -1 C .1134x x+=-,去分母,得4(x+1)=3x -1D .方程2-45x =,未知数系数化为1,得x=-10 10.(2020·全国初一课时练习)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )11.(2020·全国单元测试)三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .3012.(2020·陕西神木·期末)关于x 的方程3163a x--=与方程()2157x +-=的解相同,则a 的值为( ) A .103-B .73-C .53-D .23-13.(2020·湖南天心·长郡中学期末)若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣614.(2020·全国单元测试)已知1y =是方程()1223m y y --=的解,那么关于x 的方程()()3225m x m x --=-的解是( )A .10x =-B .0x =C .43x =D .2413x =二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上) 15.(2020·全国单元测试)6x =-________方程57811x x -=+的解.(填“是”或“不是”) 16.(2020·全国课时练习)当x =__________时,代数式32x x +-的值是1. 17.(2020·全国单元测试)已知方程332x x -=的解为2x a =+,则关于x 的方程()323x x a a --=的解为_______.18.(2020·全国课时练习)若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初一课时练习)某区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28的教师中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师的人数.20.(2019·北京市昌平区第四中学初一期中)本学期学习了一元一次方程的解法,下面是小明同学的解题过程: 解方程23532x x ---=. 解:方程两边同时乘以6,得:23566132x x --⨯-⨯= …………① 去分母,得:()()223351x x ---= …………② 去括号,得:463151x x --+=………………③ 移项,得:631415x x --=-- ……………④ 合并同类项,得:918x -=-……………………⑤ 系数化1,得:2x =………………………⑥上述小明的解题过程从第_____步开始出现错误,错误的原因是_______________. 请帮小明改正错误,写出完整的解题过程. 21.(2020·全国初一课时练习)解下列方程: (1)(1)2(1)13x x x +--=-; (2)3 1.4570.50.46x x x --=. 22.(2020·嘉峪关市第六中学初一期末)“*”是新规定的这样一种运算法则:a*b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3 (1)试求2*(﹣1)的值; (2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值.23.(2019·河北河间·初一期末)在做解方程练习时,学习卷中有一个方程“2y –12=12y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?24.(2019·河北石家庄·初三一模)数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值. 25.(2020·全国初一课时练习)已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着值的增大,1的值逐渐 ;2的值逐渐 .26.(2020·福建泉州五中月考)在数轴上点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为4. (1)用AC 表示端点为A 、C 的线段长度(以下表示相同),则AC =(2)点P 、Q 、R 同时出发在数轴上运动,点P 从A 点出发以每秒1个单位长度的速度向左运动,点Q 从B 点出发以每秒4个单位长度的速度向右运动,点R 从C 点出发以每秒2个单位长度的速度向右运动,设运动的时间为t 秒.①用含t 的代数式表示:点P 表示的数是 ;点Q 表示的数是 ;点R 表示的数是 ②求在运动过程中,t 为何值时,PQ =12(单位长度) ③求在运动过程中,t 为何值时,PR =2QR专题3.2-3.3解一元一次方程一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·河南南召·月考)若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2C .8D .﹣8【答案】B【解析】把x =1代入方程3x ﹣m =5得:3﹣m =5, 解得:m =﹣2, 故选:B .2.(2020·福建宁化·期末)若代数式x +2的值为1,则x 等于( ) A .1 B .-1C .3D .-3【答案】B【解析】解:由题意可知x+2=1,解得x=-1, 故选B .3.(2019·山西浑源·初一期末)下列解方程的变形中,正确的是( ) A .方程3x ﹣5=x +1移项,得3x ﹣x =1﹣5B .方程3x +4x=1去分母,得4x +3x =1 C .方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x D .方程﹣15x =5 两边同除以﹣15,得x = -3【答案】C【解析】A.方程3x ﹣5=x +1移项,得3x ﹣x =1+5,故错误; B.方程3x +4x=1去分母,得4x +3x =12,故错误; C.方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x ,正确; D.方程﹣15x =5 两边同除以﹣15,得x = -13,故错误; 故选C .4.(2020·全国单元测试)如果代数式312x +与213x --互为相反数,那么x 的值是( ) A .1 B .-1C .32D .0【答案】D 【解析】∵代数式312x +与213x --互为相反数,∴3211023x x ⎛⎫++--= ⎪⎝⎭,得0x =. 故答案选D .5.(2020·全国初一课时练习)某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x 人,则下列方程正确的是( ) A .4x ﹣20=5x +30 B .4x +20=5x ﹣30 C .4x ﹣20=5x ﹣30 D .4x +20=5x +30【答案】B【解析】解:设该校七年级一班有学生x 人, 依题意,得:420530x x +=﹣ 故选:B6.(2020·全国初一课时练习)方程435x x -=+移项后正确的是( ) A .354x x +=+ B .345x x -=-- C .354x x -=- D .354x x -=+【答案】D【解析】因为435x x -=+, 所以354x x -=+. 故选D .7.(2020·河北文安·初一期末)在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1 B .3(x ﹣1)+2(2x+3)=1 C .3(x ﹣1)+2(2+3x )=6 D .3(x ﹣1)﹣2(2x+3)=6【答案】D【解析】解:方程两边同时乘以6得,3(x ﹣1)+2(2+3x)=6 故选:D8.(2020·全国初一课时练习)“☆”表示一种运算符号,其定义是a ☆2b a b =-+,例如:3☆7237=-⨯+,如果x ☆(5)3-=,那么x 等于( ) A .-4 B .7 C .-1 D .1【答案】A【解析】解:∵x ☆(-5)=3, ∴-2x+(-5)=3, 解得x=-4. 故选A.9.(2020·河南南召·月考)下列方程变形中,正确的是( )A .方程3x -2=2x+1,移项,得3x -2x=-1+2B .方程3-x=2-5(x -1),去括号,得3-x=2-5x -1C .1134x x+=-,去分母,得4(x+1)=3x -1 D .方程2-45x =,未知数系数化为1,得x=-10 【答案】D【解析】A. 方程3x -2=2x+1,移项应得3x -2x=1+2,故该项错误; B. 方程3-x=2-5(x -1),去括号应得3-x=2-5x+5,故该项错误; C.1134x x+=-,去分母,应得4(x+1)=3x -12,故该项错误; D. 方程2-45x =,未知数系数化为1应得x=-10,正确. 故选:D.10.(2020·全国初一课时练习)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )【答案】A【解析】根据表格可知0x =时,4mx n +=-, 所以4n =-.2x =时,4mx n +=,所以244m -=, 移项得244m =+, 合并同类项,得28m = 系数化为1,得4m =. 所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -= 系数化为1,得1x =-. 故选A .11.(2020·全国单元测试)三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .30【解析】解:由题意可得,∵第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8, ∴三个数之比为10:15:24, 设三个数分别为10x 、15x 、24x , 则10152498x x x ++=, 解得:2x =,∴第二个数为1530x =. 故选:D .12.(2020·陕西神木·期末)关于x 的方程3163a x--=与方程()2157x +-=的解相同,则a 的值为( ) A .103-B .73-C .53-D .23-【答案】A【解析】解:∵()2157x +-=, 解得:x=5, 将x=5代入:3163a x--=, 解得:a=103-. 故选A .13. (2020·湖南天心·长郡中学期末)若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8 B .﹣8C .6D .﹣6【答案】D【解析】因为xΔy =xy +x +y ,且2Δm =-16, 所以2m+2+m=-16, 解得m=- 6, 故选D.14.(2020·全国单元测试)已知1y =是方程()1223m y y --=的解,那么关于x 的方程()()3225m x m x --=-的解是( )A .10x =-B .0x =C .43x =D .2413x =【解析】把1y =代入12()23m y y --=,得1m =, 把1m =代入关于x 的方程, 得3225x x --=-, 可得0x =, 故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上) 15.(2020·全国单元测试)6x =-________方程57811x x -=+的解.(填“是”或“不是”) 【答案】是【解析】57811x x -=+,318x =-, 6x =-,∴是方程的解;故答案为:是.16.(2020·全国课时练习)当x =__________时,代数式32x x +-的值是1. 【答案】5【解析】由题可得312+-=x x , 化简得232x x --=,∴5x =. 故答案是5.17.(2020·全国单元测试)已知方程332x x -=的解为2x a =+,则关于x 的方程()323x x a a --=的解为_______. 【答案】1x =【解析】解:依题意得:3(a+2)-3=2(a+2), 整理得:3a+6-3=2a+4, ∴a=1,将a=1代入方程3x -2(x -a )=3a 得:3x -2x+2×1=3×1 ∴x=1; 故答案为:1x =18.(2020·全国课时练习)若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________. 【答案】25【解析】把2x =代入()22310x c x c +-+=得:()2222310c c ⨯+⨯-+=,解得:4c =, 当3x =-时,()223x c x c +-+()22(3)34(3)4⨯=⨯-+--+ 1834=++ 25=,故答案为:25.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初一课时练习)某区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28的教师中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师的人数.【答案】阅A18原有教师6人,阅B28原有教师18人.【解析】设阅A18原有教师人数为x 人,则阅B28原有教师人数为3x 人,3x -12=0.5x+3,解之得x=6,所以阅A18原有教师人数为6人,则阅B28原有教师人数为18人.20.(2019·北京市昌平区第四中学初一期中)本学期学习了一元一次方程的解法,下面是小明同学的解题过程: 解方程23532x x ---=. 解:方程两边同时乘以6,得:23566132x x --⨯-⨯= …………① 去分母,得:()()223351x x ---= …………② 去括号,得:463151x x --+=………………③ 移项,得:631415x x --=-- ……………④ 合并同类项,得:918x -=-……………………⑤ 系数化1,得:2x =………………………⑥上述小明的解题过程从第_____步开始出现错误,错误的原因是_______________. 请帮小明改正错误,写出完整的解题过程.【答案】①,利用等式的性质时漏乘,完整过程见解析【解析】第①步开始出现错误,错误的原因是利用等式的性质时漏乘, 故答案为:①,利用等式的性质时漏乘; 解方程235132x x ---= , 解:方程两边同时乘以6,得:23566632x x --⨯-⨯= , 去分母,得:()()223356x x ---=, 去括号,得:463156x x --+=, 移项,得:636415x x --=--, 合并同类项,得: 913x -=- , 系数化1,得: 139x. 21.(2020·全国初一课时练习)解下列方程: (1)(1)2(1)13x x x +--=-; (2)3 1.4570.50.46x x x --=. 【答案】(1)1x =-;(2)30x =;(3)0.7x =-. 【解析】(1)去括号,得12213x x x +-+=-. 移项及合并同类项,得22x =-. 系数化为1,得1x =-. (2)原方程可化为757626x x x --=,去分母,得362157x x x -=-. 移项及合并同类项,得107x =-. 系数化为1,得0.7x =-.22.(2020·嘉峪关市第六中学初一期末)“*”是新规定的这样一种运算法则:a*b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3 (1)试求2*(﹣1)的值; (2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值. 【答案】(1)0;(2):x=﹣12;(3)x=﹣1. 【解析】解:(1)根据题中的新定义得:原式=4﹣4=0; (2)根据题中的新定义化简得:4+4x=2,解得:x=﹣;(3)根据题中的新定义化简得:(﹣2)*(1+2x )=4﹣4(1+2x )=x+9, 去括号得:4﹣4﹣8x=x+9, 解得:x=﹣1.23.(2019·河北河间·初一期末)在做解方程练习时,学习卷中有一个方程“2y –12=12y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗? 【答案】见解析【解析】解:5(x -1)-2(x -2)-4=3x -5, 当x =3时,3x -5=3×3-5=4, ∴y =4.把y =4代入2y -12=12y -■中,得 2×4-12=12×4-■, ∴■=-112. 即这个常数为-112. 24.(2019·河北石家庄·初三一模)数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值. 【答案】(1)244x x ++;(2)1.【解析】解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++; (2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.25.(2020·全国初一课时练习)已知14y x =-+,222y x =-.(1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着值的增大,1的值逐渐 ;2的值逐渐 . 【答案】(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【解析】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =; (2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大.26.(2020·福建泉州五中月考)在数轴上点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为4. (1)用AC 表示端点为A 、C 的线段长度(以下表示相同),则AC =(2)点P 、Q 、R 同时出发在数轴上运动,点P 从A 点出发以每秒1个单位长度的速度向左运动,点Q 从B 点出发以每秒4个单位长度的速度向右运动,点R 从C 点出发以每秒2个单位长度的速度向右运动,设运动的时间为t 秒.①用含t 的代数式表示:点P 表示的数是 ;点Q 表示的数是 ;点R 表示的数是 ②求在运动过程中,t 为何值时,PQ =12(单位长度) ③求在运动过程中,t 为何值时,PR =2QR【答案】(1)7;(2)①﹣3-t ,4t -1,2t+4;②t=2;③t=17或37【解析】解:(1)AC=4-(﹣3)=4+3=7; 故答案为:7;(2)①点P 表示的数是:﹣3-t ;点Q 表示的数是:4t -1;点R 表示的数是:2t+4; 故答案为:﹣3-t ,4t -1,2t+4;②根据题意得:4t -1-(﹣3-t )=12,解得:t=2; 所以当t=2时,PQ =12;③PR=2t+4-(﹣3-t )=3t+7,QR=()412425t t t --+=-, 若PR =2QR ,则37225t t +=⨯-, 当()37225t t +=-时,解得:t=17, 当()37225t t +=--时,解得:37t =; 所以当t=17或37时,PR =2QR .。
专题3.2 解一元一次方程【十大题型】【人教版】【题型1 同解问题】 (1)【题型2 一元一次方程的整数解问题】 (2)【题型3 一元一次方程的解与参数无关】 (2)【题型4 一元一次方程的遮挡问题】 (2)【题型5 根据两个一元一次方程的解之间的关系求参数】 (3)【题型6 错看或错解一元一次方程问题】 (3)【题型7 探究一元一次方程解的情况】 (4)【题型8 一元一次方程的解法在新定义中的运用】 (5)【题型9 根据一元一次方程的解求另一个一元一次方程的解】 (6)【题型10 含绝对值的一元一次方程的解法】 (6)【知识点一元一次方程的解法】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.【题型1 同解问题】【例1】(2023春·四川资阳·七年级四川省安岳中学校考期中)已知关于x的一元一次方程2x+13−5x−16=1.(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=−(x−1)的解相同,求m的值.【变式11】(2023春·安徽亳州·七年级校考开学考试)当m=时,方程5x+4=4x−3和方程2(x+1)−m=−2(m−2)的解相同.【变式12】(2023秋·宁夏银川·七年级校考期末)当m为何值时,方程−x+4+10(x−3)=−8的解,也是关于x的方程5x+3m3−mx−106=1的解.【变式13】(2023秋·江苏无锡·七年级校考期中)如果方程3x−42−7=2x+13−1的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.【题型2 一元一次方程的整数解问题】【例2】(2023秋·江西九江·七年级校考期中)已知关于x的方程x−5−ax6=x+46−1的解是正整数,则符合条件的所有整数a的积是()A.8B.−8C.12D.−12【变式21】(2023春·广东广州·七年级统考开学考试)已知关于x的方程x−28−ax3=x2−1有负整数解,则所有满足条件的整数a的值之和是.【变式22】(2023秋·福建三明·七年级统考期末)已知关于x的方程x−2−ax6=x3−2有非负整数解,则整数a的所有可能的取值的和为()A.−23B.23C.−34D.34【变式23】(2023秋·广东广州·七年级统考期末)已知代数式M=(a−b−1)x5−7x2+(a+3b)x−2是关于x的二次多项式.(1)若关于y的方程(3b−3a)y=ky−5的解是y=1,求k的值.(2)若关于y的方程(3b−3a)y=ky−5的解是正整数,求整数k的值.【题型3 一元一次方程的解与参数无关】【例3】(2023秋·湖北十堰·七年级统考期中)已知a,b为定值,且无论k为何值,关于x的方程kx−a3=1−2x+bk2的解总是x=2,则ab=.【变式31】(2023秋·江苏泰州·七年级校考阶段练习)已知m,n为定值,且无论k为何值,关于x的方程kx−3m2=2−4x−nk3的解总是x=3,则mn=.【变式32】(2023秋·四川成都·七年级成都嘉祥外国语学校校考期末)如果a、b定值,且关于x的方程2kx+a3=2+x+bk6,无论k为何值时,它的解总是x=1,那么2a−b=.【变式33】(2023·湖北武汉·七年级统考期末)如果a,b为常数,关于x的方程kx−a2−1=2x−bk4不论k取何值时,它的解总是﹣1,则a b= .【题型4 一元一次方程的遮挡问题】【例4】(2023秋·山西运城·七年级统考期末)小聪解方程3x−12=2x+★时,发现★处一个常数被墨水污染了,答案显示此方程的解是x=−2,则这个常数是()A.2B.−2C.52D.−52【变式41】(2023秋·七年级课时练习)马小哈在解一元一次方程“★x3=2x+9”时,一不小心将墨水泼在作业本上了,其中有一个未知数x 的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以原方程的解为x=2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?【变式42】(2023秋·浙江金华·七年级统考期末)计算:6×(12−■)+2. 圆圆在做作业时,发现题中有一个数字被墨水污染了. (1)如果被污染的数字是43,请计算6×(12−43)+2. (2)如果计算结果等于14,求被污染的数字.【变式43】(2023秋·江苏·七年级专题练习)小明同学在解方程32(1−■−x 3)=x −13时,墨水把其中一个数字染成了“■”,他翻阅了答案知道这个方程的解为x =−43,请帮他推算被染了的数字“■”应该是 【题型5 根据两个一元一次方程的解之间的关系求参数】【例5】(2023秋·陕西渭南·七年级校考期中)已知方程92x +6=5+4x 的解比关于x 的方程7x −3a =0的解小1,则a 的值为 .【变式51】(2023秋·安徽合肥·七年级合肥市五十中学西校校考期中)已知方程2−3(x +1)=0的解与关于x 的方程k+x 2−3k −2=2x 的解互为相反数,求k 的值.【变式52】(2023春·河南南阳·七年级统考期中)当x =3时,多项式6x −3a 的值比4x −12的值大3,那么a 的值为( ) A .2B .3C .5D .6【变式53】(2023秋·广东广州·七年级统考期末)(1)已知|x ﹣3|+(y +1)2=0,代数式2y−x+t2的值比y ﹣x +t多1,求t 的值.(2)m 为何值时,关于x 的一元一次方程4x ﹣2m =3x ﹣1的解是x =2x ﹣3m 的解的2倍. 【题型6 错看或错解一元一次方程问题】【例6】(2023秋·福建·七年级统考阶段练习)小明在解关于x 的方程2−x−43=3a −2x 时,误将“−2x ”看作“+2x ”,得到方程的解为x =1,则此方程正确的解为( ). A .x =−75B .x =−57C .x =−95D .x =−59【变式61】(2023春·河南驻马店·七年级统考期中)阅读解题过程,解答后续问题解方程3(x −2)+1=2x −(3x −4) 解:原方程的两边分别去括号,得 3x −6+1=2x −3x −4 ★ 即3x −5=−x −4 ★ 移项,得3x −x =5−4 ★ 即2x =1 ★两边都除以2,得x =12 ★(1)指出以上解答过程哪一步出错,并给出正确解答;(2)结合平时自身实际,请给出一些解一元一次方程的注意事项.【变式62】(2023秋·四川广元·七年级校考阶段练习)亮亮在解关于x 的方程ax−12+6=2+x 3时,把6错写成1,解得x=1,并且亮亮的解题过程没有错误,则此方程正确的解为 . 【变式63】(2023秋·河南平顶山·七年级统考期末)下面是明明解方程2x−14=−1−3−x 8的过程:解:去分母得:2(2x −1)=−8−(3−x )(第一步), 去括号得:4x −2=−11+x (第二步), 移项得:4x +x =−11−2(第三步), 合并同类项得:5x =−13(第四步), 系数化为1得:x =−135(第五步), 根据解答过程完成下列任务.任务一:★上述解答过程中,第一步的变形依据是_________;★第_________步开始出现错误,这一步错误的原因是_________;任务二:请你写出解方程的正确过程;任务三:请你根据平时解一元一次方程的经验,再给其他同学提一条建议_________. 【题型7 探究一元一次方程解的情况】【例7】(2023秋·七年级课时练习)求关于x 的方程2x ﹣5+a=bx+1, (1)有唯一解的条件; (2)有无数解的条件; (3)无解的条件.【变式71】(2023春·上海杨浦·七年级校考期中)已知关于x 的方程2a (x −1)−(5−a )x =3b 有无数多个解,求常数a、b的值.【变式72】(2023春·全国·七年级开学考试)已知关于x的方程ax=b,当a≠0,b取任意实数时,方程有唯一解;当a=0,b=0时,方程有无数解;当a=0,b≠0时,方程无解.若关于x的方程a3x=x2−x−66无解,则a的值为()A.1B.−1C.0D.±1【变式73】(2023·全国·七年级假期作业)一元一次方程都可以变形为形如ax=b(a,b为常数)的方程,称为一元一次方程的最简形式.关于x的方程ax=b(a,b为常数,且a≠0)解的讨论:当a≠0时,是一元一次方程,有唯一解x=ba;当a=0,且b=0时,它有无数多个解,任意数都是它的解;当a=0,且b≠0时,它无解,因为任何数都不可能使等式成立.讨论关于当x的方程(a﹣4)x=2的解.【题型8 一元一次方程的解法在新定义中的运用】【例8】(2023秋·湖南长沙·七年级校联考期末)已知x0是关于x的方程ax+b=0(a≠0)的解,y0是关于y 的方程cy+d=0(c≠0)的解,若x0,y0是满足|x0−y0|≤1,则称方程ax+b=0(a≠0)与方程cy+d= 0(c≠0)互为“阳光方程”;例如:方程4x+2x−6=0的解是x0=1,方程3y−y=3的解是y0=1.5,因为|x0−y0|=0.5<1,所以方程4x+2x−6=0与方程3y−y=3互为阳光方程.(1)请直接判断方程3x−3+4(x−1)=0与方程−2y−y=3是否互为阳光方程;(2)请判断关于x的方程12022x−m=2x−5与关于y的方程y+7×2022−1=4044y+2022m是否互为阳光方程,并说明理由;(3)若关于x的方程3x−3+4(x−1)=0与关于y的方程3y+k2−y=2k+1互为阳光方程,请求出k的最大值和最小值.【变式81】(2023秋·湖南岳阳·七年级统考期末)对于任意实数a、b定义一种新运算“⊗”如下:a⊗b=2a+ b2,例如2⊗3=2×2+32=13(1)求4⊗(−2)的值;(2)若x⊗4=(2x)⊗1,求x.【变式82】(2023秋·江苏淮安·七年级统考期末)定义一种新运算“⊕”:a⊕b=2a−ab,如1⊕(−3)= 2×1−1×(−3)=5(1)求(−2)⊕3的值;(2)若(−3)⊕x=(x+1)⊕5,求x的值;【变式83】(2023春·吉林长春·七年级统考期中)定义:如果两个一元一次方程的解之和为0,我们就称这两个方程为“友好方程”.例如:2x=2的解为x=1;x+2=1的解为x=−1,所以这两个方程为“友好方程”.(1)若关于x的一元一次方程x+2m=0与3x−2=−x是“友好方程”,则m=.(2)已知两个一元一次方程为“友好方程”,且这两个“友好方程”的解的差为3.若其中一个方程的解为x=k,求k的值.(3)若关于x的一元一次方程12023x−1=0和12023x−5=2x+a是“友好方程”,则关于y的一元一次方程12023(y−1)−5=2y+a−2的解为.【题型9 根据一元一次方程的解求另一个一元一次方程的解】【例9】(2023秋·安徽芜湖·七年级校考期末)已知关于x的一元一次方程2022x+a2023+2023=x+b的解是x=2023,则关于y的一元一次方程y−2024=2022y+a−20222023−b的解为y=()A.2022B.2023C.2024D.2025【变式91】(2023春·福建福州·七年级校考开学考试)已知k≠0,关于x的方程kx+b=0的解为x=4,则关于y的方程k(3y+2)+b=0的解为.【变式92】(2023秋·福建福州·七年级校考期末)关于x的方程2ax=(a+1)x+6的解是x=1,现给出另一个关于x的方程2a(x−1)=(a+1)(x−1)+6,则它的解是.【变式93】(2023秋·江苏盐城·七年级校联考期中)已知以x为未知数的一元一次方程x2019+2020m=2021x的解为x=2,那么以y为未知数的一元一次方程2020−y2019−2020m=2021(2020−y)的解为.【题型10 含绝对值的一元一次方程的解法】【例10】(2023秋·江西宜春·七年级校考期末)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=−1;当x+3<0时,原方程可化为:x+3=−2,解得x=−5.所以原方程的解是x=−1,x=−5.(1)解方程:|3x−2|−4=0;(2)探究:当b为何值时,方程|x−2|=b+1★无解;★只有一个解;★有两个解.【变式101】(2023秋·山东德州·七年级统考阶段练习)若关于x的方程4m-3x=1的解满足2︱x2︱1=3,则m的值为【变式102】(2023秋·四川成都·七年级成都实外校考期中)已知m、n为有理数,方程||x+m|−n|=2.7仅有三个不相等的解,则n=.x−2|+3=a.【变式103】(2023春·上海浦东新·六年级上海中学东校校考期中)解关于x的方程:|12。
3.2解一元一次方程(1)一、单选题1.方程的解是().A.B.C.D.2.下列方程变形正确的是()A.由得B.由得C.由得D.由得3.已知关于x的方程2x+a=1-x与方程2x-3=1的解相同,则a的值为()A.2B.-2C.5D.-5 4.解方程5x-3=2x+2,移项正确的是()A.5x-2x=3+2B.5x+2x=3+2C.5x-2x=2-3D.5x+2x=2-3 5.下列解方程的过程中,移项错误的是()A.方程变形为B.方程变形为C.方程变形为D.方程变形为6.在解方程x﹣2=4x+5时,下列移项正确的是()A.x+4x=5﹣2B.x+4x=2+5C.x﹣4x=5+2D.x﹣4x=﹣2﹣57.下列式子的变形中,正确的是()A.由6+x=10得x=10+6B.由3x+5=4x得3x-4x=-5C.由8x=4-3x得8x-3x=4D.由2(x-1)=3得2x-1=38.如果x=1是关于x的方程-x+a=3x-2的解,则a的值为()A.1B.-1C.2D.-2 9.将方程移项,可以得到()A.B.C.D.10.下列方程移项、系数化为1正确的是()A.由3+x=5,得x=5+3B.由2x+3=x+7,得2x+x=7+3C.由7x=﹣4,得x=﹣D.由y=2,得y=4二、填空题11.方程的解是.12.如图是正方体的展开图,相对两个面上的数互为倒数,则x=,y=.13.若方程2x+a=1与方程3x﹣1=2x+2的解相同,则a的值为.14.若3x m+5y3与x2y n的差仍为单项式,则m+n=.15.若2a+3与3互为相反数,则a=.三、计算题16.解下列方程:.17.解方程:.18.解方程:.四、解答题19.已知关于x的一元一次方程ax-2=7与方程2x-1=5的解互为相反数,求a的值.20.若整式的值比整式的值大1,求x的值.21.现规定一种新运算,规则如下:※,已知3※,求x的值.22.若方程与关于的方程有相同的解,求的值.23.小莹在解关于的方程时,误将看作,得方程的解为,求原方程的解为多少?24.(1)解方程:(2)先化简,再求值:,其中,答案解析部分1.【答案】A【解析】【解答】解:,移项得,,合并同类项得,,故答案为:A.【分析】根据解一元一次方程的解题步骤“移项、合并同类项”求出方程的解,即可得出答案. 2.【答案】C【解析】【解答】解:A.由得,不符合题意;B.由得,不符合题意;C.由得,符合题意;D.由得,不符合题意.故答案为:C.【分析】利用等式的性质逐项判断即可。
第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3 B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1% 15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:-9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x 的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19] 9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).。
第 三 章 一元一次方程3.1 从算式到方程第 1 课时 一元一次方程1.下列各式是方程的是( ) A .3x +8 B .3+5=8C .a +b =b +aD .x +3=72.下列各式中不是方程的是( ) A .2x +3y =1 B .-x +y =4 C .x =8 D .3π+5≠73.下列各式中:①2x -1=5;②4+8=12;③5y -7;④2x +3y =0;⑤3x 2+x =1;⑥2x 2-3x -1;⑦|x|+1=2;⑧6y=6y -9,是方程的有( )A .①②④⑤⑧B .①②⑤⑦⑧C .①④⑤⑦⑧D .①③④⑤⑥⑦⑧4.下列方程是一元一次方程的是( ) A .x 2-x =4 B .2x -y =0C .2x =1D .1x=25.下列各式是一元一次方程的有( )①34x =12;②3x -2;③17y -15=2x 3-1;④1-7y 2=2y ;⑤3(x -1)-3=3x -6;⑥5y +3=2;⑦4(t -1)=2(3t +1).A .1个B .2个C .3个D .4个6.方程■x -2=2(x -3)是一元一次方程.■是被污染了的x 的系数,下列关于被污染了的x 的系数的值,推断正确的是( )A .不可能是-1B .不可能是-2C .不可能是0D .不可能是27.若x a -2+1=3是关于x 的一元一次方程,y b +1+5=7是关于y 的一元一次方程,则a +b =________.8.写出一个一元一次方程,同时满足下列两个条件:①未知数的系数是2;②方程的解为3,则这个方程为________.9.(2015·咸宁)方程2x -1=3的解是( ) A .-1 B .-2 C .1 D .210.(2015·无锡)方程2x -1=3x +2的解为( ) A .x =1 B .x =-1 C .x =3 D .x =-3 11.根据下列条件能列出方程的是( ) A .a 与5的和的3倍B .甲数的3倍与乙数的2倍的和C .a 与b 的差的15%D .一个数的5倍是1812.(2015·杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程( )A .54-x =20%×108B .54-x =20%×(108+x)C .54+x =20%×162D .108-x =20%(54-x)13.(2015·南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A .25台B .50台C .75台D .100台14.在高速公路上一辆长4 m ,速度为110 km /h 的轿车准备超越一辆长12 m ,速度为100 km /h 的卡车,则轿车从刚开始追上到完全超越卡车,需要花费的时间约是多少?(只列方程)15.已知(m -3)x|m|-2+1=0是关于x 的一元一次方程,试求出⎝ ⎛⎭⎪⎫3m 3-52m 2-13m -2-(2m3-32m 2+53m -3)的值. 16.已知下列方程后面的大括号里有一个数是方程的解,请把它找出来.(1)4x -2x -3=0 ⎩⎨⎧⎭⎬⎫4,32;(2)4x -3=2x +3 {-2,3}. 17.已知3am -1b 2与4a 2bn -1是同类项,试判断x =m +n 2是不是方程2x -6=0的解.18.根据“欢欢”与“乐乐”的对话,解决下面的问题:欢欢:我手中有四张卡片,它们上面分别写有:8,3x +2,12x -3,1x .乐乐:我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式或一元一次方程.问题:(1)乐乐一共能写出几个等式?(2)在乐乐写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.19.(2015·长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A .562.5元B .875元C .550元D .750元20.(2015·永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1 000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2 000人,则据此可知开幕式当天该景区游客人数饱和的时间约为( )A .10:00B .12:00C .13:00D .16:00第 2 课时 等式的性质1.等式两边都加上(或__________)同一个__________(或________),结果仍相等;用字母表示:如果a =b ,那么a ±c =________.2.若m +2n =p +2n ,则m =________.依据是等式的性质________,它是将等式的两边________.3.下列各种变形中,不正确的是( ) A .由2+x =5可得到x =5-2B .由3x =2x -1可得到3x -2x =-1C .由5x =4x +1可得到4x -5x =1D .由6x -2x =-3可得到6x =2x -34.已知m +a =n +b ,根据等式性质变形为m =n ,那么a ,b 必须符合的条件是( ) A .a =-b B .-a =bC .a =bD .a ,b 可以是任意数或整式5.等式2x -y =10变形为-4x +2y =-20的依据是等式性质________,它是将等式的两边________.6.下列变形,正确的是( )A .如果a =b ,那么a c =b cB .如果a c=b c,那么a =b C .如果a 2=3a ,那么a =3 D .如果2x +13-1=x ,那么2x +1-1=3x 7.已知x =y ,下列各式:3x =3y ,-2x =-2y ,13x =13y ,xy=1,其中正确的有( )A .1个B .2个C .3个D .4个8.在横线上填上适当的数或式子:(1)如果a +3=b -1,那么a +4=________; (2)如果14x =3,那么x =________.9.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明是根据等式的哪一条性质以及是怎样变形的.(1)如果-x 10=y5,那么x =________,根据__________________________;(2)如果-9x =9y ,那么x =________,根据__________________________; (3)如果23x =4-13x ,那么x =________,根据________________________;(4)如果x =3x +2,那么x =________,根据______________________________.10.下列根据等式的性质变形正确的是( )A .由-13x =23y ,得x =2y B .由3x -2=2x +2,得x =4 C .由2x -3=3x ,得x =3 D .由3x -5=7,得3x =7-511.已知等式a =b ,则下列等式中不成立的是( ) A .a -5=b -5 B .3a =3bC .5a =4b +1D .-a 2=-b 212.下列变形错误的是( ) A .若x =y ,则xm -6=ym -6B .若a =b ,则a t 2+1=b t 2+1C .若x =3,则x 2=3xD .若mx =nx ,则m =n13.用等式的性质将方程3x -9=0转化为x =a 的形式. 14.解下列方程,并说明变形的依据. (1)x -4=7; (2)13x -2=5.15.先阅读下面例题的解答过程,再解答后面的题目.例:已知9-6y -4y 2=7,求2y 2+3y +7的值.解:由9-6y -4y 2=7,得-6y -4y 2=7-9,即6y +4y 2=2,所以2y 2+3y =1,所以2y 2+3y +7=8.题目:已知14a -5-21b 2=9,求6b 2-4a +5的值.16.已知等式2a -3=2b +1,请你猜想a 与b 之间的大小关系,并说明理由. 17.我们规定“*”为一种新运算:对任意有理数a 、b ,有a*b =-a +3b2-1.若5*x =-1,试利用等式的性质求x 的值.18.下列说法正确的是( )A .在等式ab =bc 的两边同时除以b ,可得a =cB .在等式a =b 的两边同时除以c 2+1,可得a c 2+1=b c 2+1C .若2x =3,则x =23D .若2x =-2x ,则2=-219.如图所示,天平左边放着3个乒乓球,右边放着5.4 g 的砝码和一个乒乓球,天平恰好平衡,如果设一个乒乓球的质量为x g .(1)请你列出一个含有未知数x 的方程; (2)说明所列的方程是哪一类方程? (3)利用等式的性质求出x 的值.(第19题)3.2 解一元一次方程(一)——合并同类项与移项第 1 课时 用合并同类项法解方程 1.把方程-23x =3的系数化为1的过程中,最恰当的叙述是( )A .给方程两边同时乘-3B .给方程两边同时除以-32C .给方程两边同时乘-32D .给方程两边同时除以32.(中考·株洲)一元一次方程2x =4的解是( ) A .x =1 B .x =2 C .x =3 D .x =43.对于方程2y +3y -4y =1,合并同类项正确的是( ) A .y =1 B .-y =1 C .9y =1 D .-9y =14.下列各方程合并同类项不正确的是( ) A .由4x -2x =4,得2x =4 B .由2x -3x =3,得-x =3C .由5x -2x +3x =12,得x =12D .由-7x +2x =5,得-5x =55.下列各方程合并同类项正确的是( ) A .由-3x +2x =1,得x =1 B .由x +2x +3x =9,得5x =9 C .由-x +2x -3x =5,得-4x =5D .由12x +13x -x =2,得-16x =26.下列说法正确的是( ) A .由x -3x =1,得2x =1B .由38m -0.125m =0,得m =0 C .x =-3是方程x -3=0的解 D .以上说法都不对7.方程x2+x +2x =210的解为( )A .x =20B .x =40C .x =60D .x =808.下面解方程的结果正确的是( ) A .方程4=3x -4x 的解为x =4B .方程32x =13的解为x =2 C .方程32=8x 的解为x =14D .方程1-4=13x 的解为x =-99.如果x =m 是方程12x -m =1的解,那么m 的值是( )A .0B .2C .-2D .-610.对于任意四个有理数a 、b 、c 、d ,定义新运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc.已知⎪⎪⎪⎪⎪⎪2x -4x 1=18,则x 的值为( )A .-1B .2C .3D .4 11.(2014·乌鲁木齐)若一件服装以120元销售,可获利20%,则这件服装的进价是( ) A .100元 B .105元 C .108元 D .118元 12.(2015·嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.13.请欣赏一首诗:太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中; 剩下十五围着我,鸭有多少请算清.根据诗的内容,设共有x 只鸭子,列方程:________________________________________________________________________.将方程合并同类项,得________________,方程两边同时乘________,得x =________.14.解方程:-13x +2x =35.15.解方程:(1)-52x +5x =3; (2)16x -9x =-15-20.16.某种药含有甲、乙、丙3种中药,这3种中药的质量比是2∶3∶7.现在要配制1 440g 这种药,这3种中药分别需要多少?17.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八、九年级学生一起工作,需多少小时才能完成任务?18.有一列数,按一定规律排列成1,-4,16,-64,256,…,其中某三个相邻的数的和是3 328,求这三个数各是多少.19.(中考·苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800m 3,问中、美两国人均淡水资源占有量各为多少?20.(改编·济宁)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为:“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层)请你算出塔的顶层有几盏灯.第 2 课时 用移项法解一元一次方程1.把方程3y -6=y +8变形为3y -y =8+6,这种变形叫做________,依据是______________________.2.解方程时,移项法则的依据是( ) A .加法交换律 B .加法结合律 C .等式的性质1 D .等式的性质23.解下列方程时,既要移含未知数的项,又要移常数项的是( ) A .2x =6-3x B .2x -4=3x +1 C .2x -2-x =1 D .x -5=74.下列各式中的变形,属于移项的是( ) A .由3x -2y -1得-1-2y +3x B .由9x -3=x +5得9x -3=5+x C .由4-x =5x -2得5x -2=4-x D .由2-x =x -2得2+2=x +x 5.下列说法正确的是( )A .3x =5+2可以由3x +2=5移项得到B .1-x =2x -1移项后得1-1=2x +xC .由5x =16得x =165这种变形也叫移项 D .1-7x =2-6x 移项后得1-2=7x -6x6.(2015·常州)已知x =2是关于x 的方程a(x +1)=12a +x 的解,则a 的值是________.7.(2015·甘孜州)已知关于x 的方程3a -x =x 2+3的解为2,则式子a 2-2a +1的值是________.8.方程3x -4=3-2x 的解答过程的正确顺序是( ) ①合并同类项,得5x =7; ②移项,得3x +2x =3+4;③系数化为1,得x =75.A .①②③B .③②①C .②①③D .③①②9.关于x 的方程4x -6=3m 与x -1=2有相同的解,则m 等于( ) A .-2 B .2 C .-3 D .3 10.若-2x2m +1y 6与13x 3m -1y 10+4n是同类项,则m ,n 的值分别为( )A .2,-1B .-2,1C .-1,2D .-2,-111.若“☆”是新规定的某种运算符号,x ☆y =xy +x +y ,则2☆m =-16中,m 的值为( )A .8B .-8C .6D .-6 12.(2015·深圳)某商品的标价为200元,8折销售仍赚40元,则该商品的进价为( )元.A .140B .120C .160D .10013.解方程:x -3=-12x -4.14.解方程:17x -6=10x +9.15.已知整式5x -7与4x +9的值互为相反数,求x 的值.16.已知|3x -6|+(2y -8)2=0,求2x -y 的值.17.单项式7x 2m -1y n +2与-9x 3y -n +4的和仍是单项式,求m -n 的值.18.某同学在解关于x 的方程3a =2x +15时,在移项过程中2x 没有改变符号,得到的方程的解为x =3.求a 的值及原方程的解.19.已知关于x 的方程2x +3=x +k 与x -3=5k ,如果两个方程的解的和为6,请你求出k 的值.20.如图,在月历表中,以4个数(数均用黑点表示)为边构成一个正方形,如果这个正方形一条对角线上的4个数之和为56,那么这4个数分别是多少?(第20题)21.某公司到果园基地购买某种优质水果,果园基地对购买 3 000千克以上(含 3 000千克)者有两种销售方案,甲方案:每千克9元,由果园送货上门;乙方案:每千克8元,由顾客自己租车运回.已知租车从果园到该公司的运费为5 000元,若购买量在3 000千克以上,则哪种方案较省钱?请说明理由.3.3 解一元一次方程(二)——去括号与去分母第1课时 用去括号法解一元一次方程1.(中考·广州)下列运算正确的是( ) A .-3(x -1)=-3x -1 B .-3(x -1)=-3x +1 C .-3(x -1)=-3x -3 D .-3(x -1)=-3x +32.方程1-(2x +3)=6,去括号的结果是( ) A .1+2x -3=6 B .1-2x -3=6 C .1-2x +3=6 D .2x -1-3=6 3.下列是四个同学解方程2(x -2)-3(4x -1)=9时去括号的结果,其中正确的是( ) A .2x -4-12x +3=9 B .2x -4-12x -3=9 C .2x -4-12x +1=9 D .2x -2-12x +1=9 4.解方程:5(x +8)-5=6(2x -7).解:去括号,得______________-5=12x -42. 移项,得________________=-42-40+5. 合并同类项,得-7x =________, 系数化为1,得x =________.通过阅读并填空,可得到解有括号的一元一次方程的步骤是________________________________________________________________________.5.解方程:4(x -1)-x =2⎝ ⎛⎭⎪⎫x +12,步骤如下: (1)去括号,得4x -4-x =2x +1; (2)移项,得4x -x +2x =1+4; (3)合并同类项,得5x =5; (4)系数化为1,得x =1.经检验知x =1不是原方程的解,说明解题的四个步骤中有错,其中做错的一步是( ) A .(1) B .(2) C .(3) D .(4) 6.(2015·大连)方程3x +2(1-x)=4的解是( )A .x =25B .x =65C .x =2D .x =17.若4x -7与5⎝ ⎛⎭⎪⎫x +25的值相等,则x 的值为( ) A .-9 B .-5 C .3 D .18.若关于x 的方程2⎝ ⎛⎭⎪⎫x +12a -4=0的解是x =-2,则a 等于( ) A .-8 B .0 C .2 D .89.解下列方程: (1)6(x -5)=-24; (2)2x -23(x +2)=-x +3;(3)4x -3(20-x)=6x -7(9-x); (4)5(3-2x)-12(5-2x)=-17.10.解方程:2(6-0.5y)=-3(2y -1).11.若方程4x =3(x -1)+4(x -3)的解比关于x 的方程ax -5=3a 的解小1,求a 的值. 12.关于x 的方程x 2+m 3=x -4与12(x -16)=-6的解相同,求m 的值.13.解方程:3(7x -5)-13(5-7x)+17(7x -5)=7(5-7x).14.解方程:34⎣⎢⎡⎦⎥⎤43⎝ ⎛⎭⎪⎫12x -14-8=32x +1.15.(2015·云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?16.(2015·海南)小明想从“天猫”某网店购买计算器,经查询,某品牌A 型号计算器的单价比B 型号计算器的单价多10元,5台A 型号的计算器与7台B 型号的计算器的价钱相同,问A ,B 两种型号计算器的单价分别是多少?第 2 课时 去括号法解方程在行程问题中的应用1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员摁一下喇叭,4秒后听到回声,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒,设听到回声时,汽车离山谷x 米,根据题意,列出方程为( )A .2x +4×20=4×340B .2x -4×72=4×340C .2x +4×72=4×340D .2x -4×20=4×3402.张昆早晨去学校共用时15分钟,他跑了一段,走了一段,他跑步的平均速度是250米/分,步行的平均速度是80米/分,他家与学校的距离是2 900米,若他跑步的时间为x 分钟,则列出的方程是( )A .250x +80⎝ ⎛⎭⎪⎫14-x =2 900B .80x +250(15-x)=2 900C .80x +250⎝ ⎛⎭⎪⎫14-x =2 900D .250x +80(15-x)=2 9003.一艘船从甲码头到乙码头顺流行驶用4小时,从乙码头到甲码头逆流行驶用4小时40分钟,已知水流速度为3千米/小时,则船在静水中的平均速度是多少?4.一架战斗机的贮油量最多够它在空中飞行4.6 h ,飞机出航时顺风飞行,在无风时的速度是575 km /h ,风速为25 km /h ,这架飞机最远能飞出多少千米就应返回?5.(2014·株洲)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米; (2)他上山2小时到达的位置,离山顶还有1千米; (3)抄近路下山,下山路程比上山路程近2千米; (4)下山用1小时.根据上面信息,他做出如下计划: (1)在山顶游览1小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?6.A ,B 两地间的路程为360 km ,甲车从A 地出发开往B 地,每小时行驶72 km ,甲车出发25 min 后,乙车从B 地出发开往A 地,每小时行驶48 km ,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100 km 时,甲车从出发开始共行驶了多少小时?7.甲、乙两人在一环形公路上骑自行车,环形公路长为42 km ,甲、乙两人的速度分别为21 km /h 、14 km /h .(1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇? (2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 8.甲、乙两列火车的长分别为144米和180米,甲车比乙车每秒多行4米.(1)两列车相向而行,从相遇到完全错开需9秒,问甲、乙两列车的速度各是多少? (2)若同向而行,甲车的车头从乙车的车尾追到甲车完全超过乙车,需要多少秒? 9.“健康出行,绿色环保”,星期天小李骑自行车从家出发到郊区去游玩,他先在某景区待了2 h ,再绕道到某农家特色小吃处品尝风味小吃用去了30 min ,然后愉快地返程.已知去时的速度为6 km /h ,返回时的速度为10 km /h ,往返共用了4 h ,返回时因绕道多走了1 km ,求去时的路程.10.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A,C两地间的距离为10 km.如果乙船由A地经B地再到达C地共用了4 h,问:乙船从B地到达C地时,甲船距离B地有多远?11.(2015·柳州)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?(第11题)第 3 课时 用去分母法解一元一次方程1.将方程x +24=2x +36的两边同乘________可得到3(x +2)=2(2x +3),这种变形叫________,其依据是____________________.2.解方程3y -14-1=2y +712时,为了去分母应将方程两边同乘( )A .16B .12C .24D .43.在解方程1-2x 3=3x +17-3时,去分母正确的是( )A .7(1-2x)=3(3x +1)-3B .1-2x =(3x +1)-3C .1-2x =(3x +1)-63D .7(1-2x)=3(3x +1)-634.方程2x -13-x -14=1,去分母得到了8x -4-3x +3=1,这个变形( )A .分母的最小公倍数找错了B .漏乘了不含分母的项C .分子中的多项式没有添括号,符号不对D .正确5.下面的方程变形中,正确的是( ) A .2x +6=-3变形为2x =-3+6B .x +33-x +12=1变形为2x +6-3x +3=6 C .25x -23x =13变形为6x -10x =5D .35x =2(x -1)+1变形为3x =10(x -1)+16.在解方程1-10x -16=2x +13的过程中,①去分母,得6-10x -1=2(2x +1);②去括号,得6-10x +1=4x +2;③移项,得-10x -4x =2-6-1;④合并同类项,得-14x =-5;⑤系数化为1,得x =145.其中开始出现错误的步骤是________.(填序号)7.下面是解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13,( )去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( ) ( ),得5x =-17.( ),得x =-175.( )8.方程x -13+x +26=4-x2的解是( )A .x =1B .x =2C .x =4D .x =69.解方程56⎝ ⎛⎭⎪⎫65x -1=2.下面几种解法中,较简便的是( ) A .先两边同乘6 B .先两边同乘5C .先去括号再移项D .括号内先通分10.若式子3x -4与4x +55的值相等,则x =________.11.解方程:x +23-2x -35=-2.12.解方程:2x -53-3x -174=-1-5x2.13.解方程:0.1x 0.2-0.01x -0.010.06=x -13.14.解方程:18⎩⎨⎧⎭⎬⎫16⎣⎢⎡⎦⎥⎤14(x -1)+5+7+8=9. 15.解方程:1-6x 15-1-x 6=-2x -15+2x +118.16.在解方程3(x +1)-13(x -1)=2(x -1)-12(x +1)时,我们可以将x +1,x -1各看成一个整体进行移项、合并同类项,得72(x +1)=73(x -1),即12(x +1)=13(x -1),去分母,得3(x +1)=2(x -1),进而求解得x =-5,这种方法叫整体求解法.请用这种方法解方程:5(2x +3)-34(x -2)=2(x -2)-12(2x +3).17.已知方程1-2y 6+2y +14=1-y +13与关于y 的方程y +6y -a 3=a6-3y 的解相同,求a的值.18.已知方程6-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为相反数,求k 的值.19.已知(a +b)y 2-y 13a +2+5=0是关于y 的一元一次方程.(1)求a ,b 的值;(2)若x =a 是方程x +26-x -12+3=x -2x -m6的解,求|a -b|-|b -m|的值.20.(2014·甘孜州)设a ,b ,c ,d 为实数,现规定一种新的运算⎪⎪⎪⎪⎪⎪ab c d=ad -bc.则满足等式⎪⎪⎪⎪⎪⎪⎪⎪x 2x +13 2 1=1的x 的值为多少? 21.(2015·南通)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程解决的问题,并写出这个问题的解答过程.22.某同学在对方程2x -13=x +a3-2去分母时,方程右边的-2没有乘3,其他步骤都正确,这时方程的解为x =2,试求a 的值,并求出原方程的解.23.(1)如下表,方程1,方程2,方程3,…是按照一定规律排列的一列方程,解方程1,并将它的解填在表格中的空白处:(2)方程x 10-(x -a)=1的解是x =709,求a 的值.该方程是否是(1)中所给出的一列方程中的一个方程?如果是,它是第几个方程?24.某校校长将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受6折(即全票价的60%)优惠.”乙旅行社说:“包括校长在内全部按全票价的7折优惠.”若全票价为480元.(1)设学生数为x 名,分别计算甲、乙两旅行社的收费(用含x 的式子表示); (2)当学生数是多少名时,两家旅行社收费一样?3.4 实际问题与一元一次方程第 1 课时 列方程解实际问题的一般方法1.用一元一次方程解决实际问题,关键在于抓住问题中的____________,列出__________,求得方程的解后,经过__________,得到实际问题的解答.这一过程也可以简单地表述为:问题――→分析抽象________――→求解检验________. 2.3月12日是植树节,七年级170名学生参加义务植树活动,如果平均一名男生一天能挖树坑3个,平均一名女生一天能种树7棵,要正好使每个树坑种一棵树,则该年级的男生、女生各有多少人?(1)审题:审清题意,找出已知量和未知量;(2)设未知数:设该年级的男生有x 人,那么女生有____________人; (3)列方程:根据相等关系,列方程为____________; (4)解方程,得x =________,则女生有______人;(5)检验:将解得的未知数的值放入实际问题中进行验证; (6)作答:答:该年级有男生______人,女生______人.3.某商场甲、乙两个柜台12月份营业额共计64万元,1月份甲增长了20%,乙增长了15%,营业额达到75万元,求两个柜台各增长了多少万元.分析:从题中已知有如下相等关系:12月份甲柜台的营业额+12月份乙柜台的营业额=________万元, 1月份甲柜台的营业额+1月份乙柜台的营业额=________万元. ↓ ↓甲柜台12月份的营业额×(1+20%) 乙柜台12月份的营业额×(1+15%)解:方法1:设1月份甲柜台的营业额增长了x 万元,则1月份乙柜台的营业额增长了__________万元,依题意,列方程可得x 20%+( )15%=64, 解之得x =________.75-64-x =________________=________.方法2:设12月份甲柜台的营业额是y 万元,则乙柜台的营业额是(64-y)万元. 依据题意,列方程得______________________, 解得y =________.所以甲柜台增长了______×20%=______(万元), 乙柜台增长了__________×15%=________(万元).答:甲柜台的营业额增长了________万元,乙柜台的营业额增长了________万元. 4.(2015·河池)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元? 5.洗衣机厂今年计划生产洗衣机25 500台,其中A 型,B 型,C 型三种洗衣机的产量之比为1∶2∶14,这三种洗衣机分别计划生产多少台?6.一个两位数,十位上的数字比个位上的数字少3,这两个数字之和等于这个两位数的1,求这个两位数.47.有一些分别标有6,12,18,24,…这些数的卡片,后一张卡片上的数比前一张卡片上的数大6,小明拿到了相邻的三张卡片,且这三张卡片上的数之和为342.(1)小明拿到了哪三张卡片?(2)你能拿到相邻的三张卡片,使得这三张卡片上的数之和是86吗?请说明理由.8.在某月内,王老师要参加三天的业务培训,已知这三天日期的数字之和为39.(1)若培训的时间是连续的三天,那么这三天分别是当月的几号?(2)若培训时间是连续三周的周六,这三天又分别是当月的几号?9.现有菜地975公顷,要种植白菜、西红柿和芹菜,其中种白菜与种西红柿的面积比是3∶2,种西红柿与种芹菜的面积比是5∶7,则三种蔬菜各种多少公顷?10.甲种货车和乙种货车的装载量及每辆车的运费如下表所示,现有货物130 t,要求一次装完,并且每辆要满载,探究怎样安排运费最省?需多少元?11.(2015·佛山)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1 118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?第 2 课时 利用一元一次方程解几何问题和图文问题1.一个长方形的周长是16 cm ,长比宽多2 cm ,那么这个长方形的长与宽分别是( ) A .9 cm ,7 cm B .5 cm ,3 cm C .7 cm ,5 cm D .10 cm ,6 cm2.一个长方形的周长是40 cm ,若将长减少8 cm ,宽增加2 cm ,长方形就变成了正方形,则正方形的边长为( )A .6 cmB .7 cmC .8 cmD .9 cm3.一个长方形苗圃,长比宽多10 m ,沿着苗圃走一圈要走40 m ,这个苗圃的占地面积为( )A .400 m 2B .75 m 2C .150 m 2D .200 m 24.一个三角形的三条边的长度之比为2∶4∶5,最长的边比最短的边长6 cm ,求该三角形的周长.5.根据图中给出的信息,可得正确的方程是( )(第5题)A .π×⎝ ⎛⎭⎪⎫822x =π×⎝ ⎛⎭⎪⎫622×(x +5) B .π×⎝ ⎛⎭⎪⎫822x =π×⎝ ⎛⎭⎪⎫622×(x -5) C .π×82x =π×62×(x +5)D .π×82x =π×62×56.欲将一个长、宽、高分别为150 mm 、150 mm 、20 mm 的长方体钢毛坯,锻造成一个直径为100 mm 的钢圆柱体,则圆柱体的高是( )A .1 200 mmB .180πmmC .120π mmD .120 mm7.有一个长、宽、高分别是15 cm 、10 cm 、30 cm 的长方体钢锭,现将它锻压成一个底面为正方形,且边长为15 cm 的长方体钢锭,求锻压后长方体钢锭的高.(忽略锻压过程中的损耗)8.一个长方形的养鸡场的一条长边靠墙,墙长14米,其他三边需要用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成上述养鸡场,其中长比宽多5米;小赵也打算用它围成上述养鸡场,其中长比宽多2米,你认为谁的设计符合实际?按照他的设计养鸡场的面积是多少?9.在长为10 m ,宽为8 m 的长方形空地中,沿平行于长方形各边的方向分割出三个完全相同的小长方形花圃,其示意图如图所示.求小长方形花圃的长和宽.(第9题)10.如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:乙容器中的水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm)(第10题)11.(中考·山西)如图,左边是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成右边所示的长方体盒子,已知该长方体的宽是高的2倍,求它的体积是多少立方厘米.(第11题)12.(2015·吉林)根据图中的信息,求梅花鹿和长颈鹿现在的高度.(第12题)第 3 课时 利用一元一次方程解配套问题和工程问题1.41人参加运土劳动,有30根扁担,安排多少人抬,多少人挑,可使扁担和人数相配不多不少?若设有x 人挑土,则列出方程是( )A .2x -(30-x)=41B .x 2+(41-x)=30 C .x +41-x2=30 D .30-x =41-x 2.在加固某段河坝时,需要动用15台挖土、运土机械,每台机械每小时能挖土18 m3或运土12 m 3,为了使挖出的土能及时运走,若安排x 台机械挖土,则可列方程( )A .18x -12x =15B .18x =12(15-x)C .12x =18(15-x)D .18x +12x =153.某车间有28名工人,每人每天能生产螺栓12个或螺母18个,设有x 名工人生产螺栓,每天生产的螺栓和螺母按1∶2配套,则所列方程正确的是( )A .12x =18(28-x)B .18x =12(28-x)C .2×12x =18(28-x)D .2×18x =12(28-x)4.七年级(2)班学生参加绿化劳动,在甲处有32人,乙处有22人,现根据需要,要从乙处抽调部分同学前往甲处,使甲处人数是乙处人数的2倍,问应从乙处抽调多少人前往甲处?设从乙处抽调x 人前往甲处,可得正确方程是( )A .32-x =2(22-x)B .32+x =2(22+x)C .32-x =2(22+x)D .32+x =2(22-x)5.某工厂生产一批桌椅,甲车间有29人生产桌子,乙车间有17人生产椅子,现要赶工期,总公司调20人去支援,使甲车间的人数为乙车间人数的2倍,应调往甲、乙车间各多少人?6.红星服装厂生产某种型号的学生服装,已知每3米布料可做上衣2件或裤子3条(1件上衣和1条裤子为一套),计划用600米布料生产这批学生服装,那么应分别用多少布料生产上衣和裤子使其恰好配套?一共能生产多少套?7.某工人原计划每天生产a 个零件,现在实际每天多生产b 个零件,则生产m 个零件提前的天数为( )A .m a -m bB .m a -ma +bC .m a +b D .m a +b -m a8.某项工作甲单独做4天完成,乙单独做6天完成,若甲先干1天,然后甲、乙合作完成此项工程,若设甲一共做了x 天,则所列方程为( )A .x +14+x 6=1 B .x 4+x +16=1 C .x 4+x -16=1 D .x 4+14+x -16=19.一个水池有甲、乙两个水龙头,单独开甲水龙头,2 h 可把空水池灌满;单独开乙水龙头,3 h 可把空水池灌满.若同时开放两个水龙头,灌满水池需( )A .65hB .56h C .2 h D .3 h10.一个水池有甲、乙两个水龙头,单独开甲水龙头,4 h 可把空水池灌满;单独开乙。
七年级上册第3.2解一元一次方程(一)
----合并同类项与移项
一、慧眼识金(每小题3分,共24分)
1.某数的15等于4与这个数的45
的差,那么这个数是 【 】. (A)4 (B)-4 (C)5 (D)-5
2.若32113x x -=-,则4x -的值为 【 】.
(A)8 (B)-8 (C)-4 (D)4
3.若a b =,则①1133a b -=-;②1134a b =;③3344
a b -=-;④3131a b -=-中,正确的有 【 】.
(A)1个 (B)2个 (C)3个 (D)4个
4.下列方程中,解是1x =-的是 【 】.
(A)2(2)12x --= (B)2(1)4x --= (C)1115(21)x x +=+ (D)2(1)2x --=- 5.下列方程中,变形正确的是 【 】.
3443x x -==-(A) 由得 232x x +=-(B) 由3=得
552x x ==-(C) 由2-得 5252x x +==+(D) 由得
6.对于“x y a b +=-”,下列移项正确的是 【 】.
(A)x b y a -=- (B)x a y b -=+ (C)a x y b -=+ (D)a x b y +=-
7.某同学在解关于x 的方程513a x -=时,误将x -看作x +,得到方程的解为2x =-,则原方程的解为 【 】.
(A)3x =- (B)0x = (C)2x = (D)1x =
8.小丽的年龄乘以3再减去3是18,那么小丽现在的年龄为 【 】.
(A)7岁 (B)8岁 (C)16岁 (D)32岁
二、画龙点睛(每小题3分,共24分)
1.在3510x x x ===,,中, 是方程432
x x +-=的解. 2.若m 是3221x x -=+的解,则3010m +的值是 .
3.当x = 时,代数式
1(25)2x +与1(92)3
x +的差为10.
4.如果154m +与14
m +互为相反数,则m 的值为 . 5.已知方程1(2)60a a x --+=是关于x 的一元一次方程,则a = . 6.如果3123x x +=-成立,则x 的正数解为 . 7.已知384x x a +=
-的解满足20x -=,则1a = . 8.若32224k x k -+=是关于x 的一元一次方程,则k = ,x = .
三、考考你的基本功(本大题共40分)新课标第一网
1.解下列方程(每小题3分,共12分)
(1)76226x x --=-;
(2)4352x x --=--;
(3)453x x =+;
(4)3735y y +=--.
2.(8分)2x =是方程40ax -=的解,检验3x =是不是方程2534ax x a -=-的解.
3.(10分)已知236m x
m -+=是关于x 的一元一次方程,试求代数式2008(3)x -的值.
4.(10分)如果3346
x y z -
===,求346x y z ++的值.
四、同步大闯关(本大题12分)
方程4231x m x +=+和方程3241x m x +=+的解相同,求m 的值和方程的解. 提升能力 超越自我
(下列题目供各地根据实际情况选用)
关于x 的方程23mx n x -=-中,m n 、是常数,请你给m n 、赋值,并解此时关于x 的方程.
参考答案
一、1~8 ADCBBCCA
二、1.(1)10x =
2.100 3.4912
-
4.112- 5.-2 6.
25
7.227- 8.1,1
三、1.(1)28x =-;(2)1x =;(3)5x =;(4)2y =-.
2.不是(提示:因为2x =是方程40ax -=的解,所以240a -=,解之得2a =.将2a =代入方程2534ax x a -=-,得4538x x -=-,将3x =代入该方程左边,则左边=7,代入右边,则右边=1,左边≠右边,所以3x =不是方程4538x x -=-的解.)
3.20087(提示:由已知236m x m -+=是关于x 的一元一次方程,得231m -=,解得2m =.将2m =代入原方程可化为62x +=,解之得4x =-.所以代数式
200820082008(3)(43)7x -=--=.
) 4.129(提示:由3346x y z -===得,393x x -==-,;3124
y y ==,;3186
z z ==,.所以3463(9)4126182748108129x y z ++=⨯-+⨯+⨯=-++=.) 四、102
m x ==,(提示:将两个方程分别化为用m 表示x 的方程,得12x m =-和21x m =-.因为它们的解相同,所以1221m m -=-,解得12m =.将12
m =代入12x m =-或者21x m =-,得0x =.)
提升能力 超越自我
解:设36m n ==,,解方程3623x x -=-,移项,得3236x x -=-+,解得3x =.答案不唯一,只要符合要求即可.。