2018年高考数学(理)二轮复习练习:小题提速练6 “12选择+4填空”80分练 Word版含答案
- 格式:doc
- 大小:223.50 KB
- 文档页数:7
高考大题专攻练12.函数与导数(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.已知函数f(x)=ln(2ax+a2-1)-ln(x2+1),其中a∈R. 世纪金榜导学号92494448(1)求f(x)的单调区间.(2)是否存在a的值,使得f(x)在[0,+∞)上既存在最大值又存在最小值?若存在,求出a的取值范围;若不存在,请说明理由.【解析】(1)f(x)=ln(2ax+a2-1)-ln(x2+1)=ln.设g(x)=,g′(x)=-.①当a=0时,f(x)无意义,所以a≠0.②当a>0时,f(x)的定义域为.令g′(x)=0,得x1=-a,x2=,g(x)与g′(x)的情况如表:-(-a)=>0,所以>-a.-=-<0,所以<.故f(x)的单调递增区间是;单调递减区间是.③当a<0时,f(x)的定义域为.令g′(x)=0,得x1=-a,x2=,g(x)与g′(x)的情况如表:-(-a)=<0,所以<-a.-=->0,所以>.所以f(x)的单调递增区间是;单调递减区间是.(2)①当a>0时,由(1)可知,f(x)在上单调递增,在上单调递减,所以f(x)在[0,+∞)上存在最大值f=lna2. 下面研究最小值:由于f(x)的定义域为.(ⅰ)若≥0,即0<a≤1时,结合f(x)的定义域可知f(x)在[0,+∞)上没有最小值,不合题意.(ⅱ)若<0,即a>1时,因为在上单调递增,所以f(x)在上存在最小值f(0);因为f(x)在上单调递减,所以f(x)在上不存在最小值.所以,要使f(x)在[0,+∞)上存在最小值,只可能是f(0)=ln(g(0)).计算整理g(x)-g(0)=-(a2-1)=.要使f(x)在[0,+∞)上存在最小值,只需x∈[0,+∞),g(x)-g(0)≥0.因为x2+1>0,则问题转化为x∈[0,+∞)时,(1-a2)x+2a≥0恒成立.设h(x)=(1-a2)x+2a,则只需或解得0≤a≤1,这与a>1相矛盾,所以f(x)在[0,+∞)上没有最小值,不合题意.②当a<0时,由于f(x)的定义域为.(ⅰ)若≤0,即-1≤a<0时,f(x)在[0,+∞)上没有意义,也不存在最大值和最小值.(ⅱ)若>0,即a<-1时,由(1)可知f(x)在上单调递减,f(x)存在最大值,但不存在最小值.综上,不存在a的值,使得f(x)在[0,+∞)上既存在最大值又存在最小值.2.已知函数f(x)=ae x+(2-e)x(a为实数,e为自然对数的底数),曲线y=f(x)在x=0处的切线与直线(3-e)x-y+10=0平行. 世纪金榜导学号92494449(1)求实数a的值,并判断函数f(x)在区间[0,+∞)内的零点个数.(2)证明:当x>0时,f(x)-1>xln(x+1).【解析】(1)f′(x)=ae x+2-e,由题设,可知曲线y=f(x)在x=0处的切线的斜率k=f′(0)=a+2-e=3-e,解得a=1,所以f(x)=e x+(2-e)x,所以x≥0时,f′(x)=e x+2-e≥e0+2-e>0,所以f(x)在区间[0,+∞)内为增函数,又f(0)=1>0,所以f(x)在区间[0,+∞)内没有零点.(2)当x>0时,f(x)-1>xln(x+1)等价于>ln(x+1),记g(x)=e x-(x+1),则g′(x)=e x-1,当x>0时,g′(x)>0,所以当x>0时,g(x)在区间(0,+∞)内单调递增,所以g(x)>g(0)=0,即e x>x+1,两边取自然对数,得x>ln(x+1)(x>0),所以要证明>ln(x+1)(x>0),只需证明≥x(x>0),即证明当x>0时,e x-x2+(2-e)x-1≥0,①设h(x)=e x-x2+(2-e)x-1,则h′(x)=e x-2x+2-e,令φ(x)=e x-2x+2-e,则φ′(x)=e x-2,当x∈(0,ln2)时,φ′(x)<0;当x∈(ln2,+∞)时,φ′(x)>0.所以φ(x)在区间(0,ln2)内单调递减,在区间(ln2,+∞)内单调递增,又φ(0)=3-e>0,φ(1)=0,0<ln2<1,所以φ(ln2)<0,所以存在x0∈(0,1),使得φ(x0)=0,所以当x∈(0,x0),或x∈(1,+∞)时,φ(x)>0;当x∈(x0,1)时,φ(x)<0,所以h(x)在区间(0,x0)内单调递增,在区间(x0,1)内单调递减,在区间(1,+∞)内单调递增,又h(0)=h(1)=0,所以h(x)=e x-x2+(2-e)x-1≥0,当且仅当x=1时,取等号,即①式成立.所以f(x)-1>xln(x+1).关闭Word文档返回原板块。
小题提速练(三) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z 等于( )A .1+2iB .1-2iC .-1+2iD .-1-2i[答案] B2.已知集合M ={x |x 2-2x <0},N ={x |x <a },若M ⊆N ,则实数a 的取值范围是( )A .[2,+∞)B .(2,+∞)C .(-∞,0)D .(-∞,0][答案] A3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17[答案] B4.已知α,β,γ是三个不同的平面,α∩γ=m ,β∩γ=n ,则( )A .若m ⊥n ,则α⊥βB .若α⊥β,则m ⊥nC .若m ∥n ,则α∥βD .若α∥β,则m ∥n[答案] D5.已知数列{a n }满足1+log 3a n =log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( ) A.15 B .-15C .5D .-5[答案] D6.执行如图1所示的程序框图,输出的n 值为( )【导学号:04024180】图1A .3B .4C .5D .6[答案] B7.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图2,则截去部分体积与剩余部分体积的比值为( )图2A.18B.17 C.16 D.15[答案] D8.若函数f (x )=ax 2+bx +c (a ,b ,c >0)没有零点,则a +cb的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞) D .(1,+∞)[答案] D9.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sinA +sinB 的最大值是( )【导学号:04024181】A .1 B. 2 C .3 D. 3[答案] D10.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A .[3,+∞) B .(3,+∞) C .(1,3] D .(1,3)[答案] A11.(2016·全国卷Ⅲ)已知( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b[答案] A12.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2nmC.4m nD.2mn[答案] C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.如图3,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.【导学号:04024182】图3[解析] 由题意,得BF →·CF →=(BD →+DF →)·(CD →+DF →)=(BD →+DF →)·(-BD →+DF →)=DF →2-BD →2 =|DF →|2-|BD →|2=-1,① BA →·CA →=(BD →+DA →)·(CD →+DA →)=(BD →+3DF →)·(-BD →+3DF →) =9DF →2-BD →2=9|DF →|2-|BD →|2=4.② 由①②得|DF →|2=58,|BD →|2=138.∴BE →·CE →=(BD →+DE →)·(CD →+DE →) =(BD →+2DF →)·(-BD →+2DF →)=4DF →2-BD →2 =4|DF →|2-|BD →|2=4×58-138=78.[答案] 7814.如图4,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.图4[解析] 在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =22+22-2×2×2×⎝ ⎛⎭⎪⎫-12=2 3.设CD =x ,则AD =23-x , ∴PD =23-x ,∴V P BCD =13S △BCD ·h ≤13×12BC ·CD sin 30°·PD=16×2x ×12×(23-x ) =16x (23-x )≤16⎝ ⎛⎭⎪⎫x +23-x 22 =16×⎝ ⎛⎭⎪⎫2322=12,当且仅当x =23-x ,即x =3时取“=”, 此时PD =3,BD =1,PB =2,满足题意. [答案] 1215.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.[解析] ∵⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,∴a n +2+a n =2a n +1(n ≥2),∴数列{a n }从第二项开始为等差数列, 当n =2时,S 3+S 1=2S 2+2, ∴a 3=a 2+2=4,∴S 10=1+2+4+6+…+18=1++2=91.[答案] 9116.给出定义:若m -12<x ≤m +12(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即{x }=m .在此基础上给出下列关于函数f (x )=x -{x }的四个命题:①y =f (x )的定义域是R ,值域是⎝ ⎛⎦⎥⎤-12,12; ②点(k,0)是y =f (x )的图象的对称中心,其中k ∈Z ; ③函数y =f (x )的最小正周期为1;④函数y =f (x )在⎝ ⎛⎦⎥⎤-12,32上是增函数. 则上述命题中真命题的序号是________.[解析] 令x =m +a ,a ∈⎝ ⎛⎦⎥⎤-12,12,m ∈Z , 所以f (x )=x -{x }=a ∈⎝ ⎛⎦⎥⎤-12,12,所以①正确. 因为f (2k -x )=2k -x -{2k -x }=-x -{-x }=f (-x )≠-f (x )(k ∈Z ),所以点(k,0)不是函数f (x )的图象的对称中心,所以②错误.f (x +1)=x +1-{x +1}=x -{x }=f (x ),又可知小于1的正数都不是f (x )的周期,所以最小正周期为1.所以③正确.显然④错误.所以正确的为①③. [答案] ①③。
小题提速练(七)(满分80分,押题冲刺,45分钟拿下客观题满分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,A ={x ∈N |2x (x -4)<1},B ={x ∈N |y =ln(2-x )},则图中阴影部分表示的集合的子集个数为( )A .1B .2C .3D .4解析:选D.由韦恩图知阴影部分表示的是A ∩(∁U B ),∵A ={x ∈N |2x (x -4)<1}={1,2,3},B ={x ∈N |y =ln(2-x )}={0,1},∴阴影部分对应的集合是A ∩(∁U B )={2,3},则图中阴影部分表示的集合的子集个数为22=4.2.若复数a +3i1+2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-6B .-2C .4D .6 解析:选A.∵a +3i 1+2i =a +-+-=a ++-2a5为纯虚数,∴⎩⎪⎨⎪⎧a +6=0,3-2a ≠0,解得a =-6.3.给出命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞.关于以上两个命题,下列结论中正确的是( ) A .命题“p ∨q ”为假 B .命题“p ∧q ”为真 C .命题“p ∨﹁q ”为假D .命题“p ∧﹁q ”为真解析:选A.命题p :若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则α∥β或相交,因此是假命题;命题q :向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为⎩⎪⎨⎪⎧a·b <0,且不异向共线,-2λ-1<0,解得λ>-12,由-λ+2=0,解得λ=2,此时a 与b 异向共线,因此向量a =(-2,-1),b =(λ,1)的夹角为钝角的充要条件为λ∈⎝ ⎛⎭⎪⎫-12,+∞且λ≠2,因此是假命题. 4.一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为()A .24πB .6πC .4πD .2π解析:选B.几何体为三棱锥,可以将其补形为一个棱长为2的正方体,该正方体的外接球和几何体的外接球为同一个,故2R =22+22,R =62,所以外接球的表面积为4πR 2=6π. 5.下面图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,图2是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )7 8 9 10 116 9 1 3 6 72 9 4 1 58 6 3 1 4图1图2A .6B .10C .91D .92解析:选B.由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图可知:数学成绩大于等于90的人数为10,因此输出结果为10.6.已知正数x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,则z =4-x·⎝ ⎛⎭⎪⎫12y的最小值为( )A .1 B.14 32 C.116D.132解析:选C.根据约束条件画出可行域,把z =4-x ·⎝ ⎛⎭⎪⎫12y化成z =2-2x -y,直线z 1=-2x -y 过点A (1,2)时,z 1最小值是-4,∴z =2-2x -y的最小值是2-4=116.7.已知函数y =A cos ⎝ ⎛⎭⎪⎫π2x +φ(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为()A. 3B. 2 C .1D .2解析:选A.过Q ,P 分别作x 轴的垂线于B ,C ,∵函数的周期T =2ππ2=4,∴MN =2,CN =1,∵∠PMQ =90°,∴PQ =2MN =4,即PN =2,即PC =PN 2-NC 2=4-1=3,∴A = 3.8.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100D .10200解析:选B.由题意可得a n =n 2cos(n π)+(n +1)2cos[(n +1)π]=(-1)n -1(2n +1),所以a 1+a 2+a 3+…+a 100=3-5+7-9+11-…+199-201=50×(-2)=-100.9.函数f (x )是定义域为R 的奇函数,且x ≤0时,f (x )=2x-12x +a ,则函数f (x )的零点个数是( )A .1B .2C .3D .4解析:选C.∵函数f (x )是定义域为R 的奇函数, ∴f (0)=0,又∵x ≤0时,f (x )=2x-12x +a ,∴f (0)=20+a =0,解得a =-1,故x ≤0时,f (x )=2x -12x -1,令f (x )=2x -12x -1=0,解得x =-1或x =0,故f (-1)=0,则f (1)=0,综上所述,函数f (x )的零点个数是3个.10.设A 1,A 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右顶点,若双曲线上存在点M 使得两直线斜率kMA 1·kMA 2<2,则双曲线C 的离心率的取值范围为( )A .(0,3)B .(1,3)C .(3,+∞)D .(0,3)解析:选B.由题意可得A 1(-a,0),A 2(a,0),设M (m ,n ),可得m 2a 2-n 2b 2=1,即n 2m 2-a 2=b 2a 2,由题意k MA 1·k MA 2<2,即为n -0m +a ·n -0m -a <2,即有b 2a 2<2,即b 2<2a 2,c 2-a 2<2a 2,即c 2<3a 2,c <3a ,即有e =ca<3,由e >1,可得1<e < 3.11.已知△ABC 外接圆O 的半径为1,且OA →·OB →=-12,∠C =π3,从圆O 内随机取一个点M ,若点M 取自△ABC 内的概率恰为334π,则△ABC 的形状为( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析:选B.∵OA →·OB →=-12,圆的半径为1,∴cos∠AOB =-12,又0<∠AOB <π,故∠AOB =2π3,又△AOB 为等腰三角形,故AB =3,从圆O 内随机取一个点,取自△ABC 内的概率为334π,即S △ABC S 圆=334π,∴S △ABC =334,设BC =a ,AC =b ,∵C =π3,∴12ab sin C =334,得ab =3①,由AB 2=a 2+b 2-2ab cos C =3,得a 2+b 2-ab =3,a 2+b 2=6②,联立①②解得a =b =3,∴△ABC 为等边三角形.12.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f ′(x )>f (x )成立,则( ) A .3f (ln 2)>2f (ln 3) B .3f (ln 2)=2f (ln 3) C .3f (ln 2)<2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小不确定 解析:选C.令g (x )=f xe x ,则g ′(x )=f x x-f xxe2x=f x -f xex,因为对任意x ∈R 都有f ′(x )>f (x ),所以g ′(x )>0,即g (x )在R 上单调递增,又ln 2<ln 3,所以g (ln 2)<g (ln 3),即feln 2<feln 3,所以f2<f3,即3f (ln 2)<2f (ln 3),故选C.二、填空题(本题共4小题,每小题5分;共20分)13.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =________.解析:因为点P (2,2)满足圆(x -1)2+y 2=5的方程,所以P 在圆上,又过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,所以切点与圆心连线与直线ax -y +1=0平行,所以直线ax -y +1=0的斜率为a =2-02-1=2.答案:214.在△ABC 中,已知B =π3,AC =43,D 为BC 边上一点.若AB =AD ,则△ADC 的周长的最大值为________.解析:∵AB =AD ,B =π3,∴△ABD 为正三角形,∵∠DAC =π3-C ,∠ADC =2π3,在△ADC 中,根据正弦定理可得ADsin C =43sin 2π3=DCsin ⎝ ⎛⎭⎪⎫π3-C , ∴AD =8sin C ,DC =8sin ⎝ ⎛⎭⎪⎫π3-C ,∴△ADC 的周长为AD +DC +AC =8sin C +8sin ⎝ ⎛⎭⎪⎫π3-C +43=8⎝ ⎛⎭⎪⎫12sin C +32cos C +43=8sin ⎝ ⎛⎭⎪⎫C +π3+43,∵∠ADC =2π3,∴0<C <π3,∴π3<C +π3<2π3,∴当C +π3=π2,即C =π6时,sin ⎝ ⎛⎭⎪⎫C +π3的最大值为1,则△ADC 的周长最大值为8+4 3.答案:8+4 315.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为________.解析:由椭圆C :x 24+y 23=1可得a 2=4,b 2=3,c =a 2-b 2=1,可得F 1(-1,0),F 2(1,0),由AF 2⊥F 1F 2,令x =1,可得y =±3·1-14=±32,可设A ⎝ ⎛⎭⎪⎫1,32,设P (m ,n ),则m 24+n 23=1,又-3≤n ≤3,则F 1P →·F 2A →=(m +1,n )·⎝ ⎛⎭⎪⎫0,32=32n ≤332,可得F 1P →·F 2A →的最大值为332.答案:33216.定义在R 上的函数,对任意实数都有f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,且f (1)=2,记a n =f (n )(n ∈N *),则a 2018=________.解析:∵f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3,∴f (x +1)≤f (x )+1,∵f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,∴f (x +1)-f (x )=1,∴{a n }是以f (1)为首项,公差为1的等差数列. ∴a 2018=f (2018)=f (1)+(2018-1)×1=2019. 答案:2019。
小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( ) (参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%) A .17 B .23 C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫2x +5π6B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( )A .x =- 2B .x =-2 2C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝ ⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x +k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t=h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x=38t, 由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15. [答案] 1516.已知三棱锥D ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ABC的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ABC =2V O ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π. [答案] 40103π。
小题提速练(四) “12选择+4填空”80分练 (时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =ln ⎝ ⎛⎭⎪⎫1x-1的定义域为( )【导学号:04024184】A .(-∞,0]B .(0,1)C .(1,+∞)D .(-∞,0)∪(1,+∞)B [由已知得1x -1>0,x ≠0,所以1-x x >0,x ≠0,所以x -1x<0,x ≠0,所以0<x <1.故选B.]2.复数(1-i)(2+2i)=( )A .4B .-4C .2D .-2A [(1-i)(2+2i)=2+2i -2i +2=4.]3.已知等比数列{a n }的公比为-12,则a 1+a 3+a 5a 2+a 4+a 6的值是( )A .-2B .-12C.12 D .2A [a 1+a 3+a 5a 2+a 4+a 6=a 1+a 3+a 5-12a 1+a 3+a 5=-2.]4.若m =6,n =4,则运行如图1所示的程序框图后,输出的结果是( )图1A.1100B .100C .10D .1D [因为m >n ,所以y =lg(m +n )=lg(6+4)=1.故选D.]5.设α,β,γ为不重合的平面,m ,n 为不同的直线,则m ⊥β的一个充分条件是( )【导学号:04024185】A .α⊥β,α∩β=n ,m ⊥nB .α∩γ=m ,α⊥γ,β⊥γC .α⊥γ,β⊥γ,m ⊥αD .n ⊥α,n ⊥β,m ⊥αD [因为n ⊥α,m ⊥α,所以m ∥n ,又n ⊥β,所以m ⊥β,故选D.]6.若实数x ,y 满足条件⎩⎨⎧3x -y ≤0,x -3y +2≥0,y ≥0,则3x +y 的最大值为( )A .0 B. 3 C .2 3D.233C [如图所示,画出不等式组表示的平面区域,作直线l :3x +y =0,平移直线l ,当直线l 经过点A (1,3)时,3x +y 取得最大值,即(3x +y )max =23,故选C.]7.在△ABC 中,若点D 满足BD →=2DC →,则AD →=( )A.13AC →+23AB →B.53AB →-23AC →C.23AC →-13AB →D.23AC →+13AB → D [根据题意画出图形如图所示.因为BD →=2DC →,所以AD →-AB →=2(AC →-AD →),所以3AD →=AB →+2AC →,所以AD →=13AB →+23AC →.]8.一个几何体的三视图如图2所示,则该几何体的体积等于( )图2A .5π B.556π C.1256π D.716π D [由三视图可知,该几何体为直径为5的球中挖去一个底面直径是3,高是4的圆柱后剩余的几何体,所以该几何体的体积为43π·⎝ ⎛⎭⎪⎫523-π·⎝ ⎛⎭⎪⎫322×4=716π.]9.将函数f (x )=-cos 2x 的图象向右平移π4个单位长度后得到函数g (x )的图象,则函数g (x )( )A .最大值为1,图象关于直线x =π2对称B .在⎝ ⎛⎭⎪⎫0,π4上单调递减,为奇函数C .在⎝ ⎛⎭⎪⎫-3π8,π8上单调递增,为偶函数D .周期为π,图象关于点⎝⎛⎭⎪⎫3π8,0对称B [依题意有g (x )=-cos 2⎝ ⎛⎭⎪⎫x -π4=-cos ⎝ ⎛⎭⎪⎫2x -π2=-sin 2x ,显然g (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减,为奇函数.故选B.]10.在平面直角坐标系xOy 中,动点P 到圆(x -2)2+y 2=1上的点的最小距离与其到直线x =-1的距离相等,则P 点的轨迹方程是( )【导学号:04024186】A .y 2=8x B .x 2=8y C .y 2=4xD .x 2=4yA [由题意知点P 在直线x =-1的右侧,且点P 在圆的外部,故可将条件等价转化为“P 点到定点(2,0)的距离与其到定直线x =-2的距离相等”.根据抛物线的定义知,P 点的轨迹方程为y 2=8x .] 11.若函数f (x )=-m xx 2+m的图象如图3所示,则m 的取值范围为( )图3A .(-∞,-1)B .(-1,2)C .(0,2)D .(1,2)D [由图可知,函数图象过原点,即f (0)=0,所以m ≠0.当x >0时,f (x )>0,所以2-m >0,即m <2.函数f (x )在[-1,1]上单调递增,所以f ′(x )>0在[-1,1]上恒成立,因为f ′(x )=-mx 2+m -2x -m x x 2+m 2=m -x 2-m x 2+m2,且m -2<0,所以x 2-m <0在[-1,1]上恒成立,所以m >1.综上得1<m <2.故选D. ]12.已知直角三角形ABC 的两直角边AB ,AC 的长分别为方程x 2-2(1+3)x +43=0的两根,且AB <AC ,斜边BC 上有异于端点B ,C 的两点E ,F ,且EF =1,设∠EAF =θ,则tan θ的取值范围为( ) A.⎝ ⎛⎦⎥⎤239,6311 B.⎝ ⎛⎦⎥⎤39,2311 C.⎝ ⎛⎦⎥⎤39,4311 D.⎝⎛⎦⎥⎤439,16311C [由已知得,AB =2,AC =23,BC =AB 2+AC 2=4,建立如图所示的直角坐标系,可得A (0,0),B (2,0),C (0,23).设BF →=λBC →⎝⎛⎭⎪⎫λ∈⎝⎛⎭⎪⎫0,34,BE →=⎝⎛⎭⎪⎫λ+14BC →,则F (2-2λ,23λ),E ⎝ ⎛⎭⎪⎫32-2λ,23λ+32,所以AE →·AF →=3-4λ-3λ+4λ2+12λ2+3λ=16λ2-4λ+3=16·⎝ ⎛⎭⎪⎫λ-182+114∈⎣⎢⎡⎭⎪⎫114,9.而点A 到BC 的距离d =AB ·AC BC =3,则S △AEF =12EF ·3=32,所以S △AEF AE →·AF →=12|AE →||AF →|sin θ|AE →||AF →|cos θ,所以tan θ=2S △AEF AE →·AF →=3AE →·AF→∈⎝ ⎛⎦⎥⎤39,4311.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=ln x -ax 2,且函数f (x )的图象在点(2,f (2))处的切线的斜率是-32,则a=________.[解析] 由题意知,f ′(2)=-32,又f ′(x )=1x -2ax ,所以-32=12-2a ×2,得a =12.[答案] 1214.在距离某晚会直播不到20天的时候,某媒体报道,由两位明星合演的小品节目被毙,为此,某网站针对“是否支持该节目上晚会”对网民进行调查,得到如下数据:为________.[解析] 由分层抽样法的特点得,从持“支持”态度的网民中抽取的人数为48×8 0008 000+6 000+10 000=48×13=16.[答案] 1615.已知三棱锥P ABC 中,PA ,PB ,PC 两两垂直,且PA =2,PB =PC =1,则三棱锥P ABC 的外接球的体积为________.[解析] 三棱锥P ABC 的三条侧棱PA ,PB ,PC 两两垂直,且PA =2,PB =PC =1,则该三棱锥的外接球就是三棱锥扩展成的长方体的外接球.易得长方体的体对角线长为12+12+22=6,所以该三棱锥的外接球的半径为62,所以三棱锥P ABC 的外接球的体积为4π3×⎝ ⎛⎭⎪⎫623=6π.[答案]6π16.在△ABC 中,b cos C +c cos B =a cos C +c cos A =2,且a cos C +3a sin C =a +b ,则△ABC 的面积为________.【导学号:04024187】[解析] 由已知条件与余弦定理,得b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2,a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc=2,解得a =2,b =2.又a cos C +3a sin C =a +b ,即2cos C +23sin C=4,得sin ⎝ ⎛⎭⎪⎫C +π6=1,所以C +π6=π2,得C =π3,所以△ABC 的面积S =12×2×2sin π3=3. [答案] 3。
特色专项考前增分集训小题提速练(一) “12选择+4填空”80分练 (时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,4[答案] A2.设集合A ={y |y =2x,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)[答案] C3.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )【导学号:04024172】A.π6B.π4C.π3D.56π [答案] A4.设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ [答案] A5.点O 为坐标原点,点F 为抛物线C :y 2=42x 的焦点,点P 为C 上一点.若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4[答案] C6.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 200等于( )A .100B .101C .200D .201[答案] A7.某空间几何体的三视图如图1所示,则该几何体的表面积为( )图1A .12+4 2B .18+8 2C .28D .20+8 2[答案] D8.将函数f (x )=cos(π+x )(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x )的图象,则g (x )具有性质( )【导学号:04024173】A .最大值为2,图象关于直线x =π2对称B .周期为π,图象关于⎝⎛⎭⎪⎫π4,0对称C .在⎝ ⎛⎭⎪⎫-π2,0上单调递增,为偶函数D .在⎝⎛⎭⎪⎫0,π4上单调递增,为奇函数[答案] D9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图2所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )图2A .9B .18C .20D .35[答案] B10.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815 B.18 C.115D.130[答案] C11.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2[答案] D12.函数f (x )=x cos x 2在区间[0,4]上的零点个数为( )【导学号:04024174】A .4B .5C .6D .7[答案] C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________.[解析] 注意到与直线x -y -2=0平行且距离为1的直线方程分别是x -y -2+2=0和x -y -2-2=0,要使圆上有且只有两个点到直线x -y -2=0的距离为1,需满足在两条直线x -y -2+2=0和x -y -2-2=0中,一条与该圆相交且另一条与该圆相离,所以|2-2|2<r <|-2-2|2,即2-1<r <2+1.[答案] (2-1,2+1)14.如图3,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,BC 边上存在点Q ,使得PQ ⊥QD ,则实数a 的取值范围是________.【导学号:04024175】图3[解析] 如图,连接AQ .∵PA ⊥平面AC ,∴PA ⊥QD ,又PQ ⊥QD ,PQ ∩PA =P ,∴QD ⊥平面PQA ,于是QD ⊥AQ ,∴在线段BC 上存在一点Q ,使得QD ⊥AQ ,等价于以AD 为直径的圆与线段BC 有交点,∴a2≥1,a ≥2.[答案] [2,+∞)15.已知函数f (x )=x 2+mx +ln x 是单调递增函数,则m 的取值范围是________.[解析] 依题意知,x >0,f ′(x )=2x 2+mx +1x,令g (x )=2x 2+mx +1,x ∈(0,+∞).当-m4≤0时,g (0)=1>0恒成立,∴m ≥0时,g (x )>0恒成立, 当-m4>0时,则Δ=m 2-8≤0,∴-22≤m <0,综上,m 的取值范围是m ≥-2 2. [答案] -22,+∞)16.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.[解析] 设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元). [答案] 216 000。
小题提速练(三) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设命题p :∀x >0,log 2x <2x +3,则﹁p 为( )A .∀x >0,log 2x ≥2x +3B .∃x >0,log 2x ≥2x +3C .∃x >0,log 2x <2x +3D .∀x <0,log 2x ≥2x +3B [由全称命题的否定为特称命题,知﹁p 为∃x >0,log 2x ≥2x +3,故选B.] 2.已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集个数为( )A .3B .4C .7D .8 D [∵x ∈A ,y ∈A ,A ={0,1}, ∴x =0或x =1,y =0或y =1, ∴z =x +y =0或1或2, ∴B ={0,1,2},∴集合B 的子集个数为23=8.故选D.]3.已知复数m =4-x i ,n =3+2i ,若n m∈R ,则实数x 的值为( )【导学号:07804208】A .-6B .6 C.83D .-83D [因为n m =3+2i4-x i=++x -x+x=12-2x ++3x16+x2∈R ,所以8+3x =0,解得x =-83,故选D.]4.已知双曲线x 2a -3+y 22-a=1,焦点在y 轴上.若焦距为4,则a 等于( )A.32 B .5 C .7 D.12D [由题意,得⎩⎪⎨⎪⎧2-a >0a -3<0,解得a <2,所以22=2-a +3-a ,解得a =12,故选D.]5.已知cos ⎝⎛⎭⎪⎫2π3-2θ=-79,则sin ⎝⎛⎭⎪⎫π6+θ的值等于( )A.13 B .±13C .-19D .19B [因为cos ⎝ ⎛⎭⎪⎫2π3-2θ=cos ⎝ ⎛⎭⎪⎫2θ-2π3=-cos ⎝ ⎛⎭⎪⎫2θ-2π3+π=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π6=-79,即cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫θ+π6=79, 所以sin 2⎝ ⎛⎭⎪⎫θ+π6=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π62=19, 所以sin ⎝⎛⎭⎪⎫θ+π6=±13,故选B.] 6.如图6是某个几何体的三视图,则该几何体的体积是( )图6A .2+π2B .2+π3C .4+π3D .4+π2A [由三视图知该几何体是一个三棱柱与一个半圆柱的组合体,其中三棱柱的底面是腰长为2的等腰直角三角形,高为2,半圆柱的底面半径为1,高为1,所以该几何体的体积为12×2×2×2+12×π×12×1=2+π2,故选A.]7.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图7所示,且f ⎝ ⎛⎭⎪⎫π2=1,f (π)=-1,则φ的值为( )图7A .-π6B .-5π6C .-π3D .-2π3B [设函数f (x )的最小正周期为T ,由题意得,T 2=π-π2=π2,所以T =π,故ω=2ππ=2,故f (x )=2sin(2x +φ),因为f ⎝ ⎛⎭⎪⎫π2=1,故π+φ=π6+2k π(k ∈Z )或π+φ=5π6+2k π(k ∈Z ).所以φ=-5π6+2k π(k ∈Z )或φ=-π6+2k π(k ∈Z ).因为|φ|<π,故φ=-5π6或φ=-π6.结合函数f (x )的单调性可知,φ=-5π6,φ=-π6(舍去).]8.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问何日相逢?”现用程序框图描述,如图8所示,则输出结果n =( )【导学号:07804209】图8A .5B .4C .3D .2B [第一次循环,得S =0+1+1=2<10,不满足条件,继续循环;第二次循环,得n =2,a =12,A =2,S =2+12+2=92<10,不满足条件,继续循环;第三次循环,得n =3,a =14,A =4,S =92+14+4=354<10,不满足条件,继续循环;第四次循环,得n =4,a =18,A =8,S =354+18+8=1358>10,结束循环,输出n =4,故选B.]9.若a ,b ,c ∈(0,+∞),且ab +ac +bc +25=6-a 2,则2a +b +c 的最小值为( )A.5-1 B .5+1 C .25+2D .25-2D [由题意,得a 2+ab +ac +bc =6-25,所以24-85=4(a 2+ab +ac +bc )≤4a2+4ab +b 2+c 2+4ac +2bc =(2a +b +c )2,当且仅当b =c 时等号成立,所以2a +b +c ≥25-2,所以2a +b +c 的最小值为25-2,故选D.]10.椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( ) A.55 B .655C.855D .455C [设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|ME |)+(25-|NE |).因为|ME |+|NE |≥|MN |,所以|MN |-|ME |-|NE |≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|ME |-|NE |≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|EF |=12×2×45×2=855,故选C.]11.四面体A BCD 中,AB =CD =10,AC =BD =234,AD =BC =241,则四面体A BCD 外接球的表面积为( ) A .50π B .100π C .200πD .300πC [由题意,可将四面体补成一个长方体,此长方体的三对相对的侧面矩形的对角线长分别为10,234,241,易知此长方体的外接球就是四面体的外接球,长方体的体对角线就是长方体外接球的直径.设长方体同一顶点发出的三条棱的长度分别为x ,y ,z ,球的半径为R ,则⎩⎨⎧x 2+y 2=102y 2+z 2=342z 2+x 2=412,三式相加,得2(x 2+y 2+z 2)=400,即x2+y 2+z 2=200,所以(2R )2=x 2+y 2+z 2=200,即R 2=50,所以四面体外接球的表面积为4πR 2=4π×50=200π,故选C.]12.设函数f (x )满足2x 2f (x )+x 3f ′(x )=e x,f (2)=e28.则x ∈[2,+∞)时,f (x )的最小值为( ) A.e 22 B .3e 22C.e 24D .e 28D [由已知,得2xf (x )+x 2f ′(x )=e xx ,即[x 2f (x )]′=e xx,因此令F (x )=x 2f (x ),则F ′(x )=e x x ,F (2)=4f (2)=e 22.又由已知得f ′(x )=e x -2x 2fxx 3=e x-2F xx 3,此时再令φ(x )=e x-2F (x ),则φ′(x )=e x-2F ′(x )=e x-2·e xx=exx -x,所以当0<x <2时,φ′(x )<0,当x >2时,φ′(x )>0,所以φ(x )min =φ(2)=e 2-2F (2)=0,所以当x ∈[2,+∞)时,f ′(x )≥0,函数f (x )在[2,+∞)上单调递增,f (x )min =f (2)=e28,故选D.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若α∈⎝ ⎛⎭⎪⎫0,π2,cos ⎝ ⎛⎭⎪⎫π4-α=22cos 2α,则sin 2α=________.[解析] cos ⎝ ⎛⎭⎪⎫π4-α=22()cos α+sin α=22cos 2α,即cos α+sin α=4cos 2α, (cos α+sin α)2=16cos 22α. 1+sin 2α=16(1-sin 22α), 解得sin 2α=1516或sin 2α=-1,∵α∈⎝⎛⎭⎪⎫0,π2,2α∈()0,π,∴sin 2α=-1不合题意,舍去. [答案]151614.已知(1+ax 2)n(a ,n ∈N *)的展开式中第3项与第4项的二项式系数最大,且含x 4的项的系数为40,则a 的值为________.【导学号:07804210】[解析] 由二项式系数的性质可得n =5,T r +1=C r 515-r(ax 2)r =C r 5a r x 2r,由2r =4,得r =2,由C 25a 2=40,得a 2=4,又a ∈N *,所以a =2.[答案] 215.已知实数x ,y 满足条件⎩⎪⎨⎪⎧x ≥2,x +y ≤10,-2x +y +k ≥0,若目标函数z =3x +y 的最小值为8,则其最大值为________.[解析] 如图所示,作出可行域(阴影部分),易知目标函数z =3x +y 在A (2,4-k )处取得最小值,所以6+4-k =8,即k =2,由⎩⎪⎨⎪⎧x +y =10,-2x +y +2=0,得⎩⎪⎨⎪⎧x =4,y =6,则C 点坐标为(4,6),目标函数z =3x +y 在C 点处取得最大值z max =3×4+6=18. [答案] 1816.在△ABC 中,∠A =π3,O 为平面内一点,且|OA →|=|OB →|=|OC →|,M 为劣弧BC ︵上一动点,且OM →=pOB →+qOC →,则p +q 的取值范围为________.[解析] 因为|OA →|=|OB →|=|OC →|,所以O 为△ABC 外接圆的圆心,且∠BOC =2π3.以O为坐标原点,建立如图所示的平面直角坐标系,不妨设圆的半径为1,则B (1,0),C ⎝ ⎛⎭⎪⎫-12,32,设M (cos θ,sin θ)⎝ ⎛⎭⎪⎫0≤θ≤2π3,则OB →=(1,0),OC →=⎝ ⎛⎭⎪⎫-12,32,由OM →=pOB →+qOC →, 得⎩⎪⎨⎪⎧cos θ=p -q2sin θ=32q ,解得⎩⎪⎨⎪⎧p =cos θ+13sin θq =23sin θ,所以p +q =cos θ+3sin θ=2sin ⎝⎛⎭⎪⎫θ+π6,由0≤θ≤2π3,知π6≤θ+π6≤5π6,所以当θ+π6=π2,即θ=π3时,p +q 取得最大值2;当θ+π6=π6或θ+π6=5π6,即θ=0或θ=2π3时,p +q 取得最小值1.故p +q 的取值范围是[1,2]. [答案] [1,2]。
寒假作业(六) 不等式(注意速度和准度)一、“12+4”提速练1.不等式⎝ ⎛⎭⎪⎫x +12⎝ ⎛⎭⎪⎫32-x ≥0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12或x >32B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12或x ≥32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ -12≤x ≤32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <32 解析:选C 将不等式化为⎝ ⎛⎭⎪⎫x +12⎝ ⎛⎭⎪⎫x -32≤0,解得-12≤x ≤32.2.如果a <b <0,那么下列不等式成立的是( ) A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b解析:选D 由于a <b <0,不妨令a =-2,b =-1,可得1a =-12,1b =-1,∴1a >1b ,-1a <-1b,故A 不正确,D 正确.可得ab =2,b 2=1,∴ab >b 2,故B 不正确.可得-ab=-2,-a 2=-4,∴-ab >-a 2,故C 不正确.3.(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:选A 法一:作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15.法二:易求可行域顶点A (0,1),B (-6,-3),C (6,-3),分别代入目标函数,求出对应的z 的值依次为1,-15,9,故最小值为-15.4.若a >1,则a +1a -1的最小值是( )A .2B .aC .3D.2a a -1解析:选C ∵a >1, ∴a -1>0,a +1a -1=a -1+1a -1+1≥2+1=3,当a =2时取到等号,故选C.5.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x +y -6≤0,x -1≥0,则y x的取值范围是( )A .[2,5]B .(-∞,2]∪[5,+∞)C .(-∞,3]∪[5,+∞)D .[3,5]解析:选A 作出约束条件表示的可行域如图中阴影部分所示,y x表示可行域内一点(x ,y )与原点连线的斜率,由图易得A (2,4),B (1,5),故y x的取值范围是[2,5].6.(2018届高三·石家庄摸底)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a1+2b 2取得最大值时a 的值为( )A.12B.32C.34D.34解析:选D 因为圆心到直线的距离d =24a 2+b 2,则直线被圆截得的弦长L =2r 2-d 2=24-44a 2+b 2=23,所以4a 2+b 2=4.t =a1+2b 2=122×(22a )×1+2b 2≤122×12×[]22a 2+1+2b 22=142[8a 2+1+2(4-4a 2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,此时a =34.7.(2017·兰州诊断)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则x 2+y 2的最小值是( )A.322B.92C.5D .25解析:选B 约束条件所表示的可行域为一个三角形,而目标函数可视为可行域内的点到原点的距离的平方,其距离的最小值为原点到直线x +y =3的距离.∵原点到直线x +y =3的距离为32=322,∴x 2+y 2的最小值为92. 8.已知函数f (x )=ax 2-(a 2+1)x +a ,若a >0时,f (x )<0在x ∈(1,2)上恒成立,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,12 B .[2,+∞)C .(0,2]D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 解析:选D 由题意知⎩⎪⎨⎪⎧f 1≤0,f 2≤0,解得0<a ≤12或a ≥2.9.某工厂用A ,B 两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A 配件,耗时1 h ,每生产一件乙产品需用4个B 配件,耗时2 h ,该厂每天最多可从配件厂获得24个A 配件和16个B 配件,每天生产总耗时不超过8 h .若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为( )A .24万元B .22万元C .18万元D .16万元解析:选B 设该工厂分别生产甲、乙两种产品x 件,y 件,每天获得的利润为z 万元,由已知条件可得⎩⎪⎨⎪⎧x +2y ≤8,4x ≤24,4y ≤16,x ≥0,y ≥0,目标函数为z =3x +4y ,作出不等式组表示的平面区域如图中阴影部分所示,又由x ∈N ,y ∈N ,可知取得最大值时的最优解为(6,1),所以z max =3×6+4×1=22(万元),故选B.10.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .[-4,2]B .(-4,2)C .[-4,1]D .(-4,1)解析:选B 作出不等式组表示的可行域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a 2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B.11.(2018届高三·惠州调研)已知实数x ,y 满足:⎩⎪⎨⎪⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y的最小值为-4,则实数a 的值为( )A .1B .2C .4D .8解析:选B 作出不等式组表示的平面区域如图中阴影部分所示,当直线z =x +2y 经过点C ⎝ ⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2×a -53=-4,解得a =2.12.在实数集R 中定义一种运算“⊕”,具有以下性质: ①对任意a ,b ∈R ,a ⊕b =b ⊕a ; ②对任意a ∈R ,a ⊕0=a ;③对任意a ,b ,c ∈R ,(a ⊕b )⊕c =c ⊕(ab )+(a ⊕c )+(b ⊕c )-2c . 则函数f (x )=x ⊕1x(x >0)的最小值为( )A .4B .3C .22D .1解析:选B 根据题意,得f (x )=x ⊕1x =⎝⎛⎭⎪⎫x ⊕1x ⊕0=0⊕⎝ ⎛⎭⎪⎫x ·1x +(x ⊕0)+⎝ ⎛⎭⎪⎫1x⊕0-2×0=1+x +1x,即f (x )=1+x +1x.∵x >0,可得x +1x ≥2,当且仅当x =1x=1,即x =1时等号成立.∴1+x +1x ≥2+1=3,可得函数f (x )=x ⊕1x(x >0)的最小值为f (1)=3.13.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1m <x <2,则m的取值范围是________.解析:∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1m <x <2,∴方程(mx -1)(x -2)=0的两个实数根为1m 和2,且⎩⎪⎨⎪⎧m <0,1m <2,∴m 的取值范围是(-∞,0). 答案:(-∞,0)14.(2017·南京调研)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1,得0<t <1,由2log a b +3log b a =2t +3t=7,解得t=12,即log a b =12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1·1a -1+1=3,当且仅当a =2时取等号.答案:315.(2017·长春质检)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y ≤10,3x +y ≤18,x ≥0,y ≥0,则z =x +y2的最大值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,目标函数的方程化成斜截式为y =-2x +2z ,结合线性规划知识知,使目标函数z =x +y2取得最大值的最优解为M (4,6),故z =x +y2的最大值为7.答案:716.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y -1≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为1,则1a +4b的最小值为________.解析:作出不等式组所表示的平面区域如图中阴影部分所示,由z=ax +by (a >0,b >0)得,y =-a b x +z b ,平移直线y =-a b x +z b ,数形结合可知,当y =-abx +zb过点A (1,1)时,目标函数取得最大值1,即a +b =1,则1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=1+4+b a+4a b≥5+2b a ·4ab =5+4=9,当且仅当b a =4ab ,即b =2a =23时取等号,故1a +4b的最小值为9.答案:9二、能力拔高练1.已知互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,则下列等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:选B 若a >b ,则a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A 、D ; 又由a 2-c 2=2c (b -c ),故a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立, 例如取a =3,b =5,c =1,故选B. 2.设x ,y ∈R ,a >1,b >1,若a x =b y =2,2a +b =8,则1x +1y的最大值为( )A .2B .3C .4D .log 23解析:选B ∵a x =b y =2,∴x =log a 2,y =log b 2, ∴1x =log 2a ,1y=log 2b ,∴1x +1y=log 2a +log 2b =log 2ab ,∵2a +b =8≥22a ·b ,∴ab ≤8(当且仅当2a =b 时,取等号), ∴1x +1y ≤log 28=3,即1x +1y的最大值为3.3.给出如下四个命题: ①若a ≥0,b ≥0,则2a 2+b 2≥a +b ;②若ab >0,则|a +b |<|a |+|b |;③若a >0,b >0,a +b >4,ab >4,则a >2,b >2; ④若a ,b ,c ∈R ,且ab +bc +ca =1,则(a +b +c )2≥3. 其中正确的命题是( ) A .①② B .①④ C .②③D .③④解析:选B ①若a ≥0,b ≥0,则a 2+b 2≥2ab , ∴2(a 2+b 2)≥(a +b )2,∴2a 2+b 2≥a +b ,故①正确;②若ab >0,则|a +b |=|a |+|b |,故②不正确;③若a >0,b >0,a +b >4,ab >4,取a =5,b =1.5,结论不成立,故③不正确;④若a ,b ,c ∈R ,且ab +bc +ca =1,则(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ≥3(ab +bc +ca )=3,故④正确. 综上知,正确的命题是①④.4.(2018届高三·皖南八校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35 D.⎣⎢⎡⎦⎥⎤-15,0 解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧ x +2y =2,x -y =-4得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0); 由⎩⎪⎨⎪⎧ x -y =-4,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧ -2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0. 5.设a <0,(3x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为________. 解析:当a <b <0时,∀x ∈(a ,b ),2x +b <0,故(3x 2+a )·(2x +b )≥0在(a ,b )上恒成立,可转化为∀x ∈(a ,b ),a ≤-3x 2,所以a ≤-3a 2,所以-13≤a <0,所以b -a <13;当a <0<b 时,令x =0,则(3x 2+a )(2x +b )=ab <0,(3x 2+a )(2x +b )≥0在(a ,b )上不恒成立,不符合题意;当a <0=b 时,由题意知x ∈(a,0),2x (3x 2+a )≥0恒成立,所以3x 2+a ≤0,所以-13≤a <0,所以b -a ≤13.综上所述,b -a 的最大值为13. 答案:136.设不等式组⎩⎪⎨⎪⎧ x >0,y >0,y ≤-nx +3n 所表示的平面区域为D n ,记D n 内的整点(横坐标和纵坐标均为整数的点)个数为a n (n ∈N *),若m >1a 1a 2+1a 2a 3+…+1a n a n +1对于任意的正整数恒成立,则实数m 的取值范围是________.解析:不等式组⎩⎪⎨⎪⎧ x >0,y >0,y ≤-nx +3n 表示的平面区域为直线x =0,y =0,y =-nx +3n围成的直角三角形(不含直角边),区域内横坐标为1的整点有2n 个,横坐标为2的整点有n 个,所以a n =3n ,所以1a n a n +1=13n ·3n +3=19⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1a 2+1a 2a 3+…+1a n a n +1=19⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=19⎝ ⎛⎭⎪⎫1-1n +1,数列⎩⎨⎧⎭⎬⎫19⎝ ⎛⎭⎪⎫1-1n +1为单调递增数列,故当n 趋近于无穷大时,19⎝ ⎛⎭⎪⎫1-1n +1趋近于19,所以m ≥19. 答案:⎣⎢⎡⎭⎪⎫19,+∞。
小题提速练(九) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( )A .N ⊆MB .N ∩M =∅C .M ⊆ND .M ∩N =RC [集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},则M ⊆N ,故选C.] 2.设(1+i)(x +y i)=2,其中x ,y 是实数,则|2x +y i|=( )A .1 B. 2 C. 3 D. 5 D [由(1+i)(x +y i)=2得x -y +(x +y )i =2,即⎩⎪⎨⎪⎧ x -y =2,x +y =0,∴⎩⎪⎨⎪⎧x =1,y =-1.∴|2-i|= 5.]3.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生A 和B 都不是第一个出场,B 不是最后一个出场”的前提下,学生C 第一个出场的概率为( ) A.13 B .15 C.19D .320A [“A 和B 都不是第一个出场,B 不是最后一个出场”的安排方法中,另外3人中任何一个人第一个出场的概率都相等,故“C 第一个出场”的概率是13.]4.已知a =(2,1),b =(-1,1),则a 在b 方向上的投影为( )A .-22B .22C .-55D .55A [∵a =(2,1),b =(-1,1),∴a·b =-1,|b |=2, ∴a 在b 方向上的投影为a·b |b |=-22,故选A.] 5.已知S n 是等差数列{a n }的前n 项和,且S 3=2a 1,则下列结论错误的是( )A .a 4=0B .S 4=S 3C .S 7=0D .{a n }是递减数列D [∵S 3=2a 1,∴a 1+a 2+a 3=2a 1,∴a 2+a 3=a 1=a 1+a 4,∴a 4=0,∴S 4=S 3,S 7=7a 4=0,故选项A ,B ,C 正确,选D.]6.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为3,则该展开式中的常数项为( ) A .-120 B .-100 C .100D .120D [令x =1,可得a +1=3,故a =2,⎝ ⎛⎭⎪⎫2x -1x 5的展开式的通项为T r +1=(-1)r 25-r C r 5x5-2r,令5-2r =-1,得r =3,∴1x项的系数为C 3522(-1)3,令5-2r =1,得r =2,∴x 项的系数为C 2523,∴⎝ ⎛⎭⎪⎫x +2x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中的常数项为C 3522(-1)3+C 2524=120.]7.设F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ =60°,|PF 1|=|PQ |,则椭圆的离心率为( ) A.33 B .23 C.233D .13A [∵∠F 1PQ =60°,|PF 1|=|PQ |,∴△F 1PQ 为等边三角形,∴直线PQ 过右焦点F 2且垂直于x 轴,∴△F 1PF 2为直角三角形.∵|F 1P |+|F 1Q |+|PQ |=4a ,∴|F 1P |=43a ,|PF 2|=23a ,由勾股定理,得⎝ ⎛⎭⎪⎫43a 2=⎝ ⎛⎭⎪⎫23a 2+(2c )2,即a 2=3c 2, ∴e =ca =33.] 8.如图22,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )【导学号:07804225】图22A .18+36 5B .54+18 5C .90D .81B [由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.] 9.已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y -7≥0x +3y -13≤0x -y -1≤0,则z =|2x -3y +4|的最大值为( )A .3B .5C .6D .8 C [不等式组⎩⎪⎨⎪⎧3x +y -7≥0x +3y -13≤0x -y -1≤0表示的平面区域如图中阴影部分所示,其中A (2,1),B (1,4).设t =2x -3y ,平移直线y =23x ,则直线经过点B 时,t =2x -3y 取得最小值-10,直线经过点A 时,t =2x -3y 取得最大值1,所以-6≤t +4≤5,所以0≤z ≤6.所以z 的最大值为6,故选C.]10.《九章算术》是我国古代数学成就的杰出代表作.其中“方田”章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图23)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4米的弧田,按照上述经验公式计算所得弧田面积约是( )图23A .6平方米B .9平方米C .12平方米D .15平方米B [弦长为2×4sin π3=43,圆心到弦的距离为d =4×cos π3=2,所以弧田面积为12×[43×(4-2)+(4-2)2]=43+2≈9(平方米).]11.对于函数f (x ),如果存在x 0≠0,使得f (x 0)=-f (-x 0),则称(x 0,f (x 0))与(-x 0,f (-x 0))为函数图象的一组奇对称点.若f (x )=e x -a (e 为自然对数的底数)的图象上存在奇对称点,则实数a 的取值范围是( ) A .(-∞,1) B .(1,+∞) C .(e ,+∞)D .[1,+∞)B [因为存在实数x 0(x 0≠0),使得f (x 0)=-f (-x 0),则e x 0-a =-e -x 0+a ,即e x 0+1e x 0=2a ,又x 0≠0,所以2a =e x 0+1ex 0>2e x 0·1ex 0=2,即a >1,故选B.]12.已知定义在(0,+∞)上的函数f (x )的导函数f ′(x )满足xf ′(x )+f (x )=ln xx,且f (e)=1e ,其中e 为自然对数的底数,则不等式f (x )+e >x +1e 的解集是( ) A .(0,e)B .⎝ ⎛⎭⎪⎫0,1eC.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)A [令g (x )=xf (x ),则f (x )=g x x,g ′(x )=ln xx,∴f ′(x )=g xx -g xx 2=ln x -g xx2,令h (x )=ln x -g (x ),则h ′(x )=1x-g ′(x )=1-ln x x,当0<x <e 时,h ′(x )>0,当x >e 时,h ′(x )<0,∴h (x )≤h (e)=1-g (e)=1-e f (e)=0,∴f ′(x )≤0.令φ(x )=f (x )-x ,则φ′(x )=f ′(x )-1≤-1<0,∴φ(x )为减函数,又不等式f (x )+e >x +1e 可化为φ(x )>φ(e),∴0<x <e ,故选A.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.我们可以用随机数法估计π的值,如图24所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为________.(保留小数点后3位)图24[解析] 在空间直角坐标系O xyz 中,不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211 000,即π≈3.126. [答案] 3.12614.过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.[解析] 依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎨⎧x 2=4y x =3y -,消去x 得3(y-1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163.[答案]16315.在数列{a n }中,a 1=2,a 2=8,对所有正整数n 均有a n +2+a n =a n +1,则∑n =12 017a n =________.[解析] ∵a 1=2,a 2=8,a n +2+a n =a n +1,∴a n +2=a n +1-a n ,∴a 3=a 2-a 1=8-2=6,同理可得a 4=-2,a 5=-8,a 6=-6,a 7=2,a 8=8,…,∴a n +6=a n ,又2 017=336×6+1,∴∑n =12 017a n =336×(a 1+a 2+a 3+a 4+a 5+a 6)+a 1=2.[答案] 216.球内有一个圆锥,且圆锥底面圆周和顶点均在球面上,其底面积为3π,已知球的半径R =2,则此圆锥的体积为________.【导学号:07804226】[解析] 设圆锥底面半径为r ,由πr 2=3π得r = 3. 如图所示,O 为球心,O 1为圆锥底面圆的圆心, 设O 1O =x ,则x =R 2-r 2=4-3=1, 所以圆锥的高h =R +x =3或h =R -x =1,所以圆锥的体积V =13×3π×3=3π或V =13×3π×1=π.[答案] 3π或π。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
高考小题专攻练4.数列小题强化练,练就速度和技能,掌握高考得分点!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=( )A.-1B.1C.3D.7【解析】选B.因为a1+a3+a5=105,即3a3=105,所以a3=35.同理可得a4=33,所以公差d=a4-a3=-2,所以a20=a4+(20-4)×d=1.2.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( )A.错误!未找到引用源。
B.-错误!未找到引用源。
C.错误!未找到引用源。
D.-错误!未找到引用源。
【解析】选 C.设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=错误!未找到引用源。
.3.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( )A.错误!未找到引用源。
B.-错误!未找到引用源。
C.±错误!未找到引用源。
D.±3【解析】选A.依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6=错误!未找到引用源。
=错误!未找到引用源。
.4.等差数列{a n}中,a1>0,公差d<0,S n为其前n项和,对任意自然数n,若点(n,S n)在以下4条曲线中的某一条上,则这条曲线应是( )【解析】选C.因为S n=na1+错误!未找到引用源。
d,所以S n=错误!未找到引用源。
小题提速练(六) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A .3,-2B .3,2C .3,-3D .-1,4A [∵(1+i)+(2-3i)=a +b i , ∴a =3,b =-2,故选A.]2.设集合A ={y |y =2x,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)C [∵A ={y |y =2x ,x ∈R }=(0,+∞),B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B =(-1,+∞),故选C.]3.(2017·广东惠州二模)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =1-x 2B .y =log 2|x |C .y =-1xD .y =x 3-1A [函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项B 中的函数是偶函数,但其单调性不符合;选项C 中的函数为奇函数,不符合要求;选项D 中的函数为非奇非偶函数,不符合要求.只有选项A 符合要求.故选A.]4.在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为( )【导学号:07804217】A.π6 B .π4C.π3D .56π A [由5cos(B +C )+3=0得cos A =35,则A ∈⎝⎛⎭⎪⎫0,π2,sin A =45,445=52sin B ,sin B =12.又a >b ,B 必为锐角,所以B =π6.]5.已知m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中真命题的个数是( )①若m ⊥α,m ⊥β,则α∥β; ②若m ∥n ,m ⊥α,则n ⊥α; ③若m ∥α,α∩β=n ,则m ∥n ; ④若m ⊥α,m ⊂β,则α⊥β. A .1 B .2 C .3D .4C [对于①,由于垂直于同一条直线的两个平面互相平行,故①为真命题;对于②,两条平行线中的一条直线垂直于一个平面,则另一条也垂直于这个平面,故②为真命题;对于③,直线m 与直线n 可能异面,也可能平行,故③为假命题;对于④,由面面垂直的判定定理可知④为真命题.故选C.]6.某四面体的三视图如图15所示,其中正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中的最大面的面积为( )图15A .2 2B .4C .2 3D .2 6C [将几何体放在正方体中考虑,可知该几何体为三棱锥S ABD ,它的四个面中面SBD 的面积最大,三角形SBD 是边长为22的等边三角形,所以此四面体的四个面中的最大面的面积为34×8=2 3.] 7.函数f (x )=A sin(ωx +φ)(A >0,ω>0)的最小正周期为π,其图象关于直线x =π3对称,则|φ|的最小值为( ) A.π12 B .π6C.5π6D .5π12B [由题意,得ω=2,所以f (x )=A sin(2x +φ).因为函数f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),即φ=k π-π6(k ∈Z ),当k =0时,|φ|取得最小值π6,故选B.] 8.已知A ,B 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,若在双曲线上存在点P 满足2|PA→+PB →|≤|AB →|,则双曲线C 的离心率e 的取值范围是( ) A .1<e ≤2 B .e ≥2 C .1<e ≤ 2D .e ≥ 2B [设点P 是双曲线左支上的点,并设双曲线左顶点为E ,则2|PA →+PB →|≤|AB →|,可化为4|PO →|≤2c (2c 为双曲线的焦距),|PO →|≤12c ,易证|PO →|≥a ,于是a ≤12c ,所以e ≥2.故选B.]9.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞B .⎣⎢⎡⎭⎪⎫-12,+∞C .(0,+∞)D .[0,+∞)D [f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.]10.从1,2,3,4,5中挑出三个不同数字组成一个五位数,则其中有两个数字各用两次(例如,12332)的概率为( )【导学号:07804218】A.25 B .35 C.47D .57B [从1,2,3,4,5中挑出三个不同数字组成一个五位数,共有C 35(C 13C 35A 22+C 13C 15C 24C 22)=1 500(种)不同选法,其中有两个数字各用两次的选法有C 35C 13C 15C 24C 22=900(种),所以所求概率P =9001 500=35.]11.如图16所示,ABCD A 1B 1C 1D 1是棱长为1的正方体,S ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的表面积为( )图16A.916π B .2516π C.4916π D .8116π D [连接AC ,BD 交于点G ,连接A 1C 1,B 1D 1交于点G 1,易知S ,G ,G 1在同一直线上,连接SG 1. 设O 为球心,OG 1=x ,连接OB 1,则OB 1=SO =2-x ,由正方体的性质知B 1G 1=22, 则在Rt△OB 1G 1中,OB 21=G 1B 21+OG 21,即(2-x )2=x 2+⎝ ⎛⎭⎪⎫222,解得x =78,所以球的半径R =OB 1=98,所以球的表面积S =4πR 2=8116π.]12.已知椭圆C :x 23+y 2=1,设直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l 的距离为32,则△AOB 面积的最大值为( ) A.34B .32C. 3D .2 3B [设A (x 1,y 1),B (x 2,y 2).(1)当AB ⊥x 轴时,|AB |= 3.(2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m . 由已知得|m |1+k2=32,则m 2=34(k 2+1). 把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0, 所以x 1+x 2=-6km 3k 2+1,x 1x 2=m 2-3k 2+1. 所以|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m 2k 2+2-m 2-3k 2+1=k 2+k 2+1-m 2k 2+2=k 2+k 2+k 2+2=3+12k29k 4+6k 2+1. 当k ≠0时,|AB |2=3+129k 2+1k2+6≤3+122×3+6=4, 当且仅当9k 2=1k 2,即k =±33时等号成立.综上所述|AB |max =2,所以当|AB |最大时, △AOB 面积取最大值S =12×|AB |max ×32=32.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.某校1 000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N (90,σ2).若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70的人数为________. [解析] 记考试成绩为ξ,则考试成绩的正态曲线关于直线ξ=90对称.因为P (70<ξ≤110)=0.7,所以P (ξ≤70)=P (ξ>110)=12×(1-0.7)=0.15,所以这次考试分数不超过70的人数为1 000×0.15=150. [答案] 15014.在矩形ABCD 中,AB =1,AD =3,P 为矩形内一点,且|AP →|=32,若AP →=λAB →+μAD →(λ,μ∈R ),则λ+3μ的最大值为________.[解析] 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,3),D (0,3).设P (x ,y ),则AP →=(x ,y ),AB →=(1,0),AD →=(0,3). 由AP →=λAB →+μAD →(λ,μ∈R ),得⎩⎨⎧ x =λ,y =3μ.又因为⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤32,x 2+y 2=34,所以λ+3μ=x +y ≤x 2+y 2=62⎝ ⎛⎭⎪⎫当且仅当x =y =64时取得最大值. [答案]6215.已知x ,y 满足⎩⎪⎨⎪⎧ y ≥x ,x +y ≤2,x ≥a ,若z =2x +y 的最大值是最小值的3倍,则a 的值是________.[解析] 画出⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x≥a表示的可行域如图所示:由⎩⎪⎨⎪⎧ y =x ,x +y =2得A (1,1),由⎩⎪⎨⎪⎧x =a ,y =x得B (a ,a ).当直线z =2x +y 过点A (1,1)时,目标函数z =2x +y 取得最大值,最大值为3; 当直线z =2x +y 过点B (a ,a )时,目标函数z =2x +y 取得最小值,最小值为3a . 因为3=3×3a ,所以a =13.[答案] 1316.已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边长的最小值是________.【导学号:07804219】[解析] 设内角A ,B ,C 所对的边分别为a ,b ,c . ∵A ,32B ,C 成等差数列,∴A +C =3B . 又∵A +B +C =π, ∴B =π4.由S △ABC =12ac sin B =1+2,得ac =2×(2+2).∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac ≥(2-2)ac =4,当且仅当a =c 时,等号成立,∴b ≥2,∴b 的最小值为2. [答案] 2。