208 2006年中考复习之应用问题(一)
- 格式:doc
- 大小:131.50 KB
- 文档页数:4
2006年中考试题汇编(力、力与运动)2.观察甲图可知汽车做 直线运动;观察苹果下落时的频闪照片(乙图),可知苹果做 直线运动。
3. 在北京和杭州之间对开着一对特快列车T31和T32,表中所列是这两次列车的时刻表,请回答下列问题:(1)T31和T32列车全程运行的时间是 h min 。
(2)除去停站时间,列车运动的平均速度是 km/h 。
4. 坐在向南行驶的列车里的乘客,看到路旁的树木向后退。
若同时又看到汽车也在向后退,以地面为参照物,汽车的运动状态可能是 、 、 。
5.在“信息高速公路”上,信息传播的速度等于真空中的光速,约为 m/s ;通过“信息高速公路”,上海接收到北京发出的信息,大约需要5×10-3s ,则上海到北京的距离约为 km 。
6. 自行车是我们熟悉的交通工具,请你发挥想象“假如没有摩擦”,自行车会出现什么样的情况?写出两个合理的猜想。
(1) ;(2)汽车关闭发动机,在路面上滑行,车子渐渐变慢,施力物体是,受力物体是。
7. 如图所示,跳水运动员在向下压跳板的过程中,压跳板的力的作用效果是使跳板发生______。
跳板弹起过程中,跳板推运动员的力的作用效果是使运动员的______发生改变。
8. 用弹簧测力计拉着物体在水平桌面上向右做匀速直线运动时,弹簧测力计的示数是2N ,则物体受到的滑动摩擦力大小是 N ,方向是 ,物体受到的合力为 N 目前普通列车的速度约为100km/h ,而磁悬浮列车设计速度为400km /h ,南京到上海的距离约为300km ,按以上速度计算,磁悬浮列车从南京到上海比普通列车缩短 了 h 。
9. 投掷出去的篮球在空中能够继续飞行,这是因为篮球________;篮球在飞行中运动方向不断改变,这是因为篮球_______。
(不计空气阻力)10. 如图所示,在光滑桌面上铺有薄桌布,桌布上放置盛有水的两个杯子。
当猛地将桌布从桌面沿水平方向拉走时,桌布上的杯子_____随之运动(选填“会”或“不会”),这表明杯子__________。
2006年初三物理综合生活应用题1.下面两幅图是从某交通宣传栏和某冷饮厂广告宣传片中选取的。
请你任选一幅并指出其中违背科学规律之处:_________________________________________。
2.6月5日是世界环境日,2006年中国的主题是“生态安全与环境友好型社会”。
化学电池对生态与环的影响日趋严重。
如图是一种安装在自行车上的照明灯,它在某些发达国家被大量使用。
这种灯不用化学电池,是通过车轮的转动来带动小型交流发电机发电使灯泡发光的。
发电机的工作原理是_____________,发电机工作时发生的能量转化是____________。
7.图18是一种太阳能汽车。
太阳光照射到这辆车电池板上的辐射总功率为8×103 W,在晴朗的天气,电池板对着太阳时产生的电压为160V,并对车上的电动机提供10A的电流。
问:(1)在这种情况下电动机消耗的电功率是多大?(2)太阳能电池将太阳能转化为电能的效率是多少?(3)你认为太阳能汽车与我们现在使用的汽车相比,有什么优点?22、2003年10月15日到16日,我国成功地发射并回收了“神舟”五号载人飞船。
(1)火箭发射时,高温的火焰向下喷射,大量的“白气”从发射台底部的大水池中涌出,这些“白气”是怎么样产生的?(2)返回舱穿越大气层时与空气摩擦生热,舱的表面非常高温,但由于返回舱表面涂有一层非常厚的特殊涂料发生了一些物态变化,使舱内温度保持正常。
请说明挥发涂料是怎样起作用的?22.用绳子把一个铁锁悬挂起来.把铁锁拉到刚好贴着自己的鼻子,稳定后松手,头不动(如图16),铁锁由开始位置a沿弧线ac向另一侧的最高点c运动,然后再从c往回运动.(l)从a点到最低点b点的过程中,铁锁的动能、重力势能如何变化?(2)从能的转化和守恒角度分析铁锁摆回时能否碰到鼻子。
8.图3是温度自动报警器的原理图,它运用了许多物理知识。
以下说法中不正确的是A.温度计中的水银是导体B.温度计是根据液体热胀冷缩的性质工作的C.报警器中的电磁铁运用了电流的热效应D.电磁继电器是一种电路开关4l 小明家买了一台电烤箱,有低、中、高三个档位的发热功率。
20.1.1平均数(2)年级:八年级 科目:数学 课型:新授 执笔:徐中国 审核:姜艳 薛柏双备课时间:2010.5.12 上课时间:2010.5.18学习目标1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法学习重难点1、重点:会求加权平均数2、难点:对“权”的理解学习过程:阅读教材P124 — 127 , 完成课前预习内容【课前预习】1、知识准备(1)算术平均数的概念:(2)加权平均数的概念:2、探究:完成在教材P128问题为了解5路公共汽车的运营情况,公交部门统计了某天5路公关汽车每个运营班载客量/人 组中值 频数(班次)1≤x <21 11 321≤x <41 31 541≤x <61 2061≤x <81 2281≤x <101 18101≤x <121 111 15 (的数的平均数。
例如小组1≤x <21的组中值为)112211=+ (2)这天5天公关汽车平均每班的载客量是多少?【课堂活动】活动1、预习反馈活动2、例题分析例3 某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使练习:种菜能手李大叔种植了一批新品种黄瓜。
为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图。
请估计这个新品种黄瓜平均每株结多少根黄瓜。
活动3:课堂小结1、组中值:【课后巩固】2、为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示。
计算这些法国梧桐树干的平均周长510152010131415黄瓜根数。
2006年北京市高级中等学校招生统一考试(课标B 卷)数学试卷及参考答案一、选择题(共8个小题,每小题4分,共32分.) 1.5-的相反数是( ) A.5B.5-C.15D.15-2.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为( ) A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯3.在函数13y x =-中,自变量x 的取值范围是( ) A.3x ≠B.0x ≠C.3x >D.3x ≠-4.如图,AD BC ∥,点E 在BD 的延长线上, 若155ADE ∠=,则DBC ∠的度数为( ) A.155 B.50C.45D.255.小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷,奶奶们学习英语日常用语.他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是( ) A.32,31B.32,32 C.3,31 D.3,326.把代数式29xy x -分解因式,结果正确的是( ) A.2(9)x y -B.2(3)x y +C.(3)(3)x y y +- D.(9)(9)x y y +-7.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为( )A.16B.13C.14D.128.将如右图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OBA.B.C.D.二、填空题(共4个小题,每小题4分,共16分.)9.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是.10.若23(1)0m n -++=,则m n +的值为.11.用“>⨯”定义新运算:对于任意实数a ,b ,都有a >⨯21b b +=.例如,7>⨯211744+==,那么5>⨯3=;当m 为实数时,(m m >>⨯⨯2)=.12.如图,在ABC △中,AB AC =,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连结DN ,EM .若13cm AB =,10cm BC =,5cm DE =,则图中阴影部分的面积为2cm .三、解答题(共5个小题,共25分) 13.(本小题满分5分)计算:101123(2006)2-⎛⎫+---+ ⎪⎝⎭.14.(本小题满分5分)解不等式组315260.x x -<⎧⎨+>⎩,15.(本小题满分5分) 解分式方程12211xx x +=-+. 解:16.(本小题满分5分)已知:如图,AB ED ∥,点F ,点C 在AD 上,AB DE =,AF DC =.求证:BC EF =. 证明:17.(本小题满分5分)已知230x -=,求代数式22()(5)9x x x x x -+--的值. 解:四、解答题(共2个小题,共11分.) 18.(本小题满分5分)已知:如图,在梯形ABCD 中,AD BC ∥,90ABC ∠=,45C ∠=,BE CD ⊥于点E ,1AD =,CD = 求:BE 的长. 解:19.(本小题满分6分) 已知:如图,ABC △内接于O ,点D 在OC 的延长线上,1sin 2B =,30CAD ∠=. (1)求证:AD 是O 的切线;(2)若OD AB ⊥,5BC =,求AD 的长. (1)证明:BDA五、解答题(本题满分5分)20.根据北京市统计局公布的2000年,2005年北京市常住人口相关数据,绘制统计图表如下:年份大学程度人数(指大专及以上)高中程度人数(含中专)初中程度人数小学程度人数其他人数2000年233 320 475 234 120 2005年362 372 476 212 114 请利用上述统计图表提供的信息回答下列问题:(1)从2000年到2005年北京市常住人口增加了多少万人?(2)2005年北京市常住人口中,少儿(014岁)人口约为多少万人?(3)请结合2000年和2005年北京市常住人口受教育程度的状况,谈谈你的看法.解:(1)(2)(3)2000年,2005年北京市常住人口中教育情况统计表(人数单位:万人)六、解答题(共2个小题,共9分.) 21.(本小题满分5分)在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(3)A a ,,试确定反比例函数的解析式. 解:22.(本小题满分4分) 请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为(0)x x >.依题意,割补前后图形的面积相等,有25x =,解得x =成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.图1图2图3请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形. 说明:直接画出图形,不要求写分析过程. 解:七、解答题(本题满分6分)23.如图1,OP 是MON ∠的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在ABC △中,ACB ∠是直角,60B ∠=,AD ,CE 分别是BAC ∠,BCA∠的平分线,AD ,CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系; (2)如图3,在ABC △中,如果ACB ∠不是直角,而(1)中的其他条件不变, 请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由. 解:画图: 图4图5PMO(1)FE 与FD 之间的数量关系为 . (2)八、解答题(本题满分8分)24.已知抛物线2y ax bx c =++与y 轴交于点(03)A ,,与x 轴分别交于(10)B ,,(50)C ,两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A .求使点P 运动的总路径最短的点E ,点F 的坐标,并求出这个最短总路径的长. 解:(1) (2) (3)图3九、解答题(本题满分8分)25.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.解:(1)(2)2006年北京市高级中等学校招生统一考试(课标B卷)数学试卷参考答案一、选择题(共8个小题,每小题4分,共32分.)二、填空题(共4个小题,每小题4分,共16分.)三、解答题(本题共30分,每小题5分.)1311(2006)2-⎛⎫--+ ⎪⎝⎭12=+ ············································································ 4分1=+ ······················································································ 5分 14.解:由不等式315x -<解得 2x <. ··············································· 2分 由不等式260x +>解得 3x >-. ············································· 4分 则不等式组的解集为 32x -<<. ············································· 5分 15.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ··············································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解.所以原方程的解是3x =. ····························································· 5分 16.证明:因为AB ED ∥,则A D ∠=∠. ········································································· 1分 又AF DC =,AC DF =AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,,, ······································································ 3分 所以ABC DEF △≌△. ·························································· 4分 所以BC EF =. ······································································ 5分17.解:22()(5)9x x x x x -+--322359x x x x =-+-- ································································ 2分 249x =-. ················································································ 3分 当230x -=时,原式249(23)(23)0x x x =-=+-=. ····················· 5分 四、解答题(共2个小题,共11分)18.解:如图,过点D 作DF AB ∥交BC 于点F . ······································ 1分 因为AD BC ∥,所以四边形ABFD 是平行四边形. ························································ 2分 所以1BF AD ==. 由DF AB ∥,得90DFC ABC ∠=∠=.在Rt DFC △中,45C ∠=,CD =, 由cos CFC CD=, 求得2CF =. ·················································································· 3分 所以3BC BF FC =+=. ·································································· 4分 在BEC △中,90BEC ∠=, sin BEC BC=.求得BE =. ············································································· 5分 19.解:(1)证明:如图,连结OA .因为1sin 2B =, 所以30B ∠=.故60O ∠=. ···························· 1分 又OA OC =,所以ACO △是等边三角形.故60OAC ∠=. ·············································································· 2分 因为30CAD ∠=, 所以90OAD ∠=. 所以AD 是O 的切线. ····································································· 3分 (2)解:因为OD AB ⊥, 所以OC 垂直平分AB .则5AC BC ==. ············································································· 4分 所以5OA =. ·················································································· 5分 在OAD △中,90OAD ∠=, 由正切定义,有tan ADAOD OA∠=.所以AD = ·············································································· 6分 五、解答题(本题满分5分)20.解:(1)153********-=(万人). ··················································· 1分 故从2000年到2005年北京市常住人口增加了154万人. (2)153610.2%156.672157⨯=≈(万人).故2005年北京市常住人口中,少儿(014岁)人口约为157万人. ·········· 3分(3)例如:依数据可得,2000年受大学教育的人口比例为16.86%,2005年受大学教育的人口比例为23.57%.可知,受大学教育的人口比例明显增加,教育水平有所提高.5分 六、解答题(共2个小题,共9分)21.解:依题意得,直线l 的解析式为y x =. ··············································· 2分因为(3)A a ,在直线y x =上,则3a =. ·················································································· 3分 即(33)A ,. 又因为(33)A ,在ky x=的图象上, 可求得9k =. ············································································ 4分 所以反比例函数的解析式为9y x=. ················································ 5分 22.解:所画图形如图所示.说明:图4与图5中所画图形正确各得2分.分割方法不唯一,正确者相应给分. 七、解答题(本题满分6分.) 23.解:图略.画图正确得1分.(1)FE 与FD 之间的数量关系为FE FD =. ······································· 2分 (2)答:(1)中的结论FE FD =仍然成立.证法一:如图4,在AC 上截取AG AE =,连结FG . ···························· 3分因为12∠=∠,AF 为公共边, 可证AEF AGF △≌△.所以AFE AFG ∠=∠,FE FG =. ················· 4分由60B ∠=,ADCE ,分别是BAC BCA ∠∠,的平分线, 可得2360∠+∠=.图4图4图5所以60AFE CFD AFG ∠=∠=∠=.所以60CFG ∠=. ··········································································· 5分 由34∠=∠及FC 为公共边,可得CFG CFD △≌△. 所以FG FD =.所以FE FD =. ··············································································· 6分 证法二:如图5,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H . ···························· 3分 因为60B ∠=,且AD ,CE 分别是BAC ∠,BCA ∠的平分线,所以可得2360∠+∠=,F 是ABC △的内心. ············· 4分 所以601GEF ∠=+∠,FG FH =. 又因为1HDF B ∠=∠+∠,所以GEF HDF ∠=∠. ············································· 5分 因此可证EGF DHF △≌△.所以FE FD =. ··············································································· 6分 八、解答题(本题满分8分) 24.解:(1)根据题意,3c =,所以3025530.a b a b ++=⎧⎨++=⎩,解得3518.5a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以抛物线解析式为2318355y x x =-+. ·············································· 2分 (2)依题意可得OA 的三等分点分别为(01),,(02),. 设直线CD 的解析式为y kx b =+.图5当点D 的坐标为(01),时,直线CD 的解析式为115y x =-+; ···················· 3分 当点D 的坐标为(02),时,直线CD 的解析式为225y x =-+. ·················· 4分 (3)如图,由题意,可得302M ⎛⎫ ⎪⎝⎭,.点M 关于x 轴的对称点为302M ⎛⎫'- ⎪⎝⎭,, 点A 关于抛物线对称轴3x =的对称点为(63)A ',. 连结A M ''.根据轴对称性及两点间线段最短可知,A M ''的长就是所求点P 运动的最短总路径的长. ············································································································ 5分所以A M ''与x 轴的交点为所求E 点,与直线3x =的交点为所求F 点. 可求得直线A M ''的解析式为3342y x =-. 可得E 点坐标为(20),,F 点坐标为334⎛⎫ ⎪⎝⎭,. ········································· 7分 由勾股定理可求出152A M ''=. 所以点P 运动的最短总路径()ME EF FA ++的长为152. ························· 8分 九、解答题(本题满分8分)25.解:(1)略.写对一种图形的名称给1分,最多给2分.(2)结论:等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和大于或等于一条对角线的长. ········································································ 3分已知:四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD =, 且60AOD ∠=. 求证:BC AD AC +≥.证明:过点D 作DF AC ∥,在DF 上截取DE ,使DE AC =.连结CE ,BE . ··············································································· 4分x '故60EDO ∠=,四边形ACED 是平行四边形.所以BDE △是等边三角形,CE AD =. ··············································· 6分 所以DE BE AC ==.①当BC 与CE 不在同一条直线上时(如图1), 在BCE △中,有BC CE BE +>.所以BC AD AC +>. ··············································· 7分 ②当BC 与CE 在同一条直线上时(如图2), 则BC CE BE +=.因此BC AD AC +=. ··············································· 8分 综合①、②,得BC AD AC +≥.即等对角线四边形中两条对角线所夹角为60时,这对60角所对的两边之和大于或等于其中一条对角线的长.A DE FC BO 图2A DE FCBO 图1。
专题一实际应用性问题实际应用性问题是指有实际背景或实际意义的数学问题。
这些问题充分体现了贴近学生生活、关注社会热点、形式多样等特点,注重考查学生思维的灵活性和深刻性,要求解题者具有较丰富的生活常识和较强的阅读能力以及数学建模能力。
实际应用性问题涉及的背景有商品买卖、存款和贷款,最优方案、行程问题、交通运输、图案设计、农业生产和生物繁殖等。
实际应用性问题在各地的试卷中成为必考内容,体现了素质教育的要求和新课程标准的理念,由于它们来自生活和生产实践,所以参考条件较多,思维也有一定的深度,解答方法灵活多样。
【典型例题】例1.某饮料厂为了开发新的产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是实验的相关数据:(1)假设甲种饮料需配制x千克。
请你写出满足题意的不等式组,并求出其解。
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元。
这两种饮料的成本总额为y元,请写出y与x的函数表达式。
并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种的成本总额最低。
分析:根据表格的信息和其他已知条件知甲种原料用量不大于19千克,乙种原料用量不大于17.2千克,可得出(1)的不等式组。
(2)由“成本总额=甲种饮料成本+乙种饮料成本”这个关系式,可列出函数表达式。
再运用函数的性质,可确定最低总成本。
解:(1 )由条件得05x 0.2(50 x) 190.3x 0.4(50 x) 17.2解得28 x 30(2)依题意得y 4x 3(50 x) x 150 (28 x 30)由一次函数性质知:k = 1 > 0, y随x的增大而增大。
•••当x = 28时,甲、乙两种饮料的成本总额最少。
即y = 28+ 150 = 178 (元)。
例2.高为12.6米的教学楼ED前有一棵大树AB (如图甲)。
(1)某一时刻测得大树AB,教学楼ED在阳光下的投影长分别是BC = 2.4米,DF = 7.2米,求大树AB的高度。
2006 年河北省课程改革实验区初中毕业生升学考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为 120 分,考试时间为120 分钟.卷Ⅰ(选择题,共 20 分)注意事项: 1.答卷 I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10 个小题;每小题 2 分,共 20 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 2 的值是11A.- 2B.2C.D.-222.图 1 中几何体的主视图是正面A B C D图 13.下列运算中,正确的是A . a+ a=a2B .a a2=a2C. (2a)2=2a2 D .a+ 2a= 3a销售量(台)4.图 2 是华联商厦某个月甲、乙、丙三种品牌彩电的销售量45统计图,则甲、丙两种品牌彩电该月的销售量之和为3020A.50 台B.65 台C.75 台D.95 台0甲乙丙品牌图25.某城市2003 年底已有绿化面积300 公顷,经过两年绿化,绿化面积逐年增加,到2005年底增加到363 公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是A . 300(1+ x)=363B .300(1 + x)2=363C.300(1 + 2x)=363 D .363(1 - x)2=3006.在平面直角坐标系中,若点P( x- 2, x)在第二象限,则x 的取值范围为A . 0< x< 2B .x< 2C .x > 0D .x > 27.在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,( kg/ m 3)当改变容积 V 时,气体的密度 也随之改变.与 V 在一定范围内满足m,它的图象如图 3 所示,则该气体的质量 m 为 ( 5, 1.4 )V1.4A . 1.4kgB .5kg O5 V ( m 3 )C .6.4kgD .7kg图 38.如图 4,在 □ABCD 中, AD=5 ,AB=3,AE 平分∠ BAD 交 BC边于点 E ,则线段 BE , EC 的长度分别为ADA .2和 3B .3和 2BE CC .4和 1D .1和 4图 49.如图 5,现有一圆心角为 90°,半径为 8cm 的扇形纸片,用它恰好围成一个圆锥的侧面 (接缝忽略不计) ,则该圆锥底面圆的半径为A . 4cmB .3cmC .2cmD .1cm图 510.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,图 6-1图 6-2我们把它改为横排, 如图 6- 1、图 6-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图6- 1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3x 2y19,类似地,x 4 y 23.图 6-2 所示的算筹图我们可以表述为2x y 11, 2x y 11,A .3y 27. B .3 y 22.4x 4x 3x 2 y 19, 2x y 6,C .4y23.D .3 y27.x 4x总分加分核分人2006年河北省课程改革实验区初中毕业生升学考试数 学 试 卷卷 II (非选择题,共 100 分)注意事项: 1.答卷 II 前,将密封线左侧的项目填写清楚.2.答卷 II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.三题号 二16171819202122232425得分得分 评卷人二、填空题 (本大题共 5 个小题;每小题 3 分,共 15 分.把答案写在题中横线上)11. 分解因式: a 3- a=______________ .A1m12. 图 7 是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B →C 所走的路程为 _______m .(结果保留根号)B13. 有四张不透明的卡片为2 ,22,, 2 ,除正面的数不同C7图 7外,其余都相同 . 将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为_______.O14. 如图 8, PA 是⊙ O 的切线,切点为 A ,PA = 23 ,∠ APO=30°,则A P⊙ O 的半径长为 _______.图 815.小宇同学在一次手工制作活动中,先把一张矩形纸片按图9- 1 的方式进行折叠,使折痕的左侧部分比右侧部分短 1cm ;展开后按图 9- 2 的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长 1cm ,再展开后,在纸上形成的两条折痕之间的距离是_______cm .左 右左 右第一次折叠 第二次折叠图 9-1图 9-2三、解答题 (本大题共 10 个小题;共 85 分 . 解答应写出文字说明、证明过程或演算步骤)得 分评卷人试试基本功16. (本小题满分7 分)已知 x =3,求 (1+ 1 ) (x + 1)的值.2 x 1得分评卷人17.(本小题满分7 分)如图 10 所示,一段街道的两边缘所在直线分别为 AB,PQ,并且 AB∥PQ.建筑物的一端 DE 所在的直线 MN ⊥AB 于点 M,交 PQ 于点 N.小亮从胜利街的 A 处,沿着 AB 方向前进,小明一直站在点 P 的位置等候小亮.( 1)请你在图10 中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C 标出);( 2)已知: MN=20 m, MD =8 m ,PN=24 m ,求( 1)中的点 C 到胜利街口的距离 CM .B M AD 胜利街步行街建筑物E光明巷P N Q图 10得分评卷人归纳与猜想18.(本小题满分7 分)观察下面的点阵图形和与之相对应的等式,探究其中的规律:( 1)请你在④和⑤后面的横线上分别写出相对应的等式:①4× 0+ 1= 4×1- 3;②4× 1+ 1= 4×2- 3;③4× 2+ 1= 4×3- 3;④___________________ ;⑤___________________ ;,,,,( 2)通过猜想,写出与第n 个图形相对应的等式.得分评卷人判断与决策游戏规则19.(本小题满分8 分)三人手中小明、小亮和小强三人准备下象棋,他们约定用“抛各持有一枚质地均硬币”的游戏方式来确定哪两个人先下棋,规则如右图:( 1)请你完成下面表示游戏一个回合所有可能出现匀的硬币,他们同时的结果的树状图;(2)求一个回合能确定两人先下棋的概率.将手中硬币抛落到解:( 1)树状图为:开始小明正面小亮正面小强正面反面不确结果确定定得分评卷人20.(本小题满分8 分)某高科技产品开发公司现有员工50 名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数 /名1323241每人月工资 /元2100084002025220018001600950请你根据上述内容,解答下列问题:( 1)该公司“高级技工”有名;欢迎你来我们公司应聘!我公司员工的月平均工( 2)所有员工月工资的平均数x 为 2500 元,资是 2500 元,薪水是较高的.中位数为元,众数为部元;门( 3)小张到这家公司应聘普通工作人员.经这个经理的介绍请你回答右图中小张的问题,并指理能反映该公司员工的出用( 2)中的哪个数据向小张介绍小月工资实际水平吗?张员工的月工资实际水平更合理些;( 4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.得分评卷人21.(本小题满分8 分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度 y( m)与挖掘时间 x( h)之间的关系如图 11 所示,请根据图象所提供的信息解答下列问题:图象与信息y(m)60甲50乙30( 1)乙队开挖到 30m 时,用了 _____h .开挖 6hO2时甲队比乙队多挖了_____m;6x(h)( 2)请你求出:图 11①甲队在 0≤ x≤6的时段内,y 与 x 之间的函数关系式;②乙队在 2≤ x≤ 6的时段内, y 与 x 之间的函数关系式;( 3)当 x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?得分评卷人操作与探究22.(本小题满分8 分)探索在如图 12- 1 至图 12- 3 中,△ ABC 的面积为 a .(1)如图 12- 1, 延长△ ABC 的边 BC 到点 D,使 CD=BC,连结DA .若△ ACD 的面积为S1,则 S1=________(用含 a 的代数式表示);(2)如图 12-2,延长△ ABC 的边 BC 到点 D,延长边 CA 到点 E,使CD =BC, AE=CA,连结 DE.若△ DEC 的面积为 S2,则S2 =__________(用含 a 的代数式表示),并写出理由;(3)在图 12-2 的基础上延长 AB 到点 F ,使 BF=AB,连结 FD , FE ,得到△ DEF (如图 12- 3).若阴影部分的面积为 S3,则 S3=__________ (用含 a 的代数式表示).F 发现AB C D图12-1EAB C D图12-2EABC D图12-3像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF(如图12-3),此时,我们称△ ABC 向外扩展了一次.可以发现,扩展一次后得到的△ABC 面积的 _______倍.应用去年在面积为 10m2M 的△ ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ ABC 扩展成△ DEF ,第二次由△ DEF 扩展成△ MGH (如图 12- 4).求这两次扩展的区域(即阴影部分)面积共为多少m2?F△ DEF 的面积是原来EA HCB DG得分评卷人实验与推理图 12-423.(本小题满分8 分)如图 13- 1,一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 的两条边分别重合在一起.现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边 EF 的中点 O(点 O 也是 BD 中点)按顺时针方向旋转.(1)如图 13- 2,当 EF 与 AB 相交于点 M,GF 与 BD 相交于点 N 时,通过观察或测量BM, FN 的长度,猜想 BM, FN 满足的数量关系,并证明你的猜想;( 2)若三角尺 GEF 旋转到如图13- 3 所示的位置时,线段FE 的延长线与 AB 的延长线相交于点 M,线段 BD 的延长线与 GF 的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.D(F)F NC D CD C ON FO OGA MB EA(G)B(E)A B ME 图 13-1G图 13-2图 13-3得分评卷人综合与应用24.(本小题满分 12 分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为 260 元时,月销售量为45 吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降 10 元时,月销售量就会增加7. 5 吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100 元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是 240 元时,计算此时的月销售量;(2)求出 y 与 x 的函数关系式(不要求写出x 的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.得分评卷人25.(本小题满分12 分)图 14- 1 至图 14-7 的正方形霓虹灯广告牌ABCD 都是 20× 20 的等距网格(每个小方格的边长均为 1 个单位长),其对称中心为点O.如图 14- 1,有一个边长为 6 个单位长的正方形EFGH 的对称中心也是点O,它以每秒 1 个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH 经过一秒由6× 6扩大为 8×8;再经过一秒,由8× 8 扩大为 10×10;⋯⋯),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为 6 个单位长的正方形MNPQ 从如图 14-1 所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A→ B→ C→ D→ A 移动(即正方形 MNPQ 从点P 与点 A 重合位置开始,先向左平移,当点 Q 与点 B 重合时,再向上平移,当点 M 与点 C 重合时,再向右平移,当点 N 与点 D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形 EFGH 和正方形MNPQ 从如图14- 1 的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.( 1)请你在图14- 2 和图 14- 3 中分别画出x 为 2 秒、 18 秒时,正方形EFGH 和正方形 MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;( 2)①如图14- 4,当 1≤ x≤3.5 时,求 y 与 x 的函数关系式;②如图 14- 5,当 3.5≤x≤ 7 时,求 y 与 x 的函数关系式;③如图 14- 6,当 7≤ x≤ 10.5 时,求 y 与 x 的函数关系式;④如图14- 7,当 10.5≤x≤13 时,求 y 与 x 的函数关系式.( 3)对于正方形 MNPQ 在正方形 ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出 y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题( 3)是额外加分题,加分幅度为1~4 分)C DCD C D C DH E HEO O OOF GNM M NF GB Q A(P) B A B AQ PA图 14-1B图 14-2图 14-3图 14-4C DE HOMNF GB Q PA图 14-5C DEHOMNF GB Q PA图 14-6C DEHOMNFGB QPA 图14-72006 年河北省课程改革实验区初中毕业生升学考试数学试题参考答案及评分标准说明:1.各地在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.4.对于 25( 3)题加分的说明:(1)按评分标准给予相应的加分;( 2)加分后不超过 120分的,按照 “原得分+加分=总分 ”计算考生的总分.加分后超过120 分的,按照 120 分登记总分.一、选择题 (每小题 2 分,共20 分)题 号1 2 3 4 5 6 7 8 9 10答 案BCDCBADBCA二、填空题 (每小题 3 分,共 15 分)11. a(a + 1)(a - 1);12.2 5;13.1;14. 2;15.1.2三、解答题 (本大题共 10 个小题;共 85 分)16.解:原式= x+2. ,,,,,,,,,,,,,,,,,,,,,,,,,,(4 分)当 x = 3时,原式= 1 . ,,,,,,,,,,,,,,,,,,,, (7 分)2 2(说明:本题若直接代入求值正确,也相应给分)17.解:( 1)如图 1 所示, CP 为视线,点 C 为所求位置.,,,,,,,,,,,(2分) BMCA步行街D 胜利街建筑物E光明巷P N Q图 1( 2)∵ AB ∥ PQ ,MN ⊥ AB 于 M ,∴∠ CMD =∠ PND=90 °. 又∵ ∠ CDM =∠ PDN ,∴ △CDM ∽△ PDN ,∴ CMMD.,,,,,,,,,,,,,,,,,,,,,,,(5 分)PNND∵ MN=20m , MD =8m ,∴ ND =12m .∴ CM8 , ∴ CM =16( m ).2412∴点 C 到胜利街口的距离 CM 为 16m .,,,,,,,,,,,,,(7 分)18.解: (1)④ 4×3+1=4 ×4- 3; ,,,,,,,,,,,,,,,,,,,,,,( 2分)⑤ 4×4+1=4 ×5- 3. ,,,,,,,,,,,,,,,,,,,,,,( 4分)(2)4( n -1)+ 1=4n - 3. ,,,,,,,,,,,,,,,,,,,,,(7分)19.解:( 1)开始小明正面反面小亮正面反面正面反面小强正面 反面不 确正面 反面 正面 反面 正面 反面结果确确确确确确不定定定定 定确定定定(6 分),,,,,,,,,,(2)由( 1)中的树状图可知: P (确定两人先下棋) = 3.,,,,,,,(8 分)420.解:( 1)16; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,(1 分)( 2)1700 ; 1600; ,,,,,,,,,,,,,,,,,,,,,,,,(3 分)( 3)这个经理的介绍不能反映该公司员工的月工资实际水平.,,,,,( 4分)用 1700 元或 1600 元来介绍更合理些.,,,,,,,,,,,,, (5 分)(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数) 也得分)( 4) y 2500 50 21000 84003≈1713(元). ,,,,,,,,,,,(7 分)46y 能反映. ,,,,,,,,,,,,,,,,,,,,,,,,,, ( 8 分)21.解: ( 1)2,10; ,,,,,,,,,,,,,,,,,,,,,,,,,,,(2 分)( 2)设甲队在0≤ x ≤ 6 的时段内 y 与 x 之间的函数关系式 y=k 1x ,由图可知,函数图象过点(6, 60),∴ 6 k 1=60 ,解得 k 1=10,∴ y =10x . ,,,,,,,,,,,,,,,(4 分)设乙队在 2≤ x ≤6 的时段内 y 与 x 之间的函数关系式为 yk 2 x b ,由图可知,函数图象过点( 2, 30)、( 6, 50),∴2k 2 b 30, 解得k 2 5,∴y =5x+20 . ,,,,,,,,(6 分)6k 2 b 50.b 20.( 3)由题意,得 10x=5x+20,解得 x=4( h ).∴当 x 为 4h 时,甲、乙两队所挖的河渠长度相等. ,,,,,,,,(8 分) 22. 探索 ( 1) a ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,( 1 分) ( 2) 2a ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,(2 分)理由:连结 AD ,∵ CD =BC ,AE=CA , ∴ S △DAC = S △DAE = S △ABC = a ,∴ S 2=2a . ,,,,,,,,,,,,,,,,,,,,,,,,,,,(4 分)( 3)6a; ,,,,,,,,,,,,,,,,,,,,,,,,,,,( 5 分)发现7.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(6分)应用拓展区域的面积:( 72- 1)× 10=480( m2). ,,,,,,,,,,,(8分)23.解:( 1) BM=FN. ,,,,,,,,,,,,,,,,,,,,,,,,,( 1 分)证明:∵△ GEF 是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ ABD =∠F =45°, OB = OF.又∵∠ BOM =∠FON ,∴ △OBM ≌△ OFN .∴ BM=FN .,,,,,,,,,,,,,,,,,,,,,,( 4分)( 2)BM =FN 仍然成立. ,,,,,,,,,,,,,,,,,,,,,,(5分)证明:∵△ GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠ DBA =∠GFE =45°, OB=OF .∴∠ MBO=∠ NFO=135 °.又∵∠ MOB =∠NOF ,∴ △OBM ≌△ OFN .∴ BM =FN. ,,,,,,,,,,,,,,,,,,,,,(8 分)2602407.5=60(吨).,,,,,,,,,,,,,,,,,(3 24.解:( 1)4510分)( 2) y( x 100)(45260x7.5) , ,,,,,,,,,,,,,,,,( 6 分)10化简得:y 3 x2315x 24000. ,,,,,,,,,,,,,,(7 分)4( 3) y 3 x2315x24000329075 .( x210)44利达经销店要获得最大月利润,材料的售价应定为每吨210 元. ,,(9 分)( 4)我认为,小静说的不对.,,,,,,,,,,,,,,,,,,(10 分)理由:方法一:当月利润最大时,x 为 210 元,而对于月销售额W x(45260x7.5)3(x160)2 19200来说,104当 x 为 160 元时,月销售额W 最大.∴当 x 为 210 元时,月销售额W 不是最大.∴小静说的不对.,,,,,,,,,,,,,,,,,,,(12分)方法二:当月利润最大时,x 为 210 元,此时,月销售额为17325 元;而当 x 为 200 元时,月销售额为18000 元.∵ 17325< 18000,∴当月利润最大时,月销售额W 不是最大.∴小静说的不对. ,,,,,,,,,,,,,,,,,,,(12 分)(说明:如果举出其它反例,说理正确,也相应给分)25.解:( 1)相应的图形如图2-1,2-2. ,,,,,,,,,,,,,,,,,( 2 分)当 x=2 时, y=3;,,,,,,,,,,,,,,,,,,,,,( 3 分)当 x=18 时, y=18 .,,,,,,,,,,,,,,,,,,,,( 4 分)C D C D C DEE HE HO MNO OS N KPMGQF GF TB Q P A B A B Q P A图 2-1图2-2图2-3CDCDCDEHEHEHOOSONM NKNFTG F TGFRGBQPABQ PABQPA图 2-4图 2-5图 2-6( 2)①当 1≤ x ≤ 3.5 时,如图 2-3,延长 MN 交 AD 于 K ,设 MN 与 HG 交于 S , MQ 与 FG 交于 T ,则 MK =6+ x ,SK=TQ=7-x ,从而 MS=MK - SK=2x - 1, MT=MQ - TQ=6-( 7- x )= x - 1.∴ y=MT · MS=(x -1)( 2x -1) =2x 2 -3x + 1.,,,,,,,,,, (6 分)②当 3.5≤ x ≤ 7 时,如图 2-4,设 FG 与 MQ 交于 T ,则 TQ=7- x ,∴ MT=MQ - TQ=6-( 7- x )=x - 1.∴ y=MN · MT=6( x - 1)=6 x - 6. ,,,,,,,,,,,,,,,(8 分)③当 7≤ x ≤ 10.5 时,如图 2-5,设 FG 与 MQ 交于 T ,则TQ=x - 7,∴ MT=MQ - TQ=6 -( x - 7) = 13- x . ∴y= MN · MT =6( 13- x ) =78 - 6x . ,,,,,,,,,,,,, (10 分) ④当 10.5≤ x ≤ 13 时,如图 2-6,设 MN 与 EF 交于 S , NP 交 FG 于 R ,延长 NM交 BC 于 K ,则 MK =14- x , SK=RP=x - 7,∴SM=SK - MK= 2x -21,从而 SN=MN - SM=27 -2x , NR=NP - RP=13- x .∴ y=NR · SN=( 13-x )( 27- 2x ) =2x 2-53x + 351.,,,,,,,, (12分)(说明:以上四种情形,所求得的 y 与 x 的函数关系式正确的,若不化简不扣分)( 3)对于正方形 MNPQ ,①在 AB 边上移动时,当 0≤x ≤1 及 13≤x ≤ 14 时, y 取得最小值 0;当 x=7 时, y 取得最大值 36. ,,,,,,,,,,,,,,,,,(1 分)②在 BC 边上移动时,当 14≤ x ≤ 15 及 27≤ x ≤ 28 时, y 取得最小值 0;当 x=21 时, y 取得最大值 36.,,,,,,,,,,,,,,,,, (2 分)③在 CD 边上移动时,当 28≤ x ≤ 29 及 41≤ x ≤42 时, y 取得最小值0;当 x=35 时, y 取得最大值 36.,,,,,,,,,,,,,,,,, (3 分)④在 DA 边上移动时,当 42≤ x ≤ 43 及 55≤ x ≤56 时, y 取得最小值0;当 x=49时, y 取得最大值 36.,,,,,,,,,,,,,,,,,(4 分)(说明:问题( 3)是额外加分题.若考生能指出在各边运动过程中, y 都经历了由 0逐步增大到36,又逐步减小到 0 的变化,所以最小值是 0,最大值是 36,给 2 分.)。
深圳市2006年初中毕业生学业考试数学试卷说明:1.全卷分第一卷和第二卷,共8页.第一卷为选择题,第二卷为非选择题.考试时间90分钟,满分100分.2.答题前,请将姓名、考生号、科目代号、试室号和座位号填涂在答题卡上;将考场、试室号、 座位号、考生号和姓名写在第二卷密封线内.不得在答题卡和试卷上做任何标记.3.第一卷选择题(1-10),每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂 黑,如需改动,用橡皮擦干净后,再选涂其它答案,凡答案写在第一卷上不给分;第二卷非选择题(11-22)答案必须写在第二卷题目指定位置上. 4.考试结束,请将本试卷和答题卡一并交回.第一卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分)每小题给出4个答案,其中只有一个是正确的.请用2B 铅笔在答题卡上将该题相对应的答案标号涂黑.1.-3的绝对值等于A.3- B.3 C.13-D.132.如图1所示,圆柱的俯视图是图1 A B C D3.今年1—5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到A.百亿位 B.亿位 C.百万位 D.百分位4.下列图形中,是.轴对称图形的为A B C D5.下列不等式组的解集,在数轴上表示为如图2所示的是A.1020x x ->⎧⎨+≤⎩ B.1020x x -≤⎧⎨+<⎩C.1020x x +≥⎧⎨-<⎩ D.1020x x +>⎧⎨-≤⎩图2o yx o x y x y o yo x 6.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是 A.4小时和4.5小时 B.4.5小时和4小时 C.4小时和3.5小时 D.3.5小时和4小时7.函数(0)ky k x =≠的图象如图3所示,那么函数y kx k =-的图象大致是图3 B C D 8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数A.至多6人 B.至少6人 C.至多5人 D.至少5人9.如图4,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测 得影子EF 的长为2米,已知王华的身高是1.5米,那么 路灯A 的高度AB 等于A.4.5米 B.6米 C.7.2米 D.8米 图410.如图5,在□ABCD 中,AB : AD = 3:2,∠ADB=60°,那么cos A的值等于A.366- B.3226+C.366± D.3226±图5学生姓名 小丽 小明 小颖 小华 小乐 小恩 学习时间(小时) 4 6 3 4 5 8ABCD A B C DE FO x y深圳市2006年初中毕业生学业考试数学试卷第二卷(非选择题,共70分)二、填空题(本大题共5小题,每小题3分,共15分) 请将答案填在答题表一内相应的题号下,否则不给分......11.某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是答案请填在上面答题表一内 .12.化简:22193m m m -=-+答案请填在上面答题表一内 .13.如图6所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅 助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是答案请填在上面答题表一内 .图614.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有答案请填在上面答题表一内种不同方法. 15.在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为答案请填在上面答题表一内.ABDO三、解答题(本大题有7题,其中第16、17题各6分;第18题7分;第19、20题各8分;第21、22题各10分,共55分) 16.(6分)计算:21028sin 452(3.14)π--+-+-o解:原式=17.(6分)解方程:21133x x x-=---解:18.(7分)如图7,在梯形ABCD 中,AD ∥BC , AD DC AB ==,120ADC ∠=o .(1)(3分)求证:DC BD ⊥证明:(2)(4分)若4AB =,求梯形ABCD 的面积. 解:得分 阅卷人得分 阅卷人得分 阅卷人ADBC图7别忘了验根哦!19.(8分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图8-1和图8-2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)(2分)填充图8-1频率分布表中的空格.(2)(2分)在图8-2中,将表示“自然科学”的部分补充完整.(3)(2分)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适? 解:(4)(2分) 根据图表提供的信息,请你提出一条合理化的建议.图8-2 自然科学 文学艺术 社会百科 数学 图书图8-1折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)(4分)该工艺品每件的进价、标价分别是多少元?(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100 件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?21.(10分)如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC .(1)(3分)求线段的长.解:(2)(3分)求该抛物线的函数关系式. 解:(3)(4分)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.解:图10-122.(10分)如图10-1,在平面直角坐标系xoy 中,点M 在x 轴的正半轴上, ⊙M交x 轴于 A B 、两点,交y 轴于C D 、两点,且C 为»AE的中点,AE 交y 轴于G 点,若点A 的坐标为(-2,0),AE 8(1)(3分)求点C 的坐标. 解:(2)(3分)连结MG BC 、,求证:MG ∥BC 证明:(3)(4分) 如图10-2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF 的比值是否发生变化,若不变,求出比值;若变化,说明变化规律. 解:深圳市2006年初中毕业生学业考试数学试题答案及评分意见二、填空题(本大题共5小题,每小题3分,共15分)21、22题各10分,共55分)16.解:原式=1412-++……1+1+1+1分=14212-+-+……5分=32-……6分17.解:去分母:(2)31x x-=-+……2分化简得:24x=……4分2x=经检验,原分式方程的根是:2x=.……6分18. (1)证明:ΘAD∥BC,ο120=∠ADC,∴ο60=∠C……1分又ΘADDCAB==∴ο60=∠=∠CABC,ο30=∠=∠=∠DBCADBABD……2分∴ο90=∠BDC,DCBD⊥…… 3分(2)解:过D作BCDE⊥于E, 在Rt DEC∆中,Θο60=∠C,4AB DC==答题表一B CE∴ο60sin =DCDE, DE = 在Rt BDC ∆ 中,ο30sin =BCDC28BC DC == (2分)1)2S AD BC DE =+⋅=梯形( (4分)19. (1)(频数)100,(频率)0.05 ……2分 (2)补全频率分布直方图(略) ……4分 (3) 10000×0.05=500册 ……6分 (4) 符合要求即可. ……8分20. (1) 解.设该工艺品每件的进价是x 元,标价是y 元.依题意得方程组: 4580.858(35)1212y x y x y x-=⎧⎨⋅-=-⋅-⎩ ……2分解得: 155200x y =⎧⎨=⎩……3分答:该工艺品每件的进价是155元,标价是200元. ……4分(2) 解: 设每件应降价a 元出售,每天获得的利润为W 元.依题意可得W 与a 的函数关系式:(45)(1004)W a a =-+ ……2分 24804500W a a =-++配方得:24(10)4900W a =--+当10a =时,W 最大=4900 ……3分答:每件应降价10元出售,每天获得的利润最大,最大利润是4900元. ……4分 21.(1)解:由ax 2-8ax+12a =0(a <0)得x1=2,x2=6即:OA=2,OB=6 ……1分 ∵△OCA ∽△OBC∴OC2=OA·OB=2×6 ……2分……3分 (2)解:∵△OCA ∽△OBC∴AC OA BC OC===由AC2+BC2=AB2得 k2k)2=(6-2)2解得k=2(-2舍去)……1分 过点C作CD⊥AB于点D∴OD=12OB=3……2分 将C点的坐标代入抛物线的解析式得(3-6)∴a=-3∴抛物线的函数关系式为: 2 ……3分 (3)解:①当P1与O重合时,△BCP1为等腰三角形 ∴P1的坐标为(0,0)……1分②当P2B=BC时(P2在B 点的左侧),△BCP2为等腰三角形 ∴P2,0) ……2分③当P3为AB的中点时,P3B=P3C,△BCP3为等腰三角形 ∴P3的坐标为(4,0)……3分 ④当BP4=BC时(P4在B 点的右侧),△BCP4为等腰三角形 ∴P4,0)∴在x轴上存在点P,使△BCP为等腰三角形,符合条件的点P的坐标为: (0,0),,(4,0),……4分22.解(1)方法(一)∵直径AB⊥CD ∴CO=12CD ……1分 »AD =»AC ∵C为»AE 的中点 ∴»AC =»CE ∴»AE =»CD ∴CD=AE ……2分 ∴CO=12CD=4 ∴C点的坐标为(0,4) ……3分 方法(二)连接CM,交AE于点N∵C为»AC 的中点,M为圆心 ∴AN=12AE=4 ……1分 CM⊥AE∴∠ANM=∠COM=90° 在△ANM和△COM中:CMO AMN ANM COM AM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ANM≌△COM ……2分 ∴CO=AN=4∴C点的坐标为(0,4) ……3分解(2)设半径AM=CM=r,则OM=r-2 由OC2+OM2=MC2得: 42+(r-2)2=r2解得:r=5 ……1分 ∵∠AOC=∠ANM=90° ∠EAM=∠MAE∴△AOG∽△ANM∴OG AOMN AN=∵MN=OM=3即2 34 OG=∴OG=32……2分∵1.5348 OGOC==38OMOB=∴OG OM OC OB=∵∠BOC=∠BOC∴△GOM∽△COB∴∠GMO=∠CBO∴MG∥BC……3分(说明:直接用平行线分线段成比例定理的逆定理不扣分)解(3)连结DM,则DM⊥PD,DO⊥PM∴△MOD∽△MDP,△MOD∽△DOP∴DM2=MO·MP;DO2=OM·OP(说明:直接使用射影定理不扣分)即42=3·OP∴OP=163……1分当点F与点A重合时:2316523OF AOPF AP===-当点F与点B重合时:8316583OF OBPF PB===+……2分当点F不与点A、B重合时:连接OF、PF、MF∵DM2=MO·MP∴FM2=MO·MP∴FM MP OM FM=∵∠AMF=∠FMA∴△MFO∽△MPF∴35 OF MOPF MF==∴综上所述,OFPF的比值不变,比值为35……4分。
本文为自本人珍藏 版权所有 仅供参考 本文为自本人珍藏 版权所有 仅供参考2006年全国中考数学压轴题全解全析1、(北京课改B 卷)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60 时,这对60 角所对的两边之和与其中一条对角线的大小关系,并证明你的结论. [解] (1)答案不唯一,如正方形、矩形、等腰梯形等等.(2)结论:等对角线四边形中两条对角线所夹锐角为60 时,这对60 角所对的两边之和大于或等于一条对角线的长.已知:四边形A B C D 中,对角线A C ,B D 交于点O ,A C B D =, 且60AOD ∠= . 求证:B C A D A C +≥.证明:过点D 作D F AC ∥,在D F 上截取D E ,使D E AC =. 连结C E ,B E .故60EDO ∠= ,四边形A C E D 是平行四边形. 所以B D E △是等边三角形,C E A D =. 所以D E B E A C ==.①当B C 与C E 不在同一条直线上时(如图1), 在B C E △中,有B C C E B E +>.所以B C A D A C +>.②当B C 与C E 在同一条直线上时(如图2), 则BC C E BE +=.因此B C A D A C +=.综合①、②,得B C A D A C +≥.即等对角线四边形中两条对角线所夹角为60时,这对60角所对的两边之和大于或等于其中一条对角线的长.[点评]本题是一道探索题,是近年来中考命题的热点问题,在第2小题中要求学生先猜想可能的结论,再进行证明,这对学生的确有较高的能力要求,而在探索结论前可以自己先画几个草图,做到心中有数再去努力求证;很多学生往往会忽略特殊情况没有进行讨论,应当予以关注,总之这是一道新课标形势下的优秀压轴题。