第1讲电磁感应现象楞次定律讲义
- 格式:pdf
- 大小:759.77 KB
- 文档页数:11
楞次定律课件一、引言电磁感应现象是电磁学中的重要内容,广泛应用于日常生活和工业生产中。
楞次定律是描述电磁感应现象的基本定律之一,对于理解和分析电磁感应过程具有重要意义。
本文将详细介绍楞次定律的原理、应用及其在电磁学中的地位。
二、楞次定律的原理楞次定律是法国物理学家海因里希·楞次于1831年提出的,用于描述闭合回路中感应电动势的产生规律。
楞次定律可表述为:闭合回路中感应电动势的方向,总是使得感应电流产生的磁通量的变化,来抵消原磁通量的变化。
楞次定律可以通过两种方式来表述:法拉第电磁感应定律和磁通量连续性原理。
1.法拉第电磁感应定律法拉第电磁感应定律是楞次定律的基础,由迈克尔·法拉第于1831年提出。
该定律表述为:闭合回路中感应电动势的大小,与穿过回路的磁通量的变化率成正比,方向垂直于磁通量变化率和回路平面。
2.磁通量连续性原理磁通量连续性原理是楞次定律的另一种表述方式,由詹姆斯·克拉克·麦克斯韦于1861年提出。
该原理表述为:闭合回路中的磁通量在任意时刻都是连续的,即磁通量的变化必须通过感应电流产生的磁通量来抵消。
三、楞次定律的应用1.发电机发电机是利用楞次定律实现能量转换的典型装置。
通过旋转导体在磁场中产生电动势,将机械能转换为电能。
2.变压器变压器是利用楞次定律实现电压变换的装置。
通过电磁感应原理,将输入电压转换为不同大小的输出电压。
3.电动机电动机是利用楞次定律实现能量转换的反过程。
通过通电导体在磁场中受到力的作用,将电能转换为机械能。
4.磁悬浮列车磁悬浮列车是利用楞次定律实现悬浮和推进的高速交通工具。
通过电磁感应原理,实现列车的悬浮和前进。
四、楞次定律在电磁学中的地位楞次定律是电磁学的基本定律之一,与法拉第电磁感应定律、安培定律和法拉第电解定律共同构成了电磁学的四大基本定律。
楞次定律在电磁学中的地位举足轻重,对于理解和分析电磁现象具有重要意义。
楞次定律不仅揭示了电磁感应现象的本质,还为电磁场理论的发展奠定了基础。
第1讲 电磁感应现象 愣次定律考点一 磁通量、磁通量的变化及磁通量变化率1、磁通量φ磁感应强度B 与 于磁场方向的面积S 的 叫做穿过这个面积的磁通量,符号φ,国际单位 。
定义式为:φ= 。
定义式φ=BS 中的面积S 指的是垂直于匀强磁场方向的面积,如果面积S 与磁感应强度B不垂直,如图12-1-1,可将磁感应强度B 向着垂直于面积S 和平行于面积S 和方向进行正交分解,也可以将面积向着垂直于磁感应强度B 的方向投影。
设此时面积S 与磁感应强度B 的夹角为θ,则φ= 。
从磁感线角度认为在同一磁场中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B 越大。
因此B 越大,S 越大,穿过这个面的磁感线条数就越多,磁通量就越大。
所以磁通量反映穿过某一面积的磁感线条数的多少。
2、磁通量的变化Δφ磁通量的变化量Δφ= .与感应电动势的大小无必然联系.由公式:φ=BScos θ可得磁通量发生变化的情况:①B不变,S变化,引起φ变化:Δφ=②B变化,S不变,引起φ变化:Δφ=③B、S不变,它们之间的夹角θ发生变化:Δφ=④B变化,S变化,可能引起φ变化(根据题目条件求)磁通量φ是由B 、S 及角度θ共同决定的,磁通量的变化情况应从这三个方面去考虑3、磁通量的变化率Δφ/Δt磁通量的变化率为 时间内磁通量的变化量,表示磁通量变化 。
[例1] 如图12-1-2所示,两个同心圆形线圈a 、b 在同一平面内,其半径大小关系为r a <r b ,条形磁铁穿过圆心并与圆面垂直,则穿过两线圈的磁通量a Φ、b Φ间的大小关系为( )A 、a Φ>b ΦB 、a Φ=b ΦC 、a Φ<b ΦD 、条件不足,无法判断[例2] 在磁感应强度为B 的匀强磁场中,面积为S 的线圈垂直磁场方向放置,若将此线圈翻转180°,那么穿过此线圈的磁通量的变化量是多少?考点二 电磁感应现象1、利用磁场产生电流的现象叫做 ,产生的电流叫做 。
第1讲电磁感应现象楞次定律板块一主干梳理·夯实基础【知识点1】磁通量Ⅰ1.磁通量(1)定义:匀强磁场中,磁感应强度(B)与垂直磁场方向的面积(S)的乘积叫做穿过这个面积的磁通量,简称磁通,我们可以用穿过这一面积的磁感线条数的多少来形象地理解。
(2)公式:Φ=BS。
(3)适用条件:①匀强磁场;②S是垂直磁场方向的有效面积。
(4)单位:韦伯(Wb),1 Wb=1_T·m2。
(5)标量性:磁通量是标量,但有正负之分。
磁通量的正负是这样规定的,即任何一个平面都有正、反两面,若规定磁感线从正面穿入时磁通量为正,则磁感线从反面穿入时磁通量为负。
2.磁通量的变化量在某个过程中,穿过某个平面的磁通量的变化量等于末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。
3.磁通量的变化率(磁通量的变化快慢)磁通量的变化量与发生此变化所用时间的比值,即ΔΦΔt。
【知识点2】电磁感应现象Ⅰ1.电磁感应现象:当闭合电路的磁通量发生改变时,电路中有感应电流产生的现象。
2.产生感应电流的条件(1)电路闭合。
(2)磁通量变化。
3.电磁感应现象的两种情况(1)闭合电路中部分导体做切割磁感线运动。
(2)穿过闭合回路的磁通量发生变化。
4.电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
5.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
【知识点3】楞次定律Ⅱ1.楞次定律(1)内容:感应电流产生的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
2.右手定则(1)内容:①磁感线穿入右手手心。
(从掌心入,手背穿出)②大拇指指向导体运动的方向。
③其余四指指向感应电流的方向。
(2)适用范围:适用于部分导体切割磁感线。
板块二考点细研·悟法培优考点1 电磁感应现象的判断[解题技巧]1.磁通量变化的常见情况2.感应电流能否产生的判断例1(多选)如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB与OO′平行。
若要在线圈中产生感应电流,可行的做法是()A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.以AB为轴,线圈绕AB顺时针转90°D.线圈绕OO′轴逆时针转动90°(俯视)(1)AB中电流变化,能否在线圈中产生感应电流?提示:只要AB中电流变化,线圈中磁通量就变化,就有感应电流产生。
(2)能够引起线圈中磁通量变化的因素有哪些?提示:①AB中电流强度的大小和方向;②线圈的有效面积。
尝试解答选ABD。
只要AB中电流发生变化,可以是大小改变,也可以是方向变,也可以是大小和方向同时变,都可以使线圈的磁通量发生变化,而产生感应电流,A和B都正确;以AB为轴,线圈绕AB顺时针转90°的过程中,磁感应强度的大小和线圈的有效面积都没变,磁通量不变,不能产生感应电流,C错误;以OO′为轴逆时针转90°的过程中,线圈的有效面积发生了变化,磁通量变化,能产生感应电流,D正确。
总结升华判断是否产生感应电流的方法①确定所研究回路;②看Φ是否变化;③回路是否闭合;②③同时满足可产生感应电流。
[跟踪训练]如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B 的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ。
在下列各过程中,一定能在轨道回路里产生感应电流的是()A.ab向右运动,同时θ角减小B.使磁感应强度B减小,同时θ角也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和夹角θ(0°<θ<90°)答案 A解析设此时回路的面积为S,由题意得磁通量Φ=BScosθ,对选项A,S增大,θ减小,cosθ增大,则Φ增大,故选项A正确;对选项B,θ减小,cosθ增大,又B减小,故Φ可能不变,选项B错误;对选项C,S 减小,B增大,Φ可能不变,故选项C错误;对选项D,S增大,B增大,θ增大,cosθ减小,Φ可能不变,故选项D错误。
考点2 对楞次定律的理解及应用[深化理解]1.感应电流方向判断的两种方法方法一用楞次定律判断方法二用右手定则判断该方法适用于部分导体切割磁感线。
判断时注意掌心、四指、拇指的方向:(1)掌心——磁感线穿入;(2)拇指——指向导体运动的方向;(3)四指——指向感应电流的方向。
2.楞次定律中“阻碍”的含义例2如图所示,磁场方向垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布。
一铜制圆环用丝线悬挂于O点,将圆环拉至位置a后无初速度释放,在圆环从a摆向b的过程中()A.感应电流方向先逆时针后顺时针再逆时针B.感应电流方向一直是逆时针C.感应电流方向先顺时针后逆时针再顺时针D.感应电流方向一直是顺时针(1)圆环从a摆到虚线左侧的过程中,磁通量如何变?提示:变大。
(2)从虚线右侧到b的过程中,磁通量如何变化?提示:变小。
(3)从紧邻虚线左侧运动到紧邻虚线右侧的过程中磁通量如何变化?原磁场方向如何?提示:先减小后反方向增大;方向开始垂直纸面向里,后垂直纸面向外。
尝试解答选A。
在竖直虚线左侧,圆环向右摆时磁通量增加,由楞次定律可判断,感应电流产生的磁场方向与原磁场方向相反,由安培定则可知感应电流方向为逆时针方向;摆过竖直虚线时,环中磁通量左减右增相当于方向向外的增大,因此感应电流方向为顺时针方向;在竖直虚线右侧向右摆动时,环中磁通量减小,感应电流的磁场与原磁场同向,可知感应电流为逆时针方向,因此只有A项正确。
总结升华电磁感应现象中的两个磁场(1)原磁场:引起电磁感应现象的磁场。
做题时需要首先明确原磁场分布特点(大小、方向)以及穿过闭合回路的磁场变化情况。
(2)感应电流磁场:感应电流产生的磁场,阻碍原磁场的磁通量变化,根据“增反减同”可以判断出感应电流产生的磁场方向。
(3)感应电流的方向:在确定感应电流产生的磁场方向后,再由安培定则判断感应电流的方向。
[跟踪训练][2017·镇江模拟](多选)航母上飞机弹射起飞所利用的电磁驱动原理如图所示。
当固定线圈上突然通过直流电时,线圈左侧的金属环被弹射出去。
现在线圈左侧同一位置,先后放上用横截面积相等的铜和铝导线制成的形状、大小相同的两个闭合环,电阻率ρ铜<ρ铝。
则合上开关S的瞬间()A.从右侧看,环中产生沿逆时针方向的感应电流B.铜环受到的安培力大于铝环受到的安培力C.若将金属环置于线圈右侧,环将向右弹射D.电池正、负极调换后,金属环仍能向左弹射答案BCD解析闭合开关S的瞬间,金属环中向右的磁场磁通量增大,根据楞次定律,从右侧看,环中产生沿顺时针方向的感应电流,A错误;由于电阻率ρ铜<ρ铝,先后放上用横截面积相等的铜和铝导线制成的形状、大小相同的两个闭合环,铜环中产生的感应电流大于铝环中产生的感应电流,由安培力公式可知,铜环受到的安培力大于铝环受到的安培力,B正确;若将金属环置于线圈右侧,则闭合开关S的瞬间,穿过圆环的磁通量增加,圆环要阻碍磁通量的增加,环将向右弹射,C正确;电池正、负极调换后,同理可以得出金属环仍能向左弹射,D正确。
考点3 楞次定律、左手定则、右手定则、安培定则的综合应用[对比分析]1.“三个定则一个定律”的比较2.三个定则和一个定律的因果关系(1)因电而生磁(I→B)→安培定则;(2)因动而生电(v、B→I安)→右手定则;(3)因电而受力(I、B→F安或q、B→F洛)→左手定则;(4)因磁而生电(Φ、B→I安)→楞次定律。
例3(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是()A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动(1)如何判断MN所在处的磁场方向?提示:MN处的磁场由ab中电流产生,用安培定则判断。
(2)由MN的运动方向,如何确定MN中的电流方向?提示:用左手定则确定。
(3)L1中磁场方向如何判定?提示:与L2的磁场方向一致,L2中磁场方向由PQ切割磁感线方向决定,应用右手定则。
尝试解答选BC 。
MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里――→左手定则MN 中的感应电流由M →N――→安培定则L 1中感应电流的磁场方向向上――→楞次定律L 2中磁场方向向上减弱L 2中磁场方向向下增强;若L 2中磁场方向向上减弱――→安培定则PQ 中电流为Q →P 且减小――→右手定则向右减速运动;若L 2中磁场方向向下增强――→安培定则PQ 中电流为P →Q 且增大――→右手定则向左加速运动。
总结升华三定则、一规律的应用方法(1)应用左手定则和右手定则应注意二者的区别:抓住“因果关系”才能不失误,“因动而电”——用右手;“因电而动”——用左手。
(2)应用楞次定律,必然要用到安培定则。
(3)感应电流受到安培力,有时可以先用右手定则确定电流的方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论“来拒去留”“增缩减扩”等确定安培力的方向。
[递进题组]1.(多选)如图所示,在匀强磁场中放有一与线圈D 相连接的平行导轨,要使放在线圈D 中的线圈A(A 、D 两线圈同心共面)各处受到沿半径方向指向圆心的力,金属棒MN 的运动情况可能是()A .匀速向右B .加速向左C .加速向右D .减速向左答案BC解析假设MN 向右运动,由右手定则可知MN 中的电流方向N →M ,在D 中产生磁场,由安培定则可知磁场方向垂直纸面向外,如果MN 加速向右运动,则MN 中电流增大,ΦA 增大,由楞次定律可知,A 有收缩的趋势;如果MN 匀速向右运动,则MN 中的电流不变,ΦA 不变,由楞次定律可知,A 没有收缩的趋势,故C正确,A 错误。
假设MN 向左运动可知,MN 中的电流方向M →N ,由安培定则可知,D 中磁场方向垂直纸面向里,若MN 加速向左运动,则MN 中电流增大,A 有收缩的趋势;若MN 减速向左运动,则MN 中电流减小,A 有扩张的趋势,B 正确,D 错误。
2.(多选)如图所示装置中,cd 杆光滑且原来静止。
当ab 杆做如下哪些运动时,cd 杆将向右移动()A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动答案BD解析cd杆向右移动,说明受向右的安培力,由左手定则可知cd杆中的电流c→d,由安培定则可知L2中感应电流产生的磁场方向竖直向上,如果与原磁场方向相同,则Φ减小,L1中的电流减小,ab杆减速,L1中磁场方向竖直向下,由安培定则可知ab杆中电流b→a,由右手定则可知ab杆向左切割磁感线,即ab杆向左减速运动。