主成分分析0523
- 格式:ppt
- 大小:2.77 MB
- 文档页数:102
主成分分析科技名词定义中文名称:主成分分析英文名称:principal component analysis定义:一种统计方法,它对多变量表示数据点集合寻找尽可能少的正交矢量表征数据信息特征。
应用学科:地理学(一级学科);数量地理学(二级学科)以上内容由全国科学技术名词审定委员会审定公布百科名片主成分分析(Principal Component Analysis,PCA),将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。
又称主分量分析。
在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。
主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。
信息的大小通常用离差平方和或方差来衡量。
目录主成分分析内容展开主成分分析内容展开编辑本段主成分分析简介在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。
人们自然希望变量个数较少而得到的信息较多。
在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。
主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
原理设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。
应用学科主成分分析作为基础的数学分析方法,其实际应用十分广泛,比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用,是一种常用的多变量分析方法。
成分分析成分分析(包含成分检测、成分测试项目)是通过微观谱图对未知成分进行分析的技术方法,因该技术普遍采用光谱,色谱,能谱,热谱,质谱等微观谱图,行业内统称为“微谱分析”。
主成分分析方法主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它可以将高维数据转化为低维数据,同时保留数据的主要特征。
主成分分析方法在数据挖掘、模式识别、图像处理等领域被广泛应用,本文将介绍主成分分析的基本原理、算法步骤和应用场景。
1. 基本原理。
主成分分析的基本原理是通过线性变换将原始的特征空间转换为新的特征空间,新的特征空间是由原始特征的线性组合构成的,这些线性组合被称为主成分。
主成分分析的目标是找到能够最大程度保留原始数据信息的主成分,从而实现数据的降维。
2. 算法步骤。
主成分分析的算法步骤如下:(1)标准化数据,对原始数据进行标准化处理,使得每个特征的均值为0,方差为1。
(2)计算协方差矩阵,根据标准化后的数据计算特征之间的协方差矩阵。
(3)计算特征值和特征向量,对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
(4)选择主成分,按照特征值的大小,选择最大的k个特征值对应的特征向量作为主成分。
(5)数据转换,利用选定的主成分进行数据转换,将原始数据映射到新的低维空间中。
3. 应用场景。
主成分分析方法在实际应用中具有广泛的场景,例如:(1)数据可视化,通过主成分分析可以将高维数据转化为二维或三维数据,便于数据的可视化展示和分析。
(2)特征提取,在图像处理和模式识别领域,主成分分析可以用于提取图像的主要特征,从而实现图像的压缩和识别。
(3)数据预处理,在机器学习和数据挖掘任务中,主成分分析可以用于数据的降维处理,减少特征的数量和复杂度,提高模型的训练效率和预测准确度。
总结。
主成分分析是一种重要的数据分析方法,它通过线性变换将高维数据映射到低维空间,从而实现数据的降维和特征提取。
在实际应用中,主成分分析具有广泛的应用场景,能够帮助人们更好地理解和分析数据。
希望本文的介绍能够帮助读者更好地理解主成分分析方法,并在实际工作中加以应用。
(一)主成分分析法的基本思想主成分分析( Principal Component Analysis )是利用降 的思想,将多个 量 化 少数几个 合 量(即主成分) ,其中每个主成分都是原始 量的 性 合,各主成分之 互不相关, 从而 些主成分能 反映始 量的 大部分信息,且所含的信息互不重叠。
[2]采用 种方法可以克服 一的 指 不能真 反映公司的 情况的缺点,引 多方面的 指 , 但又将复 因素 几个主成分, 使得复 得以 化,同 得到更 科学、准确的 信息。
(二)主成分分析法代数模型假 用 p 个 量来描述研究 象,分 用 X 1, X 2⋯X p 来表示, p 个 量构成的 p 随机向量 X=(X 1,X 2⋯X p )t 。
随机向量 X 的均 μ, 方差矩 Σ。
X 行 性 化,考 原始 量的 性 合:Z 1=μ11 X 1+μ12 X 2+⋯μ 1p X p Z 2=μ21 X 1+μ22 X 2+⋯μ 2p X p ⋯⋯ ⋯⋯ ⋯⋯Z p =μp1 X 1+μp2 X 2+⋯μ pp X p主成分是不相关的 性 合 Z 1,Z 2⋯⋯ Z p ,并且 Z 1 是 X 1,X 2 ⋯X p 的 性 合中方差最大者, Z 2 是与 Z 1 不相关的 性 合中方差最大者,⋯, Z p 是与 Z 1, Z 2 ⋯⋯ Z p-1 都不相关的 性 合中方差最大者。
(三)主成分分析法基本步第一步: 估 本数 n , 取的 指 数 p , 由估 本的原始数据可得矩 X=(x ij ) m ×p ,其中 x ij 表示第 i 家上市公司的第 j 指 数据。
第二步: 了消除各 指 之 在量 化和数量 上的差 , 指 数据 行 准化,得到 准化矩 (系 自 生成) 。
第三步:根据 准化数据矩 建立 方差矩 R ,是反映 准化后的数据之 相关关系密切程度的 指 , 越大, 明有必要 数据 行主成分分析。
一、主成分分析的思想主成分分析是数据处理中常用的降维方法。
我们需要处理的数据往往是高维数据,把它看成是由某个高维分布产生。
高维分布的不同维之间可能具有较强的相关性,这也就为数据降维提供了可能。
为了叙述清楚主成分分析的思想,我们通过二维数据进行叙述,即数据是由随机向量 (X_1,X_2) 产生,并假设X_1=X_2 。
通过该分布得到的样本点如图下所示:如果我们把每个数据点用 (x_1,x_2) 表示,那么,每个数据是二维的。
实际上,容易发现,我们只需要将坐标系进行旋转,旋转到红色坐标系位置,此时,每个数据点在新坐标系下的表示形式为为 (x_1^{'},0) ,由于每个数据点的第二维坐标都是 0 ,所以每个数据点只需要用一个数表示就行了,这样就把数据的维数从二维降到了一维。
接下来考虑不是完全线性关系,但是具有强相关性的情况,如下图所示:在这种情况下,我们不可能通过坐标系的平移与旋转,使所有点都落在一根轴上,即不可能精确地把数据用一维表示。
但是注意到 (X_1,X_2) 仍然有强相关性,我们仍然将坐标轴旋转到红色位置,可以看出,将数据在 x_1^{'} 上的投影近似代表原数据,几乎可以完全反映出原数据的分布。
直观看,如果要将数据投影到某根轴,并用投影来表示原数据,将数据压缩成一维,那么投影到 x_1^{'} 是最好的选择。
因为投影到这跟轴,相比于投影到其他轴,对原数据保留的信息量最多,损失最小。
如何衡量保留的信息量呢?在主成分分析中,我们用数据在该轴的投影的方差大小来衡量,即投影后方差越大(即投影点越分散),我们认为投影到该轴信息保留量最多。
从这种观点看,投影到 x_1^{'} 确实是最好的选择,因为投影到这根轴,可使得投影点最分散。
我们将数据的中心平移到原点(即新坐标轴的原点在数据的中心位置),为了消除单位的影响,我们将数据的方差归一化。
进一步考虑如下数据分布:根据上述,如果要将数据压缩为一维的,那么应该选择 F_1 轴进行投影,如果用该投影表示原数据的损失过大,我们可以再选择第二根轴进行投影,第二根轴应该与 F_1 垂直(保证在两根轴上的投影是不相关的)并且使得数据在该轴上投影方差最大,即图中的 F_2 轴(如果是二维情况,第一根轴确定后,第二根轴就确定了。
1、主成分分析的概念及基本思想主成分分析(Principle Component Analysis, PCA)是最为常用的特征提取方法,被广泛应用到各领域,如图像处理、综合评价、语音识别、故障诊断等。
它通过对原始数据的加工处理,简化问题处理的难度并提高数据信息的信噪比,以改善抗干扰能力。
主成分概念首先由Karl parson在1901年引进,不过当时只是对非随机变量进行讨论,1933年Hotelling将这个概念推广到随机向量。
在实际问题中,研究多指标(变量)问题是经常遇到的,然而在多数情况下,不同指标之间是有一定相关性。
由于指标较多并且指标之间有一定的相关性,势必增加了分析问题的复杂性。
主成分分析就是设法将原来众多具有一定相关性的指标(比如p个指标),重新组合成一组新的相互无关的综合指标来代替原来指标。
通常数学上的处理就是将原来p个指标作线性组合,作为新的综合指标,但是这种线性组合,如果不加限制,则可以有很多,我们应该如何去选取呢?如果将选取的第一个线性组合即第一个综合指标记为F1,自然希望F1尽可能多的反映原来指标的信息,这里的“信息”用什么来表达?最经典的方法就是用F1的方差来表达,即Var(F1)越大,表示F1包含的信息越多。
因此在所有的线性组合中所选取的F1应该是方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0 ,称F2为第二主成分,依此类推可以构造出第三,四,…,第p个主成分。
不难想象这些主成分之间不仅不相关,而且它们的方差依次递减。
因此在实际工作中,就挑选前几个最大主成分,虽然这样做会损失一部分信息,但是由于它使我们抓住了主要矛盾,并从原始数据中进一步提取了某些新的信息。
因而在某些实际问题的研究中得益比损失大,这种既减少了变量的数目又抓住了主要矛盾的做法有利于问题的分析和处理。
什么是主成分分析主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
主成分分析基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。