1993全国高考理科数学试题
- 格式:doc
- 大小:464.50 KB
- 文档页数:13
1993年普通高等学校招生全国统一考试数学(文史类)一、选择题:(本题共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内)1.(同理科1)如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为A B C .32 D .2【答案】C 【解析】32c e a ==.2.(同理科2)函数221tan 21tan 2xy x-=+的最小正周期是 A .4π B .2πC .πD .2π 【答案】B【解析】2222221tan 2cos 2sin 2cos 41tan 2cos 2sin 2x x xy x x x x--===++,所以最小正周期是2π.3.(同理科3) A .45︒ B .60︒ C .90︒ D .120︒ 【答案】C【解析】设圆锥的底面半径和母线长分别为,r l ,则2S rlS rππ==侧底l =,圆锥的高为r ,轴截面顶角是24590⨯︒=︒.4.(同理科4)当z =100501z z ++的值等于 A .1 B .1- C .i D .i - 【答案】D【解析】33cos sin44z i ππ===+,所以1005031[cos(100)4z z π++=⨯ 33375sin[(100)][cos(50)sin[(50)]1(cos 75sin 75)(cos 4442i i i ππππππ+⨯+⨯+⨯+=++7533sin )1(cos sin )(cos sin )111222i i i i i πππππ++=++++=--+=-.5.(同理科13)若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是.. A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥【答案】D【解析】若正六棱锥底面边长与侧棱长相等,则正六棱锥的侧面构成等边三角形,侧面的六个顶角都为60︒,∴六个顶角的和为360︒,这样一来,六条侧棱在同一个平面内,这是不可能的,故选D .6.(同理科6)在直角三角形中两锐角为A 和B ,则sin sin A B A .有最大值12和最小值0 B .有最大值12,无最小值 C .既无最大值也无最小值 D .有最大值1,但无最小值 【答案】B【解析】1sin sin sin sin()sin 222A B A A A π=-=,∵02A π<<,∴02A π<<,则1sin sin sin 22A B A =有最大值12,无最小值.7.(同理科7)在各项均为正数的等比数列{}n a 中,若569a a =,则3132310log log ...log a a a +++=A .12B .10C .8D .32log 5+ 【答案】B 【解析】5313231031210312103563log log ...log log ...log ...log ()log 9a a a a a a a a a a a +++====103log 310==.8.(同理科8)1()(1)()(0)21x F x f x x =+≠-是偶函数,且()f x 不恒为零,则()f x A .是奇函数 B .是偶函数C .可能是奇函数也可能是偶函数D .不是奇函数也不是偶函数 【答案】A【解析】11()(1)()[(1)]()2121x x F x f x f x --=+-=-+---,又()()F x F x =-,所以()f x是奇函数.9.设直线20x y -=与y 轴的交点为P ,点P 把圆22(1)25x y ++=的直径分为两段,则其长度之比为 A .73或37 B .74或47 C .75或57 D .76或67【答案】A【解析】圆心(1,0)C -,则2PC ==,所以两段,则其长度之比为5252+-或5252-+,即73或37.10.(同理科10)若,a b 是任意实数,且a b >,则 A .22a b > B .1b a< C .lg()0a b -> D .11()()22a b <【答案】D【解析】由于不知道,a b 的正、负,只有D 正确.11.(同理科11)已知集合{}{}cos sin ,02,tan sin E F θθθθπθθθ=<≤≤=<||,那 么E F 为区间A .(,)2ππ B .3(,)44ππ C .3(,)2ππ D .35(,)44ππ【答案】A 【解析】{}5cos sin ,0244E ππθθθθπθθ⎧⎫=<≤≤=<<⎨⎬⎩⎭||.又在区间(,)4ππ内,sin 0θ>,则tan sin θθ<的解集即11cos θ<的解集为(,)2ππ;而在区间5(,)4ππ内,sin 0,cos 0θθ<<,不等式tan sin θθ<即11cos θ>无解.所以E F 为区间为(,)2ππ.12.(同理科12)一动圆与两圆:221x y +=和228120x y x +-+=都外切,则动圆圆心的轨迹为A .抛物线B .圆C .双曲线的一支D .椭圆 【答案】C【解析】圆221x y +=的圆心和半径分别为11(0,0),1C r =,圆228120x y x +-+=的圆心和半径分别为22(4,0),2C r =,设动圆的圆心为(,)C x y ,则由题设可得212(C C C C r -=121)()1r r r r r +-+=-=,又124C C =,由抛物线的定义可知C 正确.13.直线0ax by c ++=在第一、二、三象限,则A .0,0ab bc >>B .0,0ab bc ><C .0,0ab bc <>D .0,0ab bc << 【答案】D【解析】将直线方程变形为a c y x b b =--,由于直线在第一、二、三象限,所以斜率0ab->,截距0cb->,则0,0ab bc <<,故选D .14.(同理科14)如果圆柱轴截面的周长l 为定值,那么圆柱体积的最大值是 A .3()6l π B .3()3l π C .3()4l π D .31()44l π 【答案】A【解析】设圆柱的底面半径和高分别为,r h ,则2(2)r h l +=,22lh r =-,圆柱的体积为 22322l V r h r r πππ==-,对V 求导26(6)V lr r r l r πππ'=-=-,易知当6lr =时,体积取得最大值为3()6l π.15.(同理科15)由100展开式所得的x 的多项式中,系数为有理数的共有 A .50项 B .17项 C .16项 D .15项【答案】B【解析】100100100100100321100100100)()32()r r r r rr r rrr r r T C C x C x -----+===⨯,则23r与10032r -均为有理数,显然r 为6的倍数,而0100r ≤≤,所以0,6,12,...,,90,96r =共17个.16.(同理科16)设,,a b c 都是正数,且346abc==,那么 A .111c a b =+ B .221c a b =+ C .122c a b =+ D .212c a b=+ 【答案】B【解析】设346abck ===,则346log ,log ,log a k b k c k ===,也就是11log 3,k a b= 1log 4,log 6k k c ==,显然2212(log 6)log 36log 9log 4k k k k c a b===+=+.17.(同理科17)同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有A .6种B .9C .11种D .23种 【答案】B【解析】法一:设四人分别为,,,a b c d ,写的卡片分别为,,,A B C D ,由于每个人都要拿别人写的,即不能拿自己写的,故a 有三种拿法,不妨设a 拿了B ,则b 可以拿剩下三张中的任一张,也有三种拿法,c 和d 只能有一种拿法,所以共有33119⨯⨯⨯=种分配方式. 法二:根据题意,列举出所有的结果,1、甲乙互换,丙丁互换;2、甲丙互换,乙丁互换;3、甲丁互换,乙丙互换;4、甲要乙的 乙要丙的丙要丁的丁要甲的;5、甲要乙的乙要丁的丙要甲的丁要丙的;6、甲要丙的丙要乙的乙要丁的丁要甲的;7、甲要丙的丙要丁的乙要丁的丁要甲的;8、甲要丁的丁要乙的乙要丙的丙要甲的;9、甲要丁的丁要丙的乙要甲的丙要乙的.通过列举可以得到共有9种结果.故选B .18.在正方体1111ABCD A BC D -中,,M N 分别为棱1AA 和1B B 的中点(如图).若θ为直线CM 与1D N 所成的角,则sin θ=A .19 B .23 C D 【答案】D【解析】方法一:不妨设正方体边长为2.以D 为原点,1,,DA DC DD 分别为x 轴,y 轴、z 轴建立空间直角坐标,则1(0,0,2),(2,0,1),(0,2,0),(2,2,1)D M C N .可得1(2,2,1),(2,2,1)CM D N =-=-. ∴1111cos ,92CMD N CM D N CM D N⋅<>===-.∴11cos cos ,9CM D N θ=<>=,∴sin θ=. 方法二:取1DD 中点E ,显然1//D N EB 且与CM 相交于O ,则BOC ∠就是所求角或其补角.不妨设正方体边长为2.则33,,22BE CM BO CO BC =====.在BOC ∆中由余弦定理可得1cos 9θ=,∴sin 9θ=.二、填空题:本大题共6小题;每小题3分,共18分.把答案填在题中横线上.19.(同理科19)抛物线24y x =的弦AB 垂直于x 轴,若AB 的长为AB 的距离为. 【答案】2【解析】由题设可得,A B 的横坐标为3x =,焦点为(1,0),焦点到AB 的距离为2.20.(同理科20)在半径为30m 的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截面顶角为120︒.若要光源恰好照亮整个广场,则其高度应为 m (精确到0.1m ).【答案】17.3 【解析】17.3tan 60r h ===︒.21.(同理科21)在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共 种(用数字作答).【答案】4186【解析】32414464464186C C C C +=.22.(同理科22)建造一个容积为38m ,深为2m 的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元. 【答案】1760【解析】设长方形的长为x ,则宽4y x =,由题设可得总造价422()804120R x x=⨯+⨯+⨯ 4320()480x x =++,求导得24320(1)R x'=-,令0R '=德尔2x =时,根据函数的单调性可知水池的总造价最低为1760元.23.(同理科23)设1()42xx f x +=-,则1(0)f-= .【答案】1【解析】由于1(1)420xx f +=-=,所以1(0)1f -=.24.设1a >,则111lim1n n n a a ++→∞-=+ . 【答案】1- 【解析】11111()11limlim 111()1n n n n n n a a a a+++→∞→∞+--==-++.三、解答题:(本大题共5小题,共48分.解答应写出文字说明、演算步骤)25.(本小题满分8分)解方程2lg(426)lg(3)1x x x +---=. 【解】本小题考查对数方程的解法和运算能力.原方程可化为2426lglg103x x x +-=-,2426103x x x +-=-. (3分)解得:1233x x == (6分)检验:3x =30x -=,负数的对数没有意义,所以3x =3x =lg101====右边.所以原方程的根是3x = (8分)26.(本小题满分8分)已知数列22222281828,,,,1335(21)(21)nn n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅+,n S 为其前n 项和,计算得189S =, 234244880,,254981S S S ===.观察上述结果,推测出计算n S 的公式,并用数学归纳法加以证明.【解】本小题考查观察、分析、归纳的能力和数学归纳法.22(21)1()(21)n n S n N n +-=∈+. (2分)证明如下:(Ⅰ)当1n =时,21231839S -==,等式成立. (4分) (Ⅱ)设当n k =时等式成立,即22(21)1(21)k k S k +-=+. (5分)则21222228(1)(21)18(1)(21)(23)(21)(21)(23)k k k k k S S k k k k k +++-+=+=++++++ 222222222[(21)1](23)8(1)(21)(23)(23)8(1)(21)(23)(21)(23)k k k k k k k k k k k +-+++++-+++==++++2222222(21)(23)(21)(23)1(21)(23)(23)k k k k k k k ++-++-==+++. 由此可知,当1n k =+时等式也成立. (7分)根据(Ⅰ)、(Ⅱ)可知,等式对任何n N ∈都成立. (8分)27.(同理科26)(本小题满分10分)如图,111A B C ABC -是直三棱柱,过点11,,A B C 的平面和平面ABC 的交线记作l .(Ⅰ)判定直线11AC 和l 的位置关系,并加以证明; (Ⅱ)若11,4,3,90AA AB BC ABC ===∠=︒,求顶点1A 到直线l 的距离.【解】本小题主要考查空间图形的线面关系、三棱柱的性质、空间想象能力和逻辑推理能力. (Ⅰ)11//l AC .证明如下:根据棱柱的定义知平面111A B C 和平面ABC 平行. 由题设知直线11AC =平面111A B C 平面11A BC ,直线l =平面11A BC 平面ABC .根据两平面平行的性质定理有11//l AC . (4分)(Ⅱ)解法一:过点1A 作1A E l ⊥于E ,则1A E 的长为点1A 到l 的距离. 连结AE .由直棱柱的定义知1A A ⊥平面ABC .∴直线AE 是直线1A E 在平面ABC 上的射影.又l 在平面ABC 上,根据三垂线定理的逆定理有AE l ⊥. 由棱柱的定义知1//AC AC ,又11//l AC ,∵//l AC . (8分)作BD AC ⊥于D ,则BD 是Rt ABC ∆斜边AC 上的高,且BD AE =, 从而431255AB BC AE BD AC ⨯⨯====.在1Rt A AE ∆中,∵111,90AA A AE =∠=︒,∴1135A E ===.故点1A 到直线l 的距离为135. (10分) 解法二:同解法一得11//l AC . (8分)由平行直线的性质定理知CAB ABE ∠=∠,从而有Rt ABC Rt BEA ∆∆∠,::AE BC AB AC =,∴BC ABAE AC⨯=.以下同解法一.28.(同理科27)(本小题满分10分)在面积为1的PMN ∆中,1tan ,tan 22M N ==-.建立适当的坐标系,求出以,M N 为焦点且过点P 的椭圆方程.【解】本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用的能力.解法一:建立直角坐标系如图:以MN 所在直线为x 轴,线段MN 的垂直平分线为y 轴.设所求椭圆方程为22221x y a b+=.分别记,,M N P 点的坐标为(,0),(,0)c c -和00(,)x y . (1分) ∵ tan tan()2N απ=-=,∴由题设知00001(),22(),y x c y x c ⎧=+⎪⎨⎪=-⎩解得005,34,3x c y c ⎧=⎪⎪⎨⎪=⎪⎩即54(,)33P c c . (4分) 在PNM ∆中,2MN c =,MN 上的高为43c .∴142123MNP S c c ∆=⨯⨯=,∴2c =P . (6分)33PM PN ====.∴1()2a PM PN =+=2223b a c =-=. (9分) 故所求的椭圆方程为2241153x y +=. (10分) 解法二:同解法一得:c =P . (6分)1993年普通高等学校招生全国统一考试(理工农医类)数学11 ∵点P 在椭圆上,且222a b c =+22231b +=, 解得23b =或213b =-(舍去). (9分) 222154a b c =+=. 故所求的椭圆方程为2241153x y +=. (10分)29.(同理科28)(本小题满分10分)设复数cos sin (0)z i θθθπ=+<<,441()1z z ω-=+.已知32πωω=<,求θ. 【解】本小题考查复数的基本概念和运算,三角函数式的恒等变形及综合解题能力.441[cos()sin()]1cos(4)sin(4)1[cos sin ]1cos 4sin 4i i i i θθθθωθθθθ--+-----==++++ (2分) 222s i n 22s i n 2c o s 2t a n 2(s i n 4c o s 4)2c o s 22s i n 2c o s 2i i i θθθθθθθθθ+==++;tan 2sin 4cos 4tan 23i ωθθθθ=⋅+==, (6分) 因0θπ<<,故有(1)当tan 2θ=时,得12πθ=或712πθ=,这时都有sin )66i ππω=+,得 arg 62ππω=<,适合题意. (10分)(2)当tan 2θ=512πθ=或1112θπ=,这时都有1111sin )366i ππω=+,得11arg 62ππω=>,不适合题意,舍去. 综合(1)、(2)可知512πθ=或1112θπ=. (12分)。
1993年普通高等学校招生全国统一考试数学(理工农医类)(北京、湖北、湖南、云南、海南、贵州等省市用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至9页,共150分.考试时间120分钟.第Ⅰ卷(选择题共68分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共17小题;每小题4分,共68分.在每小题给出的四个选项中,只有一项是符合题目要求的1.函数()sin cos f x x x =+的最小正周期是A .2πB .π22C .πD .4π 【答案】A【解析】()sin cos )4f x x x x π=+=+,所以周期221T ππ==.2.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为 A .23B .23C .26D .2【答案】C【解析】由题设23,2a cc ==,解得a =2c e a ===.3.和直线3450x y -+=关于x 轴对称的直线的方程为A .3450x y +-=B .3450x y ++=C .3450x y -+-=D .3450x y -++=【答案】B 【解析】设出所求对称直线上的点的坐标,求出关于x 轴的对称点坐标,代入已知直线方程,即可.设所求对称直线的点的坐标(,)x y ,关于x 轴的对称点的坐标(,)x y -在已知的直线上,所以所求对称直线方程为:3450x y ++=.点评:本题是基础题,考查直线关于直线的对称直线方程的求法,考查计算能力,常考题型,注意特殊直线为对称轴的情况,化简解题过程.4.极坐标方程θρcos 534-=所表示的曲线是A .焦点到准线距离为54的椭圆B .焦点到准线距离为54的双曲线右支C .焦点到准线距离为34的椭圆D .焦点到准线距离为34的双曲线右支【答案】B【解析】443535cos 1cos 3ρθθ==--,而1cos ep e ρθ=-,所以54,35e p ==.5.53x y =在[1,1]-上是A .增函数且是奇函数B .增函数且是偶函数C .减函数且是奇函数D .减函数且是偶函数 【答案】A【解析】35y x ==A 正确.6.5215lim 22+--∞→n n n n 的值为A .51-B .25- C .51 D .25 【答案】D【解析】222215515lim lim 152522n n n n n n n n→∞→∞--==-+-+.7.集合{|}{|}2442k k M x x k Z N x x k Z ππππ==+∈==+∈,,,,则 A .M N = B .N M ⊃ C .N M ⊂ D .M N =∅【答案】C【解析】由于212{|,},{|,}44k k M x x k Z N x x k Z ππ++==∈==∈,21k +可以取所有的奇数,而2k +可以取所有的整数,所以N M ⊂.8.sin 20cos70sin10sin50︒︒+︒︒的值是 A .41 B .23 C .21D .43【答案】A【解析】1sin 20cos70sin10sin 50[sin(2070)sin(2070)]2︒︒+︒︒=︒+︒+︒-︒ 111[cos(1050)cos(1050)](sin 90sin 50)(cos60cos 40)222-︒+︒-︒-︒=︒-︒-︒-︒ 1111(1sin 50)(sin 50)2224=-︒--︒=.9.参数方程cos sin 221(1sin )2x y θθθ⎧=+⎪⎪⎨⎪=+⎪⎩ ()πθ20<<表示A .双曲线的一支,这支过点1(1,)2 B .抛物线的一部分,这部分过1(1,)2C .双曲线的一支,这支过点1(1,)2-D .抛物线的一部分,这部分过1(1,)2- 【答案】B【解析】由题设可知cossin,[0,222x x θθ=+∈,且21sin x θ=+,则2sin 1x θ=-,所以2211(11),22y x x x =+-=∈,显然参数方程表示抛物线的一部分,这部分过1(1,)2.10.(同全国1理科10)若,a b 是任意实数,且a b >,则A .22a b > B .1<a b C .lg()0a b -> D .ba ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛212111.(同全国1理科11)一动圆与两圆221x y +=和228120x y x +-+=都外切,则动圆圆心轨迹为A .圆B 椭圆.C .双曲线的一支D .抛物线12.(同全国1理科12)圆柱轴截面的周长l 为定值,那么圆柱体积的最大值是 A .3()6l π B .31()92l π C .3()4lπ D .32()4l π13.451)(1)x -展开式中4x 的系数为A .40-B .10C .40D .45 【答案】D【解析】41)中02,,x x x 的系数分别为420444,,C C C ,在5(1)x -中对应的432,,x x x 123555,,C C C --,则展开式中4x 的系数为412203454545()()45C C C C C C -++-=.14.直角梯形的一个内角为45︒,下底长为上底长的23,这个梯形绕下底所在的直线旋转一周所成的旋转体的全面积为(5π+,则旋转体的体积为A .2πB .43+ C .53+ D .π37【答案】D【解析】旋转体是一个圆柱与一个圆锥的简单组合体.这个几何体的面积是一个圆(以直角梯形的高为半径)+一个长方形(圆柱的侧面展开)+一个扇形的面积(圆锥的侧面).设直角梯形的上底长为x ,则下底为32x ,由题设可得直角梯形的高3122h x x x =-=,x ,全面积为2111()(2)222x x x x πππ+⨯⨯+⨯25(24x x π⨯=,即2(5x ππ=+,2x =. 旋转体的体积为322111177()()2322243x x x x x πππ⨯+⨯==.15.已知128,,...,a a a 为各项都大于零的等比数列,公式1q ≠,则 A .1845a a a a +>+ B .1845a a a a +<+C .1845a a a a +=+D .18a a +和45a a +的大小关系不能由已知条件确定 【答案】A【解析】题目要求比较18a a +和45a a +的大小.由于73434184511111()()(1)(1)a a a a a a q a q a q a q q +-+=+-+=--,又10a >,且1q ≠,所以3(1)q -与4(1)q -同号,所以1845()0a a a a +-+>,即1845a a a a +>+.16.设有如下三个命题:甲:相交两直线,l m 都在平面α内,并且都不在平面β内. 乙:,l m 之中至少有一条与β相交. 丙:α与β相交. 当甲成立时A .乙是丙的充分而不必要的条件B .乙是丙的必要而不充分的条件C .乙是丙的充分且必要的条件D .乙既不是丙的充分条件又不是丙的必要条件 【答案】C【解析】分析:判断乙是丙的什么条件,即看乙=>丙、丙=>乙是否成立.当乙成立时,即“,l m 之中至少有一条与β相交”,则平面α与β至少有一个公共点,故α与β相交;反之丙成立时,即“α与β相交”,则,l m 之中至少有一条与β相交,故乙成立.故选C .点评:本题考查空间两条直线、两个平面的位置关系判断、充要条件的判断,考查逻辑推理能力.17.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有A .6种B .9种C .11种D .23种 【答案】B【解析】分三类:第一格填2,则第二格有13A ,第三、四格自动对号入座,不能自由排列;第一格填3,则第三格有13A ,第一、四格自动对号入座,不能自由排列;第一格填4,则第撕格有13A ,第二、三格自动对号入座,不能自由排列;共计有1339A =.第Ⅱ卷(非选择题共82分)注意事项:1.第Ⅱ卷6页,用钢笔或圆珠笔直接答在试题卷中,不要在答题卡上填涂. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题;每小题4分,共24分.把答案填在题中横线上.18.11sin(arccosarccos )23+= . 【答案】6322+ 【解析】设11arccos,arccos 23αβ==,则11cos ,cos 23αβ==,有sin αβ==,所以11sin(arccos arccos )sin()23αβ+=+=.19.若双曲线2222194x y k k-=与圆221x y +=没有公共点,则实数k 的取值范围为 .【答案】13k k ⎧⎫>⎨⎬⎩⎭|【解析】双曲线的焦点在x 上,顶点坐标为(3,0)k ±,圆的圆心坐标为在原点,半径为1,由题设可知31k >,所以13k k ⎧⎫>⎨⎬⎩⎭|.20.从1,2,...,10这十个数中取出四个数,使它们的和为奇数,共有 种取法(用 数字作答).【答案】100【解析】根据题意,将这10个数分为奇数与偶数两个组,每组各5个数;若取出的四个数的和为奇数,则取出的四个数必有1个或3个奇数.若有1个奇数时,有135550C C =种取法,若有3个奇数时,有135550C C =种取法,故符合题意的取法共100种取法.21.(同全国1理科23)设1()42xx f x +=+,则1(0)f-= .22.(同全国1理科24)建造一个容积为38m ,深为2m 的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元.23.如图,ABCD 是正方形,E 是AB 的中点,如将DAE ∆和CBE ∆分别沿虚线DE 和CE 折起,使AE 与BE 重合,记A 与B 重合后的点为P ,则面PCD 与面ECD 所成的二面角为 度.【答案】30【解析】不妨设正方形的边长为2,取CD 的中点M ,连接,PM EM ,∵PD PC =,∴PM CD ⊥,∵ED EC =,∴EM CD ⊥.故PME ∠即为面PCD 与面ECD 所成二面角的平面角.在PME ∆中:1,2PE PM EM ===,2223cos 22PM EM PE PME PM EM +-∠==⋅ ∴30PME ∠=︒,故答案为30.三、解答题:本大题共5小题;共58分.解题应写出文字说明、演算步骤.24.(本小题满分10分)已知1()log (0,1)1axf x a a x+=>≠-. (Ⅰ)求()f x 的定义域;(Ⅱ)判断()f x 的奇偶性并予以证明; (Ⅲ)求使()0f x >的x 取值范围.【解】本小题考查函数的奇偶性、对数函数的性质、不等式的性质和解法等基本知识及运算能力.满分12分. (Ⅰ)由对数函数的定义知011>-+xx. ——1分 如果⎩⎨⎧>->+0101x x ,则11x -<<;如果⎩⎨⎧<-<+0101x x ,则不等式组无解. ——4分故()f x 的定义域为(1,1)-. (Ⅱ)∵()()x f xxx x x f a a-=-+-=+-=-11log 11log , ∴()f x 为奇函数. ——6分 (Ⅲ)(ⅰ)对1a >,1log 01ax x +>-等价于111>-+xx, ① 而从(Ⅰ)知10x ->,故①等价于11x x +>-,又等价于0x >. 故对1a >,当(0,1)x ∈时有()0f x >. ——9分 (ⅱ)对01a <<,1log 01ax x +>-等价于1011xx+<<-. ②而从(Ⅰ)知10x ->,故②等价于10x -<<.故对01a <<,当(1,0)x ∈-时有()0f x >. ——12分25.(同全国1文科26,分值不同)(本小题满分12分)已知数列()()2222228182813352121nn n ⋅⋅⋅⋅-+,,,,.n S 为其前n 项和.计算得189S =, 234244880254981S S S ===,,. 观察上述结果,推测出计算n S 的公式,并用数学归纳法加以证明. 【解】本小题考查观察、分析、归纳的能力和数学归纳法.22(21)1()(21)n n S n N n +-=∈+. (4分) 证明如下:(Ⅰ)当1n =时,21231839S -==,等式成立. (6分) (Ⅱ)设当n k =时等式成立,即22(21)1(21)k k S k +-=+. (7分) 则21222228(1)(21)18(1)(21)(23)(21)(21)(23)k k k k k S S k k k k k +++-+=+=++++++222222222[(21)1](23)8(1)(21)(23)(23)8(1)(21)(23)(21)(23)k k k k k k k k k k k +-+++++-+++==++++2222222(21)(23)(21)(23)1(21)(23)(23)k k k k k k k ++-++-==+++. 由此可知,当1n k =+时等式也成立. (9分)根据(Ⅰ)、(Ⅱ)可知,等式对任何n N ∈都成立. (12分)26.(本小题满分12分)已知:平面α平面β=直线a .,αβ同垂直于平面γ,又同平行于直线b .求证:(Ⅰ)a γ⊥;(Ⅱ)b γ⊥.【解】本小题考查直线与平面的平行、垂直和两平面垂直的基础知识,及空间想象能力和逻辑思维能力.满分12分. 证法一:(Ⅰ)设,AB AC αγβγ==.在γ内任取一点P 并于γ内作直线,PM AB PN AC ⊥⊥. ——1分∵ γα⊥,∴PM α⊥. 而a α⊂,∴PM a ⊥.同理PN a ⊥. ——4分 又,PM PN γγ⊂⊂,∴a γ⊥. ——6分(Ⅱ)于a 上任取点Q ,过b 与Q 作一平面交α于直线1a ,交β于直线2a .——7分∵//b α,∴1//b a .同理2//b a . ——8分 ∵12,a a 同过Q 且平行于b ,∴12,a a 重合. 又12,a a αβ⊂⊂,∴12,a a 都是,αβ的交线,即都重合于a . ——10分 ∵1//b a ,∴//b a .而a γ⊥,∴b γ⊥. ——12分 注:在第Ⅱ部分未证明//b a 而直接断定b γ⊥的,该部分不给分. 证法二:(Ⅰ)在a 上任取一点P ,过P 作直线a γ'⊥. ——1分∵,P αγα⊥∈,∴a α'⊂.同理a β'⊂. ——3分 可见a '是,αβ的交线.因而a '重合于a . ——5分又a γ'⊥,∴a γ⊥. ——6分(Ⅱ)于α内任取不在a 上的一点,过b 和该点作平面与α交于直线c .同法过b 作平面与β交于直线d . ——7分∵//,//b b αβ.∴//,//b c b d . ——8分 又,c d ββ⊄⊂,可见c 与d 不重合.因而//c d .于是//c β. ——9分 ∵//,,c c a βααβ⊂=,∴//c a . ——10分∵//,//b c a c ,b 与a 不重合(,b a αα⊄⊂,∴//b a . ——11分 而a γ⊥,∴b γ⊥. ——12分 注:在第Ⅱ部分未证明//b a 而直接断定b γ⊥的,该部分不给分.27.(同全国1理科27,解法不同,分值不同)(本小题满分12分)在面积为1的PMN ∆中,1tan ,tan 22PMN MNP ==-.建立适当的坐标系,求以,M N 为焦点且过点P 的椭圆方程.【解】本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用能力.满分12分.解法一:如图,以MN 所在直线为x 轴,线段MN 的垂 直平分线为y 轴建立直角坐标系.设以,M N 为焦点且过点P 的椭圆方程为12222=+by a x ,焦点为(,0),(,0)M c N c -. ——1分由1tan ,tan tan()22PMN N απ==-=,得 直线PM 和直线PN 的方程分别为1()2y x c =+和2()y x c =-.将此二方程联立,解得54,33x c y c ==,即P 点坐标为54(,)33c c . ——5分在MPN ∆中,2MN c =,MN 上的高为点P 的纵坐标,故.34342212c c c S MNP =⋅⋅=∆ 由题设条件1MNP S ∆=,∴c =P点坐标为. ——7分 由两点间的距离公式()3152332236352222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=++=y c x PM , ()315332236352222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=+-=y c x PN . 得 ()21521=+=PN PM a . ——10分 又222153344b ac =-=-=, 故所求椭圆方程为1315422=+y x . ——12分 解法二:同解法一得23=c ,P点的坐标为. ——7分 ∵ 点P 在椭圆上,且222a b c =+22231b +=. 化简得423830b b --=.解得23b =或213b =-(舍去). ——10分 又222315344a b c =+=+=.故所求椭圆方程为1315422=+y x . ——12分 解法三:同解法一建立坐标系. ——1分∵P PMN α∠=∠-∠,∴ 12tan()tan 32tan 11tan()tan 4122N M P N M ππ---===+-+⨯.∴P ∠为锐角.∴34sin ,cos 55P P ==. 而1sin 12MNP S PM PN P ∆=⋅=,∴ 103PM PN ⋅=. ——4分 ∵2,2PM PN a MN c +==,由余弦定理,222(2)2cos c PM PN PM PN P =+-⋅2()2(1c o s)P M P N P M P N P =+-⋅+ 2104(2)2235a =-⋅-⋅, ∴223c a =-,即23b =. ——7分又sin M =sin N =,由正弦定理,sin sin sin PM PN MN N M P ==, ∴PMN MN PN PM sin sin sin =++.即53251522ca =+,∴a =. ——10分 ∴222235a a b c =+=+.∴2154a =.故所求椭圆方程为1315422=+y x . ——12分28.(同全国1理科28,解法不同)(本小题满分12分)设复数441()cos sin (0),1z z i z θθθπω-=+<<=+,并且2πωω=<,求θ.【解】本小题考查复数的基本概念和运算,三角函数式的恒等变形及综合解题能力.满分12分. 解法一:()()[]()()441cos sin 1cos 4sin 41cos 4sin 41cos sin i i i i θθθθωθθθθ--+-⎡⎤----⎣⎦==++++ ——2分()222sin 22sin 2cos 2tan2sin 4cos 42cos 22sin 2cos 2i i i θθθθθθθθθ+==++. ——5分tan 2sin 4cos 4tan 2i ωθθθθ=⋅+==,tan2θ=±. ——6分 因πθ<<0,故有(ⅰ)当tan23θ=12πθ=或127πθ=,这时都有 ⎪⎭⎫⎝⎛+=6sin 6cos 33ππωi , 得26arg ππω<=,适合题意. ——10分(ⅱ)当tan2θ=时,得125πθ=或1211πθ=,这时都有 ⎪⎭⎫ ⎝⎛+=611sin 611cos 33ππωi ,得2611arg ππω>=,不适合题意,舍去. 综合(ⅰ)、(ⅱ)知12πθ=或127πθ=. ——2分解法二:θθ4sin 4cos 4i z +=.记θϕ4=,得()()ϕϕsin cos 44i z z-==.ϕϕϕϕωsin cos 1sin cos 1i i +++-=——2分()()sin sin cos tan sin cos 1cos 2i i ϕϕϕϕϕϕϕ=+=++. ——5分∵33=ω,2arg πω<,∴tan 23tan sin 0,2tan cos 0,2ϕϕϕϕϕ⎧=⎪⎪⎪⋅>⎨⎪⎪⋅≥⎪⎩——8分当①成立时,②恒成立,所以θ应满足(ⅰ)0tan2cos 40θπθθ<<⎧⎪⎪=⎨⎪≥⎪⎩,或(ⅱ)0tan2cos 40θπθθ<<⎧⎪⎪=⎨⎪≤⎪⎩——10分解(ⅰ)得12πθ=或127πθ=.(ⅱ)无解.综合(ⅰ)、(ⅱ)12πθ=或127πθ=. ——12分。
1993年全国高考数学试题(理工农医类)一、选择题: 本大题共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为32D. 2 2.函数221tan 21tan 2x y x-=+的最小正周期是 A. 4π B. 2π C. π D. 2π3.时,圆锥的轴截面顶角是A. 45B. 60C. 90D. 1204.当z =时,100501z z ++的值等于 A. 1 B. 1- C. i D. i -5.直线(0,0)bx ay ab a b +=<<的倾斜角是 A. arctan()b a - B. arctan()a b - C. arctan b a π- D. arctan a bπ- 6.在直角三角形中两锐角为A 和B ,则sin sin A BA.有最大值12和最小值0B. 有最大值12,但无最小值 C. 既无最大值也无最小值 D. 有最大值1,但无最小值7.在各项均为正数的等比数列{}n a 中,若569a a =,则3132log log a a +++310log a A. 12 B. 10 C. 8 D. 32log 5+8.已知函数2()(1)()21x F x f x =+-,(0)x ≠是偶函数,且)(x f 不恒等于零,则)(x f A.是奇函数 B.是偶函数 C.可能是奇函数也可能是偶函数 D.不是奇函数也不偶函数9.曲线的参数方程为22321x t y t ⎧=+⎨=-⎩,(05)t ≤≤,则曲线是 A.线段 B.双曲线的一支 C.圆弧 D.射线10.若,a b 是任意实数,且a b >,则A. 22a b >B. 1b a< C. lg()0a b -> D. 11()()22a b < 11.已知集合{}cos sin ,02E θθθθπ=<≤≤,{}tan sin F θθθ=<,那么E F 为区间 A. (,)2ππ B. 3(,)44ππ C. 3(,)2ππ D. 35(,)44ππ 12.一动圆与两圆: 221x y +=和228120x y x +-+=都外切,则动圆圆心的轨迹为A.抛物线B.圆C.双曲线的一支D.椭圆13.若正棱锥的底面边长与侧棱长相等,则该棱锥一点不是A.三棱锥B.四棱锥C.五棱锥D.六棱锥14.如果圆柱轴截面的周长l 为定值,那么圆柱体积的最大值是 A. 3()6l π B. 3()3l π C. 3()4l π D. 31()44l π15.由100展开所得的x 的多项式中,系数为有理数的共有A.50项B.17项C.16项D.15项16.设,,a b c 都是正数,且346a b c ==,那么 A. 111c a b =+ B. 221c a b =+ C. 122c a b =+ D. 212c a b=+ 17同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有A.6种B.9种C.11种D.23种18.已知异面直线a 与b 所成的角为50,P 为空间一定点,则过点P 且与,a b 所成的角都是30的直线有且仅有A.1条B.2条C.3条D.4条二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.19.抛物线24y x =的弦AB 垂直与x 轴,若AB 的长为AB 的距离为 .20.在半径为30cm 的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆锥形,且其轴截面顶角为120.若要光源恰好照亮整个广场,则其高度应为m (精确到0.1m ).21.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共 种(用数字作答).22.建造一个容积为38m ,深为2m 的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元.23.设1()42x x f x +=-,则1(0)f -= .24.已知等差数列{}n a 的公差0d >,首项10a >,111n n i i i S a a =+=∑,则lim n n S →∞= . 三、解答题:本大题共5小题;共48分.解答应写出文字说明、演算步骤.25.解不等式12212log (5)log 0x x+-+>. 26.如图,111A B C ABC -是直三棱柱,过点11,,A B C 的平面和平面ABC 的交线记作l .(Ⅰ)判定直线11A C 和l 的位置关系,并加以证明;(Ⅱ)若11A A =,4AB =,3BC =,90ABC ∠=,求顶点1A 到直线l 的距离.27.在面积1为的PMN ∆中,1tan 2M =,tan 2N =-,建立适当的坐标系,求以M , N 为焦点且过P 的椭圆方程.28.设复数cos sin z i θθ=+,0θπ<<,441()1z z ω-=+.已知3ω=,2arc π<,求θ. 29.已知关于x 的实系数二次方程20x ax b ++=有两个实数根,αβ.证明: (Ⅰ)如果2α<,2β<,那么24b α<+,且4b <;(Ⅱ)如果24b α<+,且4b <,那么2α<,2β<.A B C E F D A 1 B 1 C 1。
有关高考“数学”试卷的例题
有关高考“数学”试卷的例题如下:
一、选择题
已知集合A={x∣x2−4x+3<0},B={x∣log2(x−1)<1}, 则A∩B=()
A.(1,3)
B.(2,3)
C.(1,2)
D.(3,4)
二、填空题
函数f(x)=sin(2x+6π)在区间[0,2π]上的最小值为_______。
三、解答题
已知函数f(x)=lnx+x1。
(1) 求函数f(x)的单调区间;
(2) 若对任意x∈(0,+∞),不等式f(x)>k恒成立,求实数k的取值范围。
四、选做题(考生从以下两题中任选一题作答,如果两题都做,则只按第一题计分。
)
1.【坐标系与参数方程选讲】
在直角坐标系xOy中,直线l的参数方程为{x=1+22ty=22t(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ。
(1) 求曲线C的直角坐标方程;
(2) 设直线l与曲线C交于点A,B,求∣AB∣。
2.【不等式选讲】
已知函数f(x)=∣x−a∣+∣x+2∣。
(1) 当a=−1时,求不等式f(x)≤6的解集;
(2) 若不等式f(x)≤6的解集包含[−2,3],求实数a的取值范围。
高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
1993年普通高等数学招生全国统一考试(全国Ⅱ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式: 如果事件A 、B 互斥,那么)()()(B P A P B A P +=+如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率:()(1)k kn k n n P k C P P -=-球是表面积公式24R S π=其中R 表示球的半径 球的体积公式334R V π=其中R 表示球的半径第Ⅰ卷(选择题共68分)一、选择题:本大题共17小题,每小题4分,共68分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()sin cos f x x x =+的最小正周期是A .2πB. C .πD .4π 2.如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为A .32BCD .23.和直线3450x y -+=关于x 轴对称的直线的方程为 A .3450x y +-= B .3450x y ++=C .3450x y -+-=D .3450x y -++=4.极坐标方程435cos ρθ=-所表示的曲线是A .焦点到准线距离为45的椭圆B .焦点到准线距离为45的双曲线右支C .焦点到准线距离为43的椭圆D .焦点到准线距离为43的双曲线右支5.35y x =在[1,1]-上是A .增函数且是奇函数B .增函数且是偶函数C .减函数且是奇函数D .减函数且是偶函数6.2251lim 25n n n n →∞--+的值为A .15-B .52-C .15 D .527.集合{|,}24k M x x k Z ππ==+∈,{|,}42k N x x k Z ππ==+∈,则A .M N =B .M N ⊃C .M N ⊂D .M N =∅I8.sin 20cos70sin10sin 50+oooo的值是A .14BC .12D9.参数方程|cos sin |22(02)1(1sin )2x y θθθπθ⎧=+⎪⎪<<⎨⎪=+⎪⎩表示A .双曲线的一支,这支过点1(1,)2 B .抛物线的一部分,这部分过点1(1,)2C .双曲线的一支,这支过点1(1,)2-D .抛物线的一部分,这部分过点1(1,)2- 10.若a 、b 是任意实数,且a b >,则A .22a b >B .1ba<C .lg()0a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭11.一动圆与两圆221x y +=和228120x y x +-+=都外切,则动圆圆心轨迹为A .圆B .椭圆C .双曲线的一支D .抛物线12.圆柱轴截面的周长l 为定值,那么圆柱体积的最大值是A .36l π⎛⎫⎪⎝⎭B .3192l π⎛⎫ ⎪⎝⎭C .34l π⎛⎫⎪⎝⎭D .324l π⎛⎫⎪⎝⎭13.451)(1)x -展开式中4x 的系数为A .40-B .10C .40D .4514.直角梯形的一个内角为45°,下底长为上底长的32,这个梯形绕下底所在的直线旋转一周所成的旋转体的全面积为(5π+,则旋转体的体积为A .2πB C D .73π15.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1q ≠,则A .1845a a a a +>+B .1845a a a a +<+C .1845a a a a +=+D .18a a +与45a a +的大小关系不能确定16.设有如下三个命题:甲:相交两直线l ,m 都在平面α内,并且都不在平面β内.乙:l ,m 之中至少有一条与β相交.丙:α与β相交.当甲成立时 A .乙是丙的充分而不必要的条件 B .乙是丙的必要而不充分的条件C .乙是丙的充分且必要的条件D .乙既不是丙的充分条件又不是丙的必要条件17.将数字1,2,3,4填入1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有 A .6种B .9种C .11种D .23种第Ⅱ卷(非选择题共82分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.18.11sin(arccosarccos )23+= . 19.若双曲线2222194x y k k-=与圆221x y +=没有公共点,则实数k 的取值范围为 . 20.从1,2,…,10这十个数中取出四个数,使它们的和为奇数,共有 种取法.(用数字作答) 21.设1()42xx f x +=-,则1(0)f-= .22.建造一个容积为38m ,深为2m 的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元.23.如图,ABCD 是正方形,E 是AB 的中点,如将△DAE 和△CBE 分别沿虚线DE 和CE 折起,使AE 与BE 重合,记A 与B 重合后的点为P ,则面PCD 与面ECD 所成的二面角为 度.三、解答题:本大题共6小题,共58分,解答应写出文字说明,证明过程或演算步骤.24.(本小题满分10分)已知1()log (0,1)1a xf x a a x+=>≠-. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)求使()0f x >的x 取值范围.25.(本小题满分12分)已知数列228113⋅⋅,228235⋅⋅,…,228(21)(21)n n n -+,….n S 为其前n 项和.计算得189S =,22425S =,34849S =,48081S =. 观察上述结果,推测出计算n S 的公式,并用数学归纳法加以证明.26.(本小题满分12分)已知平面αI 平面β=直线a .,αβ同垂直于平面γ,又同平行于直线b .求证: (1)a γ⊥;(2)b γ⊥.27.(本小题满分12分)在面积为1的△PMN 中,1tan 2PMN ∠=,tan 2MNP ∠=-.建立ECD PABC D E βαγab适当的坐标系,求以M ,N 为焦点且过点P 的椭圆方程.28.(本小题满分12分)设复数cos sin (0)z i θθθπ=+<<,441()1z z ω-=+,并且||ω=,arg 2πω<,求θ.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧13. 14. 15. 16. 三、解答题 17.1993年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:1.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题4分,满分68分.(1)A (2)C (3)B (4)B (5)A (6)D (7)C (8)A (9)B (10)D (11)C (12)A (13)D (14)D (15)A (16)C (17)B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.(18)6322+ (19){k ||k |>31} (20)100 (21)1 (22)1760 (23)30 三、解答题(24)本小题考查函数的奇偶性、对数函数的性质、不等式的性质和解法等基本知识及运算能力.满分12分.M NP解 (Ⅰ)由对数函数的定义知011>-+xx. ——1分 如果⎩⎨⎧>->+0101x x ,则-1<x <1;如果⎩⎨⎧<-<+0101x x ,则不等式组无解. ——4分故f (x )的定义域为(-1,1)(Ⅱ) ∵ ()()x f x xx x x f a a-=-+-=+-=-11log 11log ,∴ f (x )为奇函数. ——6分 (Ⅲ)(ⅰ)对a >1,log a 011>-+x x 等价于111>-+xx, ①而从(Ⅰ)知1-x >0,故①等价于1+x >1-x ,又等价于x >0.故对a >1,当x ∈(0,1)时有f (x )>0. ——9分(ⅱ)对0<a <1,log a011>-+x x 等价于0<111<-+xx. ② 而从(Ⅰ)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0. ——12分(25)本小题考查观察、分析、归纳的能力和数学归纳法.满分10分.解 ()()()N n n n S n ∈+-+=2212112. ——4分 证明如下:(Ⅰ)当n =1时,98313221=-=S ,等式成立. ——6分 (Ⅱ)设当n =k 时等式成立,即()().1211222+-+=k k S k ——7分 则()()()221321218++++=+k k k S S k k ()()()()()222232121812112+++++-+=k k k k k ()()()()()222232121832]112[+++++-+=k k k k k ()()()()()()22222321218323212+++++-++=k k k k k k ()()()()()222223212123212+++-++=k k k k k ()()2232132+-+=k k ()()22]112[1]112[++-++=k k 由此可知,当n =k +1时等式也成立. ——9分 根据(Ⅰ)(Ⅱ)可知,等式对任何n ∈N 都成立. ——10分 (26)本小题考查直线与平面的平行、垂直和两平面垂直的基础知识,及空间想象能力和逻辑思维能力.满分12分.证法一(Ⅰ)设α∩γ=AB ,β∩γ=AC .在γ内任取一点P 并于γ内作直线PM ⊥AB ,PN ⊥AC . ——1分 ∵ γ⊥α,∴ PM ⊥α.而 a ⊂α,∴ PM ⊥a .同理PN ⊥a . ——4分 又 PM ⊂γ,PN ⊂γ,∴ a ⊥γ. ——6分(Ⅱ)于a 上任取点Q ,过b 与Q 作一平面交α于直线a 1,交β于直线a 2.—7分∵ b ∥α,∴ b ∥a 1.同理b ∥a 2. ——8分 ∵ a 1,a 2同过Q 且平行于b ,∵ a 1,a 2重合.又 a 1⊂α,a 2⊂β,∴ a 1,a 2都是α、β的交线,即都重合于a . ——10分 ∵ b ∥a 1,∴ b ∥a .而a ⊥γ,∴ b ⊥γ. ——12分 注:在第Ⅱ部分未证明b ∥a 而直接断定b ⊥γ的,该部分不给分. 证法二(Ⅰ)在a 上任取一点P ,过P 作直线a ′⊥γ. ——1分 ∵ α⊥γ,P ∈α, ∴ a ′⊂α.同理a ′⊂β. ——3分 可见a ′是α,β的交线.因而a ′重合于a . ——5分 又 a ′⊥γ,∴ a ⊥γ. ——6分(Ⅱ)于α内任取不在a 上的一点,过b 和该点作平面与α交于直线c .同法过b 作平面与β交于直线d ——7分∵ b ∥α,b ∥β.∴ b ∥c ,b ∥d . ——8分 又 c ⊄β,d ⊂β,可见c 与d 不重合.因而c ∥d .于是c ∥β. ——9分 ∵ c ∥β,c ⊂α,α∩β=a ,∴ c ∥a . ——10分 ∵ b ∥c ,a ∥c ,b 与a 不重合(b ⊄α,a ⊂α),∴ b ∥a . ——11分 而 a ⊥γ,∴ b ⊥γ. ——12分 注:在第Ⅱ部分未证明b ∥a 而直接断定b ⊥γ的,该部分不给分.(27)本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用能力.满分12分. 解法一如图,以MN 所在直线为x 轴,MN 的垂直平分线为y 轴建立直角坐标系,设以M ,N 为焦点且过点P 的椭圆方程为12222=+by a x ,焦点为M (-c ,0),N (c ,0). —1分由tg M =21,tg α=tg(π-∠MNP )=2,得直线PM 和直线PN 的方程分别为y =21(x +c )和y =2(x -c ).将此二方程联立,解得x =35c ,y =34c ,即P 点坐标为(35c ,34c ). ——5分在△MNP 中,|MN |=2c ,MN 上的高为点P 的纵坐标,故.34342212c c c S MNP =⋅⋅=∆由题设条件S △MNP =1,∴ c =23,即P 点坐标为⎪⎪⎭⎫ ⎝⎛332635,. ——7分 由两点间的距离公式()3152332236352222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=++=y c x PM , ()315332236352222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=+-=y c x PN .得 ()21521=+=PN PM a . ——10分 又 b 2=a 2-c 2=343415=-,故所求椭圆方程为 1315422=+y x . ——12分 解法二同解法一得23=c ,P 点的坐标为⎪⎪⎭⎫ ⎝⎛332635,. ——7分 ∵ 点P 在椭圆上,且a 2=b 2+c 2.∴13322363522222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛b b .化简得3b 4-8b 2-3=0. 解得b 2=3,或b 2=31-(舍去). ——10分 又 a 2=b 2+c 2=3+41543=.故所求椭圆方程为1315422=+y x . ——12分 解法三同解法一建立坐标系. ——1分∵ ∠P =∠α-∠PMN ,∴ ()()4321212121=⨯+-=-+--=tgMN tg tgM N tg tgP ππ. ∴ ∠P 为锐角.∴ sin P =53,cos P =54.而 S △MNP =21|PM |·|PN |sin P =1,∴ |PM |·|PN |=310. ——4分∵ |PM |+|PN |=2a ,|MN |=2c ,由余弦定理,(2c )2=|PM |2+|PN |2-2|PM |·|PN |cos P =(|PM |+|PN |)2-2|PM |·|PN |(1+cos P )=(2a )2-2·310-2·310·54, ∴ c 2=a 2-3,即b 2=3. ——7分 又 sin M =51,sin N =52,由正弦定理,PMN MPN NPM sin sin sin ==,∴PMNM N PNPM sin sin sin =++.即 53251522ca =+,∴ a =5c . ——10分∴ a 2=b 2+c 2=3+52a .∴ a 2=415.① ② ③ 故所求椭圆方程为1315422=+y x . ——12分 (28)本小题考查复数的基本概念和运算,三角函数式的恒等变形及综合解题能力.满分12分. 解法一()()[][]44sin cos 1sin cos 1θθθθωi i ++-+--=()()θθθθ4sin 4cos 14sin 4cos 1i i ++----=——2分θθθθθθ2cos 2sin 22cos 22cos 2sin 22sin 222i i ++=()θθθ4cos 4sin 2tg i += ——5分 332tg 4cos 4sin 2tg ==+⋅=θθθθωi 332tg ±=θ. ——6分因πθ<<0,故有(ⅰ)当332tg =θ时,得12πθ=或127πθ=,这时都有⎪⎭⎫⎝⎛+=6sin 6cos 33ππωi ,得26arg ππω<=,适合题意. ——10分(ⅱ)当332tg -=θ时,得125πθ=或1211πθ=,这时都有⎪⎭⎫ ⎝⎛+=611sin 611cos 33ππωi , 得2611arg ππω>=,不适合题意,舍去. 综合(ⅰ)、(ⅱ)知12πθ=或127πθ=. ——2分解法二:θθ4sin 4cos 4i z +=.记θϕ4=,得()()ϕϕsin cos 44i z z-==.ϕϕϕϕωsin cos 1sin cos 1i i +++-=. ——2分()ϕϕϕϕcos sin cos 1sin i ++=()ϕϕϕcos sin 2tg i +=. ——5分 ∵ 33=ω,2arg πω<, ∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥⋅>⋅=0cos 2tg 0sin 2tg 332tg ϕϕϕϕϕ ——8分当①成立时,②恒成立,所以θ应满足(ⅰ) ⎪⎪⎩⎪⎪⎨⎧≥=<<04cos 332tg 0θθπθ,或(ⅱ) ⎪⎪⎩⎪⎪⎨⎧≤-=<<04cos 332tg 0θθπθ,——10分解(ⅰ)得12πθ=或127πθ=.(ⅱ)无解.综合(ⅰ)、(ⅱ) 12πθ=或127πθ=. ——12分。
选择题已知集合A = {x | x^2 - 4x + 3 = 0},B = {x | x^2 - 2x - 3 = 0},则A ∩ B = ( )A. {1, 3}B. {-1, 3}C. {1}D. {-1}复数z满足z(1 + i) = 2 - i(其中i为虚数单位),则z = ( )A. 1 + iB. 1 - iC. -1 + iD. -1 - i若函数f(x) = ax^3 + bx^2 + c的导数为f'(x) = 3x^2 + 2x,则a和b的值分别为( )A. a = 1, b = 1B. a = 3, b = 2C. a = 1, b = 0D. a = 3, b = 0下列命题中,正确的是( )A. 平行四边形的对角线相等B. 菱形的对角线互相垂直且平分C. 矩形的对角线互相垂直D. 等腰梯形的对角线互相平分若函数y = f(x)的图象过点(1, 2),则函数y = f(x + 2)的图象必过点( )A. (1, 2)B. (2, 2)C. (3, 2)D. (-1, 2)已知等差数列{an}的前n项和为Sn,若a2 + a5 = 12,则S6 = ( )A. 24B. 36C. 48D. 72填空题已知等比数列{an}的首项a1 = 1,公比q = 2,则a5 = _______。
若函数y = x^2 - 4x + 3在区间[m, m + 1]上的最小值为1,则m = _______。
已知双曲线C: x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)的离心率为2,则C的渐近线方程为_______。
已知圆C的方程为x^2 + y^2 - 4x - 6y + 12 = 0,则圆心C的坐标为_______。
在△ABC中,角A、B、C的对边分别为a、b、c,若b = 2a,B = A + 60°,则A = _______。
函数y = sin(2x + π/6)在区间[0, π/2]上的最大值为_______。
1993年全国普通高等学校招生统一考试上海 物理试题一、(32分)单项选择题。
每小题4分,每小题只有一个正确答案前面的字母填写在题后的方括号内,选对的4分;选错或不答的,得0分;选两个或两个以上的,得0分。
填写在方括号外的字母,不作为选出的答案。
1.以下几个原子核反应中,X 代表α粒子的反应式是( )A. B.X C Be He +→+1269442X Pa Th +→2349123490C. D.X n H H +→+103121X Si P +→301430152.在图电路中已知交流电源电压u=200sin100πt 伏,电阻R=100欧,则电流表和电压表的读数分别为( )A .1.41安,200伏 B. 1.41安,141伏C. 2安,200伏D. 2安,141伏3. 如图所示,U 形管封闭端内有一部分气体被水银封住,已知,大气压强为P 0,则被封部分气体的 P (以Hg 为单位)为( )A .P 0+h 2B .P 0-h 1C .P 0-(h 1+h 2 )D .P 0+h 2-h 14.下列关于物体受静摩擦力作用的叙述中,正确的是( )A.静摩擦力的方向一定与物体的运动方向相反B. 静摩擦力的方向不可能与物体的运动方向相同C. 静摩擦力的方向可能与物体的运动方向垂直D. 静止物体所受静摩擦力一定为零5.如图所示,两根细线挂着两个质量相同的小球A 、B ,上、下两根细线中的拉力分别是T A 、T B .现在使A 、B 带同种电荷,此时,上、下两根细线中的拉力分别是T A /、T B /,则( )A .T A /=T A ,TB /> T BB .T A /=T A ,T B /<T BC .T A /<T A ,T B /> T BD .T A />T A ,T B /<T B6.如图所示,半径相同的两个金属小球A 、B 带有电量相等的电荷,相隔一定距离,两球之间的相互吸引力的大小是F 。
高考数学普通高等学校招生全国统一考试93高考数学普通高等学校招生全国统一考试93本试卷分第 I卷(选择题)和第 II卷(非选择题)两部分,第 I卷 1 至2 页,第 II 卷 3 至 9 页,共 150 分.考试时间 120 分钟.考试结束.将本试卷和答题卡一并交回.第 I 卷(选择题共 40 分)注意事项:1.答第 I卷前,考生务必将自己的姓名.准考证号.考试科目写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试卷上.一.本大题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)在复平面内,复数对应的点位于(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限(2)若 a 与 b-c 都是非零向量,则〝a·b=a·c〞是〝a⊥(b-c)〞的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(3)在 1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为(A)36 个(B)24 个(C)18 个(D)6 个(4)平面的斜线 AB 交于点 B,过定点 A 的动直线与 AB 垂直,且交于点 C,则动点 C 的轨迹是(A)一条直线 (B)一个圆(C)一个椭圆 (D)双曲线的一支(5)已知是上的增函数,那么 a 的取值范围是(A)(0,1) (B)(0,)(C),(D)(6)在下列四个函数中,满足性质:〝对于区间(1,2)上的任意,( ).恒成立〞的只有(A) (B)__61501;(C) (D)(7)设,则等于(A)(B)(C) (D)(8)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口A.B.C 的机动车辆数如图所示,图中分别表示该时段单位时间通过路段 ,的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则(A) __61502; __61502;(B)(C)__61502;(D)普通高等学校招生全国统一考试数学(文史类) (北京卷)第II 卷(共 110 分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共 6 小题,每小题 5 分,共 30 分.把答案填在题中横线上.(9)的值等于.(10)在的展开式中, 的系数是.(用数字作答)(11)若三点 A(2,2),B(a,0),C(0,b)(0 ,b)(ab0)共线,则,的值等于(12)在△ABC 中,若 C B A sinA: sinB: sinC =5:7:8. 则∠B 的大小是(13)已知点 P(_,y)的坐标满足条件点O为坐标原点,那么PO 的最小值等于,最大值等于.(14)已知A.B.C三点在球心为 O,半径为R 的球面上,AC⊥BC,且 AB=R,那么 A.B 两点间的球面距离为球心到平面 ABC 的距离为.. 三.解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题共 12 分)已知函数.(Ⅰ)求的定义域;(Ⅱ)设的第四象限的角,且,求的值(16)(本小题共 13 分)已知函数在点处取得极大值5,其导函数的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)的值; (Ⅱ)a,b,c 的值.(17)(本小题共 14 分)如图,在底面为平行四边形的四棱锥 P—ABCD 中,AB⊥AC,PA⊥平面 ABCD,且PA=PB,点 E 是 PD 的中点.(Ⅰ)求证:AC⊥PB;(Ⅱ)求证:PB//平面 AEC;(Ⅲ)求二面角 E—AC—B 的大小.(18)(本小题共 13 分)某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是 a,b,c,且三门课程考试是否及格相互之间没有影响.求:(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由) (19)(本小题共 14 分)已知点 M(-2,0),N(2,0),动点 P满足条件PM -PN =,记动点 P的轨迹为 W.(Ⅰ)求 W 的方程;(Ⅱ)若 A,B 是W上的不同两点,O 是坐标原点,求.的最小值.(20)(本小题共 14 分)在数列中,若 a1,a2 是正整数,且,3,4,5,…,则称为〝绝对差数列〞.(Ⅰ)举出一个前五项不为零的〝绝对差数列〞(只要求写出前十项); (Ⅱ)若〝绝对差数列〞中,,,数列满足n=1,2,3,…,分虽判断当时, 与的极限是否存在,如果存在,求出其极限值;(Ⅲ)证明:任何〝绝对差数列〞中总含有无穷多个为零的项.数学(理工类)(北京卷)参考答案一.选择题(本大题共 8 小题,每小题 5 分,共 40 分)(1)D (2)C (3)B (4)A(5)C (6)A (7)D (8)C二.填空题(本大题共 6 小题,每小题 5 分,共 30 分)(9) (10)-14 (11) (12)(13) (14)三.解答题(本大题共 6 小题,共 80 分)(15)(共 12 分)解:(Ⅰ)由得,故在定义域为(Ⅱ)因为,且是第四象限的角, 所以__61537; 故.(16)(共 13 分)解法一:(Ⅰ)由图象可知,在(-∞,1)上,在(1,2)上,在上, 故在,上递增,在(1,2)上递减,因此在处取得极大值,所以.(Ⅱ)由得解得解法二:(Ⅰ)同解法一.(Ⅱ)设又所以由,即得,所以.(17)(共 17 分)解法一:(Ⅰ)∵PA⊥平面 ABCD,∴AB 是 PB 在平面 ABCD 上的射影.又∵AB⊥AC,AC平面ABCD,∴AC⊥PB.(Ⅱ)连接BD,与 AC 相交于 O,连接 EO.∵ABCD 是平行四边形,∴O 是 BD 的中点又 E 是 PD 的中点∴EO∥PB.又 PB平面 AEC,EO平面 AEC,∴PB∥平面 AEC.(Ⅲ)取 BC 中点 G,连接 OG,则点 G 的坐标为,=.又是二面角的平面角二面角E-AC-B的大小为.(18)(共 13 分)解:记该应聘者对三门指定课程考试及格的事件分别为 A,B,C, 则(Ⅰ)应聘者用方案一考试通过的概率应聘者用方案二考试通过的概率.(Ⅱ)因为,所以故,即采用第一种方案,该应聘者考试通过的概率较大.(19)(共 14 分)解法一:(Ⅰ)由PM-PN=知动点 P 的轨迹是以为焦点的双曲线的右支,实半轴长又半焦距 c=2,故虚半轴长所以 W 的方程为,(Ⅱ)设 A,B 的坐标分别为,当AB⊥_轴时,从而从而当AB与_轴不垂直时,设直线AB的方程为,与W的方程联立,消去y得故所以.又因为,所以,从而综上,当AB⊥轴时, 取得最小值2. 解法二:(Ⅰ)同解法一.(Ⅱ)设 A,B 的坐标分别为,则, ,则令则且所以当且仅当,即时〞〞成立.所以.的最小值是2.(20)(共 14 分)(Ⅰ)解:,(答案不惟一)(Ⅱ)解:因为在绝对差数列中,.所以自第 20 项开始,该数列是,,即自第 20 项开始.每三个相邻的项周期地取值 3,0,3. 所以当时,的极限不存在.当时, ,所以(Ⅲ)证明:根据定义,数列必在有限项后出现零项.证明如下假设中没有零项,由于,所以对于任意的n,都有,从而当时, ;当时,即的值要么比至少小1,要么比至少小1.令则由于是确定的正整数,这样减少下去,必然存在某项,这与()矛盾. 从而必有零项.若第一次出现的零项为第项,记,则自第项开始,每三个相邻的项周期地取值0,, , 即所以绝对差数列中有无穷多个为零的项.绝密启用前_年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)(编辑:ahuazi)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名.准考证号.考试科目涂写在答题卡.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试卷上.一.本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1) 在复平面内,复数对应的点位于(D)(A)第一象限(B)第二象限(C)第三象限(D)第四象限解:故选D(2)若与都是非零向量,则〝〞是〝〞的(C)(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件解:_Ucirc;_Ucirc;_Ucirc;故选C(3)在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(B)(A)36个(B)24个(C)18个(D)6个解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有种方法(2)3个数字中有一个是奇数,有,故共有+=24种方法,故选B(4)平面的斜线交于点,过定点的动直线与垂直,且交于点,则动点的轨迹是(A)(A)一条直线(B)一个圆(C)一个椭圆(D)双曲线的一支解:设与_cent;是其中的两条任意的直线,则这两条直线确定一个平面,且斜线垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点与垂直所有直线都在这个平面内,故动点C都在这个平面与平面的交线上,故选A(5)已知是上的减函数,那么的取值范围是(C)(A) (B)(C) (D)解:依题意,有0_lt;a_lt;1且3a-1_lt;0,解得0_lt;a_lt;,又当__lt;1时,(3a -1)_+4a_gt;7a-1,当__gt;1时,loga__lt;0,所以7a-1_sup3;0解得__sup3;故选C(6)在下列四个函数中,满足性质:〝对于区间上的任意,恒成立〞的只有(A)(A) (B)(C) (D)解:_gt;1_lt;1\ _lt;_1-_2故选A(7)设,则等于(D)(A) (B)(C) (D)解:依题意,为首项为2,公比为8的前n+4项求和,根据等比数列的求和公式可得D(8)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口的机动车辆数如图所示,图中分别表示该时段单位时间通过路段的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 (C)(A)(B)(C)(D)解:依题意,有_1=50+_3-55=_3-5,\_1_lt;_3,同理,_2=30+_1-20=_1+10\_1_lt;_2,同理,_3=30+_2-35=_2-5\_3_lt;_2故选C绝密启用前_年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.(9)的值等于解:==(10)在的展开式中,的系数为(用数字作答).解:令得r=1故的系数为=-14(11)若三点共线,则的值等于解:, ,依题意,有(a-2)·(b-2)-4=0即ab-2a-2b=0所以=(12)在中,若,则的大小是.解: _Ucirc;a:b:c=5:7:8设a=5k,b=7k,c=8k,由余弦定理可解得的大小为.(13)已知点的坐标满足条件,点为坐标原点,那么的最小值等于,最大值等于. 解:画出可行域,如图所示:易得A(2,2),OA=B(1,3),OB=C(1,1),OC=故OP的最大值为,最小值为.(14)已知三点在球心为,半径为的球面上,,且,那么两点的球面距离为,球心到平面的距离为.解:如右图,因为,所以AB是截面的直径,又AB=R,所以△OAB是等边三角形,所以_ETH;AOB=,故两点的球面距离为,于是_ETH;O1OA=30°,所以球心到平面的距离OO1=Rcos30°=.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题共12分)已知函数,(Ⅰ)求的定义域;(Ⅱ)设是第四象限的角,且,求的值.解:(1)依题意,有cos__sup1;0,解得__sup1;kp+,即的定义域为{___Icirc;R,且__sup1;kp+,k_Icirc;Z}(2)=-2sin_+2cos_\=-2sina+2cosa由是第四象限的角,且可得sina=-,cosa=\=-2sina+2cosa=(16)(本小题共13分)已知函数在点处取得极大值,其导函数的图象经过点,,如图所示.求: (Ⅰ)的值;(Ⅱ)的值.解:(1)由导函数的图象可知,当__Icirc;(-_yen;,1)时,_gt;0,当__Icirc;(1,2)时,_lt;0,当__Icirc;(2,+_yen;)时,_gt;0,所以当_=1时,函数取得极大值,即_0=1(2)=3a_2+2b_+c,依题意有:,=5即有3a+2b+c=0 ,12a+4b+c=0,a+b+c=5解得a=2,b=-9,c=12门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)解:设三门考试课程考试通过的事件分别为A,B,C,相应的概率为a,b,c(1)考试三门课程,至少有两门及格的事件可表示为AB+AC+BC+ABC,设其概率为P1,则P1=ab(1-c)+a(1-b)c+(1-a)bc+abc=ab+ac+bc-2abc设在三门课程中,随机选取两门,这两门都及格的概率为P2,则P2=ab+ac+bc(2)P1-P2=(ab+ac+bc-2abc)-(ab+ac+bc)=ab+ac+bc-2abc=(ab+ac+bc-3abc)=〔ab(1-c)+ac(1-b)+bc(1-a)〕_gt;0\P1_gt;P2即用方案一的概率大于用方案二的概率.(19)(本小题共14分)已知点,动点满足条件.记动点的轨迹为.(Ⅰ)求的方程;(Ⅱ)若是上的不同两点,是坐标原点,求的最小值.解:(1)依题意,点P的轨迹是以M,N为焦点的双曲线的右支,所求方程为:(__gt;0)(2) 当直线AB的斜率不存在时,设直线AB的方程为_=_0,此时A(_0,),B(_0,-),=2当直线AB的斜率存在时,设直线AB的方程为y=k_+b,代入双曲线方程中,得: (1-k2)_2-2kb_-b2-2=0……………………1°依题意可知方程1°有两个不相等的正数根,设A(_1,y1),B(_2,y2),则解得k_gt;1又=_1_2+y1y2=_1_2+(k_1+b)(k_2+b)=(1+k2)_1_2+kb(_1+_2)+b2=_gt;2综上可知的最小值为2(20)(本小题共14分)在数列中,若是正整数,且,则称为〝绝对差数列〞.(Ⅰ)举出一个前五项不为零的〝绝对差数列〞(只要求写出前十项);(Ⅱ)若〝绝对差数列〞中,,数列满足,,分别判断当时,与的极限是否存在,如果存在,求出其极限值;(Ⅲ)证明:任何〝绝对差数列〞中总含有无穷多个为零的项.解:(Ⅰ),(答案不惟一)(Ⅱ)因为在绝对差数列中,.所以自第 20 项开始,该数列是,,即自第 20 项开始.每三个相邻的项周期地取值 3,0,3. 所以当时,的极限不存在.当时, ,所以(Ⅲ)证明:根据定义,数列必在有限项后出现零项.证明如下假设中没有零项,由于,所以对于任意的n,都有,从而当时, ;当时,即的值要么比至少小1,要么比至少小1.令则由于是确定的正整数,这样减少下去,必然存在某项 ,这与()矛盾. 从而必有零项.若第一次出现的零项为第项,记,则自第项开始,每三个相邻的项周期地取值0,, , 即所以绝对差数列中有无穷多个为零的项.。
1993年普通高等学校招生全国统一考试物理(湖南、云南、海南卷)第I卷(选择题共69分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、本题共13小题;每小题3分,共39分.在每小题给出的四个选项中只有一项是正确的. 1.两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中.设r1、r2为这两个电子的运动轨道半径,T1、T2是它们的运动周期,则A.r1=r2,T1≠T2 B.r1≠r2,T1≠T2C.r1=r2,T1=T2 D.r1≠r2,T1=T22.同步卫星是指相对于地面不动的人造地球卫星.A.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同值B.它可以在地面上任一点的正上方,但离地心的距离是一定的C.它只能在赤道的正上方,但离地心的距离可按需要选择不同值D.它只能在赤道的正上方,且离地心的距离是一定的3.由自感系数为L的线圈和可变电容器C构成收音机的调谐电路.为使收音机能接收到f1=550千赫至f2=1650千赫范围内的所有电台的播音,则可变电容器与f1对应的电容C1和与f2对应的电容C2之比为4.若元素A的半衰期为4天,元素B的半衰期为5天,则相同质量的A和B,经过20天后,剩下的质量之比mA:mB=A.30:31 B.31:30 C.1:2 D.2:15.图中所示是用干涉法检查某块厚玻璃板的上表面是否平的装置.所用单色光是用普通光源加滤光片产生的.检查中所观察到的干涉条纹是由下列哪两个表面反射的光线叠加而成的?A.a的上表面和b的下表面B.a的上表面和b的上表面C.a的下表面和b的上表面D.a的下表面和b的下表面6.一物体经凸透镜在屏上成一放大的实像.凸透镜主轴沿水平方向.今将凸透镜向上移动少许,则A.屏上像的位置向上移动B.屏上像的位置向下移动C.屏上像的位置保持不动,但像变大D.屏上像的位置保持不动,但像变小7.如图所示,abcd是一竖直的矩形导线框,线框面积为S,放在磁感应强度为B的均匀水平磁场中.ab边在水平面内且与磁场方向成60°角.若导线框中的电流为I.则导线框所受的安培力对某竖直的固定轴的力矩等于8.一列在竖直面内振动的横波,从O点出发沿水平方向向右传播,振幅为A,波长为l.某一时刻,O处质元正通过平衡位置向上运动,在某右(C)与O点的水平距离不变,在平衡位置下方距离为A处(D)与O点的水平距离不变,在平衡位置上方距离为A处9.用万用表测直流电压U和测电阻R时,若红表笔插入万用表的正(+)插孔,则A.前者(测电压U)电流从红表笔流入万用表,后者(测R)从红表笔流出万用表B.前者电流从红表笔流入万用表,后者电流从红表笔流入万用表C.前者电流从红表笔流出万用表,后者电流从红表笔流出万用表D.前者电流从红表笔流出万用表,后者电流从红表笔流入万用表10.A、B、C三物块质量分别为M、m和m0,作如图所示的联结.绳子不可伸长,且绳子和滑轮的质量、滑轮的摩擦均可不计.若B随A一起沿水平桌面作匀速运动,则可以断定A.物块A与桌面之间有摩擦力,大小为m0gB.物块A与B之间有摩擦力,大小为m0gC.桌面对A,B对A,都有摩擦力,两者方向相同,合力为m0gD.桌面对A,B对A,都有摩擦力,两者方向相反,合力为m0g11.图中接地金属球A的半径为R,球外点电荷的电量为Q,到球心的距离为r.该点电荷的电场在球心的场强等于12.小物块位于光滑的斜面上,斜面位于光滑的水平地面上.从地面上看,在小物块沿斜面下滑的过程中,斜面对小物块的作用力A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零13.图中容器A、B各有一个可自由移动的轻活塞,活塞下面是水,上面是大气,大气压恒定.A、B的底部由带有阀门K的管道相连.整个装置与外界绝热.原先,A中水面比B中的高.打开阀门,使A中的水逐渐向B中流,最后达到平衡.在这个过程中,A.大气压力对水做功,水的内能增加B.水克服大气压力做功,水的内能减少C.大气压力对水不做功,水的内能不变D.大气压力对水不做功,水的内能增加二、本题共6小题:每小题4分,共24分.在每小题给出的四个选项中,至少有一项是正确的.全部选对的得4分,选对但不全的得2分,有选错或不答的得0分.14.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么 A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能将减小C.单位时间内从金属表面逸出的光电子数目将减少D.有可能不发生光电效应15.分子间的相互作用力由引力f引和斥力f斥两部分组成,则A.f斥和f引是同时存在的B.f引总是大于f斥,其合力总表现为引力C.分子之间的距离越小,f引越小,f斥越大D.分子之间的距离越小,f引越大,f斥越小16.如图所示,一理想变压器的原、副线圈分别由双线圈ab和cd(匝数都为n1)、ef和gh (匝数都为n2)组成.用I1和U1表示输入电流和电压,I2和U2表示输出电流和电压.在下列四种连接法中,符合关系A.b与c相连,以a、d为输入端;f与g相连,以e、h为输出端B.b与c相连,以a、d为输入端;e与g相连、f与h相连作为输出端C.a与c相连、b与d相连作为输入端;f与g相连,以e、h为输出端D.a与c相连、b与d相连作为输入端;e与g相连、f与h相连作为输出端17.一个标有“220V、60W”的白炽灯泡,加上的电压U由零逐渐增大到220V.在此过程中,电压(U)和电流(I)的关系可用图线表示.题中给出的四个图线中,肯定不符合实际的是18.在质量为M的小车中挂有一单摆,摆球的质量为m0.小车(和单摆)以恒定的速度V 沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)V=Mv1+mv2+m0v3B.摆球的速度不变,小车和木块的速度变为v1和v2,满足MV=Mv1+mv2C.摆球的速度不变,小车和木块的速度都变为v,满足MV=(M+m)vD.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)V=(M+m0)v1+mv219.图中A、B是一对中间开有小孔的平行金属板,两小孔的连线与金属板面相垂直,两极板的距离为l.两极板间加上低频交流电压,A板电势为零,B板电势u=U0coswt.现有一电子在t=0时穿过A板上的小孔射入电场.设初速度和重力的影响均可忽略不计.则电子在两极板间可能A.以AB间的某一点为平衡位置来回振动B.时而向B板运动,时而向A板运动,但最后穿出B板C.一直向B板运动,最后穿出B板,如果w小于某个值w0, l小于某个值l 0D.一直向B板运动,最后穿出B板,而不论w、l为任何值第Ⅱ卷(非选择题共81分)注意事项:1.第Ⅱ卷6页,用钢笔或圆珠笔直接答在试题卷中,不要在答题卡上填涂.2.答卷前将密封线内的项目填写清楚.三、本题共8小题;前6小题每题3分,后2小题每题4分,共26分.把答案填在题中的横线上.20.用电磁波照射某原子,使它从能量为E1的基态跃迁到能量为E2的激发态,该电磁波的频率等于.21.两根长度相等的轻绳,下端悬挂一质量为m的物体,上端分别固定在水平天花板上的M、N点,M、N两点间的距离为s,如图所示.已知两绳所能经受的最大拉力均为T,则每根绳的长度不得短于.22.有一游标卡尺,主尺的最小分度是1毫米,游标上有20个小的等分刻度.用它测量一工件的长度,如图所示,图示的读数是毫米.23.一位同学用单摆做测量重力加速度的实验.他将摆挂起后,进行了如下步骤A.测摆长l:用米尺量出摆线的长度.B.测周期T:将摆球拉起,然后放开.在摆球某次通过最低点时,按下秒表开始计时,同时将此次通过最低点作为第一次,接着一直数到摆球第60次通过C.最低点时,按秒表停止计时。
1993年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至9页,共150分.考试时间120分钟.第Ⅰ卷(选择题共68分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共17小题;每小题4分,共68分.在每小题给出的四个选项中,只有一项是符合题目要求的(1)函数f (x )=sin x +cos x 的最小正周期是 ( )(A) 2π(B) π22(C) π(D)4π(2)如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为 ( ) (A)23 (B)23 (C)26 (D) 2(3)和直线3x -4y +5=0关于x 轴对称的直线的方程为 ( )(A) 3x +4y -5=0 (B) 3x +4y +5=0 (C) -3x +4y -5=0 (D) -3x +4y +5=0(4)极坐标方程θρcos 534-=所表示的曲线是 ( )(A) 焦点到准线距离为54的椭圆 (B) 焦点到准线距离为54的双曲线右支(C) 焦点到准线距离为34的椭圆 (D) 焦点到准线距离为34的双曲线右支(5)53x y =在[-1,1]上是 ( )(A) 增函数且是奇函数 (B) 增函数且是偶函数 (C) 减函数且是奇函数(D) 减函数且是偶函数(6)5215lim 22+--∞→n n n n 的值为 ( )(A) 51-(B) 25-(C)51 (D)25 (7) 集合}24|{}42|{Z k k x x N Z k k x x M ∈+==∈+==,,,ππππ,则 ( ) (A) M =N(B) N M ⊃(C) N M ⊂(D) =⋂N M Ø(8)sin20ºcos70º+sin10ºsin50º的值是 ( )(A)41(B)23 (C)21 (D)43 (9)参数方程()⎪⎪⎩⎪⎪⎨⎧+=+=θθθsin 1212sin 2cos y x ()πθ20<<表示( )(A) 双曲线的一支,这支过点⎪⎭⎫ ⎝⎛211,(B) 抛物线的一部分,这部分过⎪⎭⎫ ⎝⎛211,(C) 双曲线的一支,这支过点⎪⎭⎫ ⎝⎛-211,(D) 抛物线的一部分,这部分过⎪⎭⎫ ⎝⎛-211, (10)若a 、b 是任意实数,且a >b ,则 ( )(A) a 2>b 2(B)1<ab (C) lg(a -b )>0(D) ba⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛2121(11)一动圆与两圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心轨迹为 ( )(A) 圆(B) 椭圆(C) 双曲线的一支 (D) 抛物线(12)圆柱轴截面的周长l 为定值,那么圆柱体积的最大值是 ( )(A) π36⎪⎭⎫ ⎝⎛l(B) π3291⎪⎭⎫ ⎝⎛l(C) π34⎪⎭⎫ ⎝⎛l(D) π342⎪⎭⎫ ⎝⎛l(13)(x +1)4(x -1)5展开式中x 4的系数为( )(A) -40(B) 10(C) 40(D) 45(14)直角梯形的一个内角为45º,下底长为上底长的23,这个梯形绕下底所在的直线旋转一周所成的旋转体的全面积为(5+2)π,则旋转体的体积为( )(A) 2π(B)π324+ (C)π325+ (D)π37 (15)已知a 1,a 2,…,a 8为各项都大于零的等比数列,公式q ≠1,则 ( )(A) a 1+ a 8> a 4+ a 5 (B) a 1+ a 8< a 4+ a 5 (C) a 1+ a 8= a 4+ a 5(D) a 1+ a 8和a 4+ a 5的大小关系不能由已知条件确定 (16)设有如下三个命题:甲:相交两直线l ,m 都在平面α内,并且都不在平面β内. 乙:l ,m 之中至少有一条与β相交. 丙:α与β相交. 当甲成立时( )(A) 乙是丙的充分而不必要的条件 (B) 乙是丙的必要而不充分的条件 (C) 乙是丙的充分且必要的条件(D) 乙既不是丙的充分条件又不是丙的必要条件(17)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有( )(A) 6种(B) 9种(C) 11种(D) 23种第Ⅱ卷(非选择题共82分)注意事项:1.第Ⅱ卷6页,用钢笔或圆珠笔直接答在试题卷中,不要在答题卡上填涂. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题;每小题4分,共24分.把答案填在题中横线上.(18)⎪⎭⎫⎝⎛+31arccos 21arccossin = ________________ (19)若双曲线222249ky k x -=1与圆x 2+y 2=1没有公共点,则实数k 的取值范围为_________________(20)从1,2,…,10这十个数中取出四个数,使它们的和为奇数,共有______________种取法(用数字作答).(21)设f (x )=4x -2x +1,则f -1(0)=_____________(22)建造一个容积为8m 3 ,深为2m 的长方体无盖水池.如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________________元(23)如图,ABCD 是正方形,E 是AB 的中点,如将△DAE 和△CBE 分别沿虚线DE 和CE 折起,使AE 与BE 重合,记A 与B 重合后的点为P ,则面PCD 与面ECD 所成的二面角为__________度三、解答题:本大题共5小题;共58分.解题应写出文字说明、演算步骤.(24)(本小题满分10分) 已知f (x )=log axx-+11(a >0,a ≠1). (Ⅰ)求f (x )的定义域;(Ⅱ)判断f (x )的奇偶性并予以证明; (Ⅲ)求使f (x )>0的x 取值范围.(25)(本小题满分12分) 已知数列()().1212853283118222222ΛΛ,,,,+-⋅⋅⋅⋅n n nS n 为其前n 项和.计算得.818049482524984321====S S S S ,,,观察上述结果,推测出计算S n 的公式,并用数学归纳法加以证明.(26)(本小题满分12分)已知:平面α∩平面β=直线a .α,β同垂直于平面γ,又同平行于直线b .求证:(Ⅰ)a ⊥γ;(Ⅱ)b ⊥γ.(27)(本小题满分12分)在面积为1的△PMN 中,tg ∠PMN =21,tg ∠MNP =-2.建立适当的坐标系,求以M ,N 为焦点且过点P 的椭圆方程.(28)(本小题满分12分)设复数()πθθθ<<+=0sin cos i z ,()4411zz+-=ω,并且33=ω,2arg πω<,求θ.1993年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:1.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题4分,满分68分.(1)A (2)C (3)B (4)B (5)A (6)D (7)C (8)A (9)B (10)D (11)C (12)A (13)D (14)D (15)A (16)C (17)B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.(18)6322+ (19){k ||k |>31} (20)100 (21)1 (22)1760 (23)30三、解答题(24)本小题考查函数的奇偶性、对数函数的性质、不等式的性质和解法等基本知识及运算能力.满分12分.解 (Ⅰ)由对数函数的定义知011>-+xx. ——1分 如果⎩⎨⎧>->+0101x x ,则-1<x <1;如果⎩⎨⎧<-<+0101x x ,则不等式组无解. ——4分故f (x )的定义域为(-1,1) (Ⅱ) ∵ ()()x f xxx x x f a a-=-+-=+-=-11log 11log , ∴ f (x )为奇函数. ——6分 (Ⅲ)(ⅰ)对a >1,log a011>-+xx等价于 111>-+xx, ① 而从(Ⅰ)知1-x >0,故①等价于1+x >1-x ,又等价于x >0.故对a >1,当x ∈(0,1)时有f (x )>0. ——9分(ⅱ)对0<a <1,log a 011>-+xx等价于 0<111<-+xx. ② 而从(Ⅰ)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0. ——12分(25)本小题考查观察、分析、归纳的能力和数学归纳法.满分10分.解 ()()()N n n n S n ∈+-+=2212112. ——4分 证明如下:(Ⅰ)当n =1时,98313221=-=S ,等式成立. ——6分 (Ⅱ)设当n =k 时等式成立,即()().1211222+-+=k k S k——7分 则 ()()()221321218++++=+k k k S S k k()()()()()222232121812112+++++-+=k k k k k ()()()()()222232121832]112[+++++-+=k k k k k()()()()()()22222321218323212+++++-++=k k k k k k ()()()()()222223212123212+++-++=k k k k k ()()2232132+-+=k k ()()22]112[1]112[++-++=k k 由此可知,当n =k +1时等式也成立. ——9分 根据(Ⅰ)(Ⅱ)可知,等式对任何n ∈N 都成立. ——10分(26)本小题考查直线与平面的平行、垂直和两平面垂直的基础知识,及空间想象能力和逻辑思维能力.满分12分.证法一(Ⅰ)设α∩γ=AB,β∩γ=AC.在γ内任取一点P并于γ内作直线PM⊥AB,PN⊥AC.——1分∵γ⊥α,∴PM⊥α.而a⊂α,∴PM⊥a.同理PN⊥a.——4分又PM⊂γ,PN⊂γ,∴a⊥γ.——6分(Ⅱ)于a上任取点Q,过b与Q作一平面交α于直线a1,交β于直线a2.——7分∵b∥α,∴b∥a1.同理b∥a2.——8分∵a1,a2同过Q且平行于b,∵a1,a2重合.又a1⊂α,a2⊂β,∴a1,a2都是α、β的交线,即都重合于a.——10分∵b∥a1,∴b∥a.而a⊥γ,∴b⊥γ.——12分注:在第Ⅱ部分未证明b∥a而直接断定b⊥γ的,该部分不给分.证法二(Ⅰ)在a上任取一点P,过P作直线a′⊥γ.——1分∵α⊥γ,P∈α,∴a′⊂α.同理a′⊂β.——3分可见a′是α,β的交线.因而a′重合于a.——5分又 a ′⊥γ,∴ a ⊥γ. ——6分(Ⅱ)于α内任取不在a 上的一点,过b 和该点作平面与α交于直线c .同法过b 作平面与β交于直线d . ——7分∵ b ∥α,b ∥β.∴ b ∥c ,b ∥d . ——8分 又 c ⊄β,d ⊂β,可见c 与d 不重合.因而c ∥d .于是c ∥β. ——9分 ∵ c ∥β,c ⊂α,α∩β=a ,∴ c ∥a . ——10分 ∵ b ∥c ,a ∥c ,b 与a 不重合(b ⊄α,a ⊂α),∴ b ∥a . ——11分 而 a ⊥γ,∴ b ⊥γ. ——12分 注:在第Ⅱ部分未证明b ∥a 而直接断定b ⊥γ的,该部分不给分.(27)本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用能力.满分12分.解法一如图,以MN 所在直线为x 轴,MN 的垂直平分线为y 轴建立直角坐标系,设以M ,N 为焦点且过点P 的椭圆方程为12222=+by a x ,焦点为M (-c ,0),N (c ,0). —1分由tg M =21,tg α=tg(π-∠MNP )=2,得直线PM 和直线PN 的方程分别为y =21(x +c )和y =2(x -c ).将此二方程联立,解得x =35c ,y =34c ,即P 点坐标为(35c ,34c ). ——5分在△MNP 中,|MN |=2c ,MN 上的高为点P 的纵坐标,故.34342212c c c S MNP =⋅⋅=∆ 由题设条件S △MNP =1,∴ c =23,即P 点坐标为⎪⎪⎭⎫ ⎝⎛332635,. ——7分由两点间的距离公式()3152332236352222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=++=y c x PM , ()315332236352222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=+-=y c x PN . 得 ()21521=+=PN PM a . ——10分 又 b 2=a 2-c 2=343415=-,故所求椭圆方程为 1315422=+y x . ——12分 解法二同解法一得23=c ,P 点的坐标为⎪⎪⎭⎫ ⎝⎛332635,. ——7分 ∵ 点P 在椭圆上,且a 2=b 2+c 2.∴13322363522222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛b b . 化简得3b 4-8b 2-3=0.解得b 2=3,或b 2=31-(舍去). ——10分 又 a 2=b 2+c 2=3+41543=.故所求椭圆方程为1315422=+y x . ——12分 解法三同解法一建立坐标系. ——1分 ∵ ∠P =∠α-∠PMN ,∴ ()()4321212121=⨯+-=-+--=tgMN tg tgM N tg tgP ππ. ∴ ∠P 为锐角.∴ sin P =53,cos P =54. 而 S △MNP =21|PM |·|PN |sin P =1,∴ |PM |·|PN |=310. ——4分∵ |PM |+|PN |=2a ,|MN |=2c ,由余弦定理, (2c )2=|PM |2+|PN |2-2|PM |·|PN |cos P =(|PM |+|PN |)2-2|PM |·|PN |(1+cos P ) =(2a )2-2·310-2·310·54, ∴ c 2=a 2-3,即b 2=3. ——7分 又 sin M =51,sin N =52,由正弦定理,P MN MPN NPM sin sin sin ==,∴PMN MN PN PM sin sin sin =++.即53251522ca =+, ∴ a =5c . ——10分∴ a 2=b 2+c 2=3+52a.∴ a 2=415. 故所求椭圆方程为1315422=+y x . ——12分 (28)本小题考查复数的基本概念和运算,三角函数式的恒等变形及综合解题能力.满分12分.解法一()()[][]44sin cos 1sin cos 1θθθθωi i ++-+--=()()θθθθ4sin 4cos 14sin 4cos 1i i ++----=——2分θθθθθθ2cos 2sin 22cos 22cos 2sin 22sin 222i i ++= ()θθθ4cos 4sin 2tg i +=. ——5分332tg 4cos 4sin 2tg ==+⋅=θθθθωi 332tg ±=θ. ——6分 因πθ<<0,故有 (ⅰ)当332tg =θ时,得12πθ=或127πθ=,这时都有 ⎪⎭⎫ ⎝⎛+=6sin 6cos 33ππωi , 得26arg ππω<=,适合题意. ——10分(ⅱ)当332tg -=θ时,得125πθ=或1211πθ=,这时都有 ⎪⎭⎫ ⎝⎛+=611sin 611cos 33ππωi , 得2611arg ππω>=,不适合题意,舍去. 综合(ⅰ)、(ⅱ)知12πθ=或127πθ=. ——2分解法二θθ4sin 4cos 4i z +=.记θϕ4=,得()()ϕϕsin cos 44i z z-==.ϕϕϕϕωsin cos 1sin cos 1i i +++-=. ——2分()ϕϕϕϕcos sin cos 1sin i ++=()ϕϕϕcos sin 2tgi +=. ——5分① ② ③ ∵ 33=ω,2arg πω<, ∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥⋅>⋅=0cos 2tg 0sin 2tg 332tg ϕϕϕϕϕ ——8分当①成立时,②恒成立,所以θ应满足(ⅰ) ⎪⎪⎩⎪⎪⎨⎧≥=<<04cos 332tg 0θθπθ,或(ⅱ) ⎪⎪⎩⎪⎪⎨⎧≤-=<<04cos 332tg 0θθπθ, ——10分解(ⅰ)得12πθ=或127πθ=.(ⅱ)无解.综合(ⅰ)、(ⅱ) 12πθ=或127πθ=. ——12分。