小学奥数知识总结材料手册簿
- 格式:doc
- 大小:115.25 KB
- 文档页数:16
六年级奥数知识点汇总一、数论1. 质数与合数- 定义- 质数的判定方法- 质数的性质2. 因数与倍数- 因数分解- 最大公约数和最小公倍数- 质因数分解3. 整数的性质- 奇偶性- 整数的四则运算性质- 整数的不等式二、分数1. 分数的基本概念- 真分数与假分数- 带分数与混合数2. 分数的运算- 加减乘除- 分数的通分与约分- 分数的比较3. 分数的应用- 分数在实际问题中的应用- 比例问题三、几何1. 平面几何- 点、线、面的基本性质 - 角的概念及分类- 三角形的性质- 四边形的性质- 圆的基本性质2. 立体几何- 立体图形的认识- 体积和表面积的计算 - 空间图形的投影四、代数1. 代数表达式- 字母表示数- 单项式与多项式- 代数式的加减运算2. 方程与不等式- 一元一次方程- 不等式及其解集- 方程与不等式的解法五、逻辑与推理1. 逻辑推理- 条件与结论- 逻辑运算2. 数列与序列- 等差数列- 等比数列- 数列的求和3. 证明方法- 直接证明- 反证法- 归纳法六、组合数学1. 排列与组合- 排列组合的基本概念- 排列组合的计算公式2. 概率- 概率的基本概念- 事件的概率计算3. 简单的计数问题- 加法原理- 乘法原理- 排列组合的应用请注意,以上内容是一个概要,每个部分都需要进一步扩展和详细解释,以形成一个完整的知识点汇总。
您可以根据这个框架添加更多的细节和例子,以帮助学生更好地理解和掌握这些概念。
完成后,您可以使用Word文档的样式和格式功能来增强文档的可读性和专业性。
小学(数学)奥数知识总结手册预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
小升初奥数总结手册1、和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系① (和-差 )÷ 2=较小数较小数+差 =较大数和÷ (倍数+ 1)=小数差÷ ( 倍数 -1)= 小数公式和-较小数 =较大数小数×倍数 =大数小数×倍数 =大数② (和+差 )÷ 2=较大数和-小数 =大数小数+差 =大数较大数-差 =较小数和-较大数 =较小数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量” ,题目一般用“照这样的速度”⋯⋯等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题在直线或者不封 在直线或者在直线或者不封闭 不封闭的曲 封闭曲线上植基本类型闭的曲线上植 的曲线上植树,两端线上植树,只树树,两端都不植都植树有一端植树树棵数 =段数- 1棵数 =段数 基本公式棵数 =段数+ 1 棵距×段数 =总棵距×段数 =总长棵距×段数 =总长长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、 、假设问题,就是把假设错的那部分置换出来; 基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样) :②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学(数学)奥数知识总结手册目录1、和差倍问题2、年龄问题的三个基本特征:3、归一问题的基本特点:4、鸡兔同笼问题5、植树问题6、盈亏问题7、牛吃草问题8、周期循环与数表规律9、平均数9、抽屉原理10、定义新运算11、加法乘法原理和几何计数12、数列求和13、二进制及其应用14、质数与合数15、约数与倍数16、余数及其应用17、余数、同余与周期18、数的整除19、分数与百分数的应用20、分数拆分21、分数大小的比较22、完全平方数23、比和比例24、综合行程25、工程问题26、逻辑推理27、立体图形28、几何面积29、时钟问题—快慢表问题30、时钟问题—钟面追及31、浓度与配比32、经济问题33、简单方程34、不定方程35、循环小数1、和差倍问题2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
5、植树问题6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
奥数知识点总结手册一、基本概念1.1 数的基本概念数的概念是数学学习的基础,包括自然数、整数、有理数和实数等。
学生需要掌握各种数的性质、大小关系和运算规律。
1.2 几何图形的概念几何图形包括点、线、面等基本概念,还包括各种几何图形的性质和相互关系。
学生需要了解各种几何图形的定义、分类、性质和应用。
1.3 代数式和方程的概念代数式和方程是数学中重要的内容,学生需要了解代数式和方程的基本概念、运算规律和解题方法。
1.4 函数的概念函数是数学中的一种重要概念,学生需要了解函数的定义、性质、图像和应用等内容。
1.5 统计与概率的概念统计与概率是数学中的重要分支,学生需要掌握统计与概率的基本概念、计算方法和应用场景。
二、运算规律2.1 整数的四则运算学生需要掌握整数的加减乘除运算规律,包括加法、减法、乘法和除法的运算方法和性质。
2.2 分数的加减乘除分数是数学中的重要概念,学生需要了解分数的运算规律,包括分数的加减乘除运算方法和性质。
2.3 方程的解法方程是数学中的重要内容,学生需要掌握求解一元一次方程和一元二次方程的方法和步骤。
2.4 几何图形的计算学生需要掌握各种几何图形的计算方法,包括周长、面积、体积等计算公式和应用技巧。
2.5 函数的运算函数是数学中的重要内容,学生需要了解函数的复合、反函数、函数的性质和图像变化等内容。
三、问题解题技巧3.1 数学问题的分析学生需要培养对数学问题的分析能力,包括理解问题、分析问题、找出关键信息和建立数学模型等能力。
3.2 数学问题的解题方法学生需要掌握各种数学问题的解题方法,包括数学推理、逻辑推断、数学归纳法、递推关系等解题技巧。
3.3 数学问题的实际应用数学知识是解决现实问题的重要工具,学生需要了解数学知识在生活和工作中的实际应用,培养解决实际问题的能力。
3.4 数学问题的验证和证明数学问题的验证和证明是数学学习的重要环节,学生需要了解数学问题的验证和证明方法,培养逻辑思维和推理能力。
小学奥数知识总结手册和差倍和差和倍差倍已知条件 几个数的和与差几个数的和与倍数几个数的差与倍数公式合用范已知两个数的和,差,倍数关系①(和-差 ) ÷2= 小数小数+差 = 大数 和÷ (倍数+ 1)= 小数 差÷ (倍数 - 1)= 小数和- 小数 = 大数公式小数×倍数 =大数 小数×倍数 =大数 ②(和+差 ) ÷2= 大数和-小数 =大数小数+差 =大数大数-差 = 小数和- 大数 = 小数关求出同一条件下的和与差和与倍数差与倍数年 的三个基本特色:①两个人的年 差是不 的;②两个人的年 是同 增添或许同 减少的; ③两个人的年 的倍数是 生 化的; 一 的基本特色:中有一个不 的量,一般是那个“ 一量” , 目一般用“照 的速度”⋯⋯等 来表示。
关 :依据 目中的条件确立并求出 一量; 植在直 或许不封 在直 或许不封在直 或许不封的曲 上植 封 曲 基本 型 的曲 上植 ,的曲 上植 ,只有两头都植,两头都不植上植一端植棵数=段数- 1棵数=段数棵数=段数+ 1基本公式棵距×段数=棵距×段数 =棵距×段数 =关 确立所属 型,进而确立棵数与段数的关系兔同基本观点: 兔同 又称 置 、假 , 就是把假 的那部分置 出来;基本思路: ①假 ,即假 某种 象存在(甲和乙一 或许乙和甲一 ) : ②假 后, 生了和 目条件不一样的差,找出 个差是多少; ③每个事物造成的差是固定的,进而找出出 个差的原由; ④再依据 两个差作适合的 整,消去出 的差。
基本公式:①把所有 假 成兔子: 数=(兔脚数× 数- 脚数)÷(兔脚数- 脚数) ②把所有兔子假 成 :兔数=( 脚数一 脚数× 数)÷(兔脚数一 脚数)关 :找出 量的差与 位量的差。
基本观点:必定量的对象,依照某种标准分组,产生一种结果:依照另一种标准分组,又产生一种结果,因为分组的标准不一样,造成结果的差别,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分派方案进行比较,剖析因为标准的差别造成结果的变化,依据这个关系求出参加分派的总份数,而后依据题意求出对象的总量.基此题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不够数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不够数一较小不够数)÷两次每份数的差基本特色:对象总量和总的组数是不变的。
四年级奥数全套奥数学习手册
简介
此奥数研究手册是专为四年级学生设计的,旨在帮助他们提高数学思维和解题能力。
本手册包含了全套的奥数课程内容,涵盖了各种重要的数学概念和技巧。
内容概述
本手册的内容包括以下几个主要部分:
数字与计算
这一部分主要涵盖了数字的认识、比较大小、四则运算和数学技巧等内容。
学生将研究如何进行简单的加减乘除运算,同时还将掌握一些解决实际问题的方法。
几何与空间
几何与空间部分将帮助学生了解不同的几何形状、线段、角度等概念。
学生将研究如何测量长度、面积和体积,并能够运用所学的知识解决与几何有关的问题。
数据与统计
数据与统计部分将引导学生了解如何收集、整理和分析数据。
学生将研究如何制作图表、解读统计信息,并能够在实际情境中运
用统计知识。
逻辑与推理
逻辑与推理部分将培养学生的逻辑思维和解决问题的能力。
学
生将研究如何分析问题、建立逻辑关系,并能够运用逻辑方法解决
数学问题。
使用方法
学生可以按照章节顺序逐步研究本奥数研究手册中的内容。
每
个章节都包含了必要的知识点和相关例题,学生可以通过阅读例题
并尝试解答来巩固所学内容。
另外,学生也可以根据自己的需求选择特定的章节进行研究,
例如,如果对数字与计算感兴趣,可以直接跳转到该部分进行研究。
结语
通过研究本奥数研究手册,四年级学生将获得全面的数学知识,并能够灵活运用这些知识解决各种数学问题。
祝愿学生们取得优异
的成绩!。
和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
小学奥数的所有知识点总结第一章数学基础知识一、数字的认识1.自然数、整数、有理数、小数、分数2.有关数的表示和认识3.大小比较二、数的四则运算1.加法、减法、乘法、除法2.运算规律3.运算技巧三、数的倍数和约数1.倍数的概念和判断2.约数的概念和判断3.倍数和约数的性质四、数的整除1.整除的概念和性质2.质数和合数3.分解质因数4.最小公倍数和最大公约数五、分数1.分数的概念和表示2.化简、通分3.分数的加减乘除4.分数的比较5.带分数第二章几何基础知识一、点、线、面1.点的概念2.直线和线段的概念3.射线和角的概念4.平行线和垂直线的关系二、线段和角1.线段的长度2.角的度量3.相交线的性质三、三角形1.三角形的分类2.三角形的性质3.三角形的周长和面积四、四边形1.四边形的分类2.四边形的性质3.四边形的周长和面积五、多边形1.多边形的分类和性质2.多边形的内角和外角和3.多边形的周长和面积六、相似和全等1.相似和全等的概念2.相似和全等的判断3.相似和全等的性质第三章综合应用一、尺规作图1.用图形工具画简单图形2.用尺规作出平行线、垂直线等二、平面图形的变化1.旋转和平移2.镜面反射3.放大、缩小三、数学应用题1.通过故事和实际问题引出运算2.建立方程和不等式3.奥数问题解题技巧四、数学启发题1.奇妙的数学问题2.趣味的数学游戏3.数学思维培养第四章奥数竞赛技巧一、备战奥数竞赛1.理解奥数竞赛2.奥数竞赛的特点3.比赛常见题型二、解题技巧1.快速计算技巧2.巧妙应用数学知识解题3.发散性思维和逻辑推理三、比赛心态1.放松心态2.临场发挥3.全面准备总结:小学奥数的知识点总结包括了数学基础知识、几何基础知识、综合应用和奥数竞赛技巧四个部分。
在数学基础知识中,包括了数字的认识、数的四则运算、数的倍数和约数、数的整除和分数等内容。
在几何基础知识中,包括了点、线、面、线段和角、三角形、四边形、多边形、相似和全等等内容。
小学(数学)奥数知识总结手册目录1、和差倍问题2、年龄问题的三个基本特征:3、归一问题的基本特点:4、鸡兔同笼问题5、植树问题6、盈亏问题7、牛吃草问题8、周期循环与数表规律9、平均数9、抽屉原理10、定义新运算11、加法乘法原理和几何计数12、数列求和13、二进制及其应用14、质数与合数15、约数与倍数16、余数及其应用17、余数、同余与周期18、数的整除19、分数与百分数的应用20、分数拆分21、分数大小的比较22、完全平方数23、比和比例24、综合行程25、工程问题26、逻辑推理27、立体图形28、几何面积29、时钟问题—快慢表问题30、时钟问题—钟面追及31、浓度与配比32、经济问题33、简单方程34、不定方程35、循环小数1、和差倍问题2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
5、植树问题6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8、周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9、平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②9、抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
10、定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
11、加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有m n种不同方法,那么完成这件任务共有:m1+ m2....... +m n种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有m n种方法,那么完成这件任务共有:m1×m2....... ×m n种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数12、数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用a n表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,a n, d, n,s n,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:a n = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:s n,= (a1+ a n)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (a n+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(a n-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13、二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=A n×10n-1+A n-1×10n-2+A n-2×10n-3+A n-3×10n-4+A n-4×10n-5+A n-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
)= A n×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+A n-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。
十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。
14、质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(r n+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
15、约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。