吉林省吉林一中2014-2015学年高二上学期期末考试数学理试题 Word版含答案
- 格式:doc
- 大小:586.00 KB
- 文档页数:11
绝密★启用前吉林一中2013--2014学年度上学期高二期末考试数学理测试试卷考试范围:xxx ;考试时间:100分钟;命题人:xxx1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请修改第I 卷的文字说明一、单项选择1. 倾斜角为60︒的直线l 经过抛物线22(0)y px p =>的焦点,且与抛物线相交于,A B 两点(点A 在x 轴上方),则AF BF的值为( )A .1B . 2C .3D .42. 过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠= ,则椭圆的离心率为 ( )A B C .12 D .133. 若抛物线)0(22>=p px y 的焦点在直线022=--y x 上,则该抛物线的准线方程为( )A.2x =-B. 4=xC. 8-=xD. 4-=y4. 若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 ( )A .2-B .2C .4-D .45. 若抛物线()220y px p =>上一点M 到准线及对称轴的距离分别为10和6,则点M的横坐标和p 的值分别为( ) A .9,2 B .1,18C .9,2或1,18D .9,18或1,26. 双曲线)0,0(12222>>=-b a bx a y 的一条渐近线为2y x =,则该双曲线的离心率等于( ) A .25 B .5 C .6 D .26 7. 抛物线212=y x 截直线62-=x y 所得的弦长等于( )A B C .15 8. 以双曲线4422=-y x 的中心为顶点,右焦点为焦点的抛物线方程是( ) A .x y 322= B .x y 522= C .x y 542= D .x y 342= 9. $selection$10. 双曲线22221x y a b -=(0,0a b >>)的两个焦点为12,F F ,若双曲线上存在一点P ,满足122PF PF =,则双曲线离心率的取值范围为 ( ) A .(]1,3 B .()13, C .()3+∞, D .[)3,+∞ 11. 若双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线22y x =+有公共点,则此双曲线的离心率的取值范围是 ( ) A .[3,)+∞ B .(3,)+∞ C .(1,3] D .(1,3)12. 中心为)00(,, 一个焦点为)25,0(F 的椭圆,截直线23-=x y 所得弦中点的横坐标为21,则该椭圆方程是 ( ) A .125275222=+y x B .1257522=+y x C .1752522=+y x D .175225222=+y x 第II 卷(非选择题)二、填空题13. 已知抛物线2:C y x =与直线:1l y kx =+,“0k ≠”是“直线l 与抛物线C 有两个不同交点”的 条件14. 右焦点与抛物线x y 162=的焦点重合,则该双曲线15. 的准线方程是16. 已知双曲线22221x y a b-=(a >0, b >0)的离心率为2,一个焦点与抛物线216y x=的焦点相同,则双曲线的方程为三、解答题17. 已知点A 是椭圆()22:109x y C t t+=>的左顶点,直线:1()l x my m =+∈R 与椭圆C 相交于,E F 两点,与x 轴相交于点B .且当0m =时,△AEF 的面积为163. (1)求椭圆C 的方程;(2)设直线AE ,AF 与直线3x =分别交于M ,N 两点,试判断以MN 为直径的圆是否经过点B ?并请说明理由.18. 如图,四棱锥P ABCD -的底面ABCD 为一直角梯形,其中,BA AD CD AD ⊥⊥,2,CD AD AB PA ==⊥底面ABCD ,E 是PC 的中点.(Ⅰ)求证:BE //平面PAD ;(Ⅱ)若BE ⊥平面PCD ,求平面EBD 与平面BDC 夹角的余弦值.19. 已知)1ln()(-=x a x f ,bx x x g +=2)(,)()1()(x g x f x F -+=,其中R b a ∈,. (I)若)(x f y =与)(x g y =的图像在交点(2,k )处的切线互相垂直,求b a ,的值;(II)若2=x 是函数)(x F 的一个极值点,0x 和1是)(x F 的两个零点,且0x ∈()1,+n n N n ∈,求n ;(III)当2-=a b 时,若1x ,2x 是)(x F 的两个极值点,当|1x -2x |>1时,求证:|)(1x F -)(x F |>3-42ln .20. ,(1)求椭圆的方程;(2)设直线:(0,0)l y kx m k m =+≠>与椭圆交于P ,Q 两点,且以PQ 为对角线的菱形的一顶点为(-1,0),求:△OPQ 面积的最大值及此时直线的方程.21. 已知椭圆2214x y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率.(I)求椭圆2C 的方程.(II)设O 为坐标原点,点A.B 分别在椭圆C 1和C 2上,2OB OA =,求直线AB 的方程.22. 如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(I)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(II)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.参考答案一、单项选择1.【答案】C【解析】2.【答案】B【解析】由题意知点P的坐标为(-c,2ba),或(-c,-2ba),因为1260F PF∠=,那么222c2acba==,这样根据a,b,c,选B3.【答案】A【解析】抛物线的焦点坐标为(,0)2p,代入直线220x y--=得202p-=,即4p=,所以抛物线的准线方程为4222px=-=-=-,选A.4.【答案】D【解析】双曲线22122x y-=的右焦点为(2,0),所以抛物线22y px=的焦点为(2,0),则4p=.5.【答案】C【解析】6.【答案】A【解析】双曲线的渐近线方程为ay xb=±,已知双曲线的一条渐近为2y x=,所以2,ab=2222,24a ab bc a===-,即225,4c a=所以25,4e e==,选A.7.【答案】D.【解析】由⎩⎨⎧==6-2122xyxy得:099-2=+xx,设两交点A(11yx,)B(22yx,),则9xx,92121==+xx,所以8.【答案】C【解析】 9.【答案】C 【解析】10.【答案】A 【解析】 11.【答案】A 【解析】12.【答案】C 【解析】 二、填空题13.【答案】必要不充分 【解析】 14.【解析】15.【答案】2y = 【解析】16.【答案】112422=-y x【解析】抛物线216y x =焦点为(4,0),所以4;c =又2,2;ce a a==∴=于是 22212.b c a =-=所求双曲线线方程为221.412x y -= 三、解答题 17.【答案】(1)当0m =时,直线l 的方程为1x =,设点E 在x 轴上方,由221,91x y tx ⎧+=⎪⎨⎪=⎩解得(1,E F ,所以EF =. 因为△AEF的面积为116423⨯=,解得2t =. 所以椭圆C 的方程为22192x y +=. (2)由221,921x y x my ⎧+=⎪⎨⎪=+⎩得22(29)4160m y my ++-=,显然m ∈R . 设1122(,),(,)E x y F x y ,则121222416,2929m y y y y m m --+==++, 111x my =+,221x my =+.又直线AE 的方程为11(3)3y y x x =++,由11(3),33y y x x x ⎧=+⎪+⎨⎪=⎩解得116(3,)3y M x +,同理得226(3,)3y N x +.所以121266(2,),(2,)33y y BM BN x x ==++ ,又因为121266(2,)(2,)33y y BM BN x x ⋅=⋅++12121212363644(3)(3)(4)(4)y y y y x x my my =+=+++++ 1212212124(4)(4)364()16my my y y m y y m y y +++=+++ 2222216(436)164164(29)3216(29)m m m m m -+-⨯+⨯+=-++22264576641285769m m m ---++=0= 所以BM BN ⊥,所以以MN 为直径的圆过点B【解析】18.【答案】设,AB a PA b ==,建立空间坐标系,使得(0,0,0),(,0,0)A B a ,(0,0,)P b ,(2,2,0),(0,2,0)C a a D a ,(,,)2bE a a .(Ⅰ)(0,,)2bBE a = ,(0,2,0),(0,0,)AD a AP b == ,所以1122BE AD AP =+ ,BE ⊄平面PAD ,//BE ∴平面PAD .(Ⅱ)BE ⊥ 平面PCD ,BE PC ∴⊥,即0BE PC ⋅=(2,2,)PC a a b =- ,22202b BE PC a ∴⋅=-= ,即2b a =.平面BDE 和平面BDC 中,(0,,),(,2,0)BE a a BD a a ==- (,2,0)BC a a =,所以平面BDE 的一个法向量为1(2,1,1)n =- ;平面BDC 的一个法向量为2(0,0,1)n =;12cos ,n n <>=EBD 与平面BDC【解析】19.【答案】(I)1)(-='x ax f ,b x x g +='2)( 由题知⎩⎨⎧-='⋅'=1)2()2()2()2(g f g f ,即⎩⎨⎧-=++=1)4(240b a b解得⎪⎩⎪⎨⎧-=-=221b a(II))()1()(x g x f x F -+==)(ln 2bx x x a +-,b x xax F --='2)( 由题知⎩⎨⎧=='0)1(0)2(F F ,即⎪⎩⎪⎨⎧=+=--01042b b a解得a =6,b =-1∴)(x F =6x ln -(2x -x ),126)(+-='x x x F =xx x )2)(32(-+- ∵x >0,由)(x F '>0,解得0<x <2;由)(x F '<0,解得x >2 ∴)(x F 在(0,2)上单调递增,在(2,+∞)单调递减, 故)(x F 至多有两个零点,其中1x ∈(0,2),2x ∈(2, +∞) 又)2(F >)1(F =0,)3(F =6(3ln -1)>0,)4(F =6(4ln -2)<0 ∴0x ∈(3,4),故n =3(III)当2-=a b 时,)(x F =])2([ln 2x a x x a -+-,)2(2)(---='a x x a x F =xx a x )1)(2(-+-, 由题知)(x F '=0在(0,+∞)上有两个不同根1x ,2x ,则a <0且a ≠-2,此时)(x F '=0的两根为-2a,1, 由题知|-2a-1|>1,则42a +a +1>1,2a +4a >0又∵a <0,∴a <-4,此时-2a>1 则)(x F 与)(x F '随x 的变化情况如下表:∴|)(1x F -)(x F |=)(x F 极大值-)(x F 极小值=F(-2)―F(1) =ln(a ―2a )+412a ―1, 设141)2ln()(2-+-=a a a a ϕ,则121)2ln()(++-='a a a ϕ,211)(+=''a a ϕ,∵a <-4,∴a 1>―41,∴211)(+=''a a ϕ>0,∴)(a ϕ'在(―∞,―4)上是增函数,)(a ϕ'<=-')4(ϕ012ln <- 从而)(a ϕ在(―∞,―4)上是减函数,∴)(a ϕ>)4(-ϕ=3-42ln 所以|)(1x F -)(x F |>3-42ln . 【解析】20.【答案】(12)面积取最大值1,y =∴224,1a b ==(Ⅱ)设1122(,),(,),P x y Q x y PQ 的中点为00(,)x y将直线y kx m =+与联立得222(14)8440k x kmx m +++-=,222216(41)0,41k m k m ∆=+->∴+> ① 又0x =又(-1,0整理得2341km k =+ ②)面积取最大值1,此时k∴直线方程为y =【解析】21.【答案】解:(1)椭圆的长轴长为4,离心率为∵椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率 ∴椭圆C 2的焦点在y 轴上,2b=4,为∴b=2,a=4 ∴椭圆C 2的方程为;(2)设A,B 的坐标分别为(x A ,y A ),(x B ,y B ), ∵∴O,A,B 三点共线,且点A,B 不在y 轴上 ∴设AB 的方程为y=kx 将y=kx 代入,消元可得(1+4k 2)x 2=4,∴将y=kx 代入,消元可得(4+k 2)x 2=16,∴∵,∴=4,∴,解得k=±1,∴AB 的方程为y=±x【解析】22.【答案】解:(I)EF AC ,AC ABC ⊆平面,EF ABC ⊆平面EF ABC ∴ 平面又EF BEF ⊆平面EF l ∴l PAC ∴ 平面(II)连接DF,用几何方法很快就可以得到求证.(这一题用几何方法较快,向量的方法很麻烦,特别是用向量不能方便的表示角的正弦.个人认为此题与新课程中对立体几何的处理方向有很大的偏差.)【解析】。
吉林市普通高中201-2014学年度上学期期末教学质量检测 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,共10页,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。
第Ⅰ卷(选择题,共60分) 1.双曲线的焦距为A. B. C. D. 2. 命题“对任意的,都有”的否定为 A. 存在,使 B. 对任意的,都有C. 存在,使D. 存在,使 3. 以下四组向量①,;②,;③,;④, 其中互相平行的. A.②③ B.①④C.①②④D.①②③④ 4. 对抛物线,下列描述正确的是 A开口向上,焦点为B. 开口向上,焦点为 C开口向右,焦点为D. 开口向右,焦点为 5. “关于的不等式对于一切实数都成立”是“” 的 A.充要条件B.充分非必要条件 C.必要非充分条件D.既非充分又非必要条件 6. 在中,,则等于 A.30° B.60° C.60°或120°D.30°或150 7. 已知是等比数列,前项和为,,则 B.C.D. 8. 设为抛物线上的动弦,且, 则弦的中点到轴的最小距离为C.1D. 9.在中,,给出满足的条件,就能得到动点 的轨迹方程,下表给出了一些条件及方程:条件方程①周长为10②面积为10③中,则满足条件①、②、③的点轨迹方程按顺序分别是 、、B.、、C.、、D.、、 10. 若,且,则下列不等式中,恒成立的是 A. B. C. D. 11.是椭圆上的一点, 是焦点, 且, 则△的 面积是 A. B.C. D. 12. 已知直线与双曲线,有如下信息:联立方程组: , 消去后得到方程,分类讨论:(1)当时, 该方程恒有一解;(2)当时,恒成立。
在满足所提供信息 的前提下,双曲线离心率的取值范围是 A. B. C. D. 第Ⅱ卷(非选择题,共90分) 13.若实数满足条件,则的最大值为 14.已知F1,F2是椭圆的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若有两边之和是1,则第三边的长度为 15.已知双曲线的渐近线方程为,虚轴长为4, 则该双曲线的标准方程是 16.,若数列满足, 则 三、解答题 17.(本题满分10分) n项和 (I) 求数列的通项公式,并证明是等差数列; (II)若,求数列的前项和 18.(本题满分12分) 命题p:方程的曲线是焦点在y轴上的双曲线,命题q:方程无实根,p∨q为真,为真,求实数m的值. 19.(本题满分12分) 在中,角所对的边分别为,已知, I)求的大小;II)若,求和的值。
绝密★启用前吉林一中2014—2015学年度上学期期中高二数学理考试高二数学理试题考试范围:XXX ;考试时间:100分钟;命题人:XXX学校:__________姓名:__________班级:__________考号:__________1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上一、单项选择(注释)1、在△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围是 ( ) A .2>x B .2<xC .3342<<xD . 3342≤<x2、已知函数2240()40x x x f x x x x ⎧+≥=⎨-<⎩,若2(2)(),f a f a ->则实数a 的取值范围是 ( )A .(,1)(2,)-∞-⋃+∞B .(1,2)-C .(2,1)-D .(,2)(1,)-∞-⋃+∞3、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A .(3,1)(2,)-+∞B . (3,1)(3,)-+∞C . (1,1)(3,)-+∞D . (,3)(1,3)-∞-4、已知正数,,a b c 满足a b ab +=,a b c abc ++=,则c 的取值范围是______ .5、已知实数x y ,满足2201x y x y x +≤⎧⎪-≤⎨⎪≤≤⎩,,,则23z x y =-的最大值是( )A.6-B.1-C.4D.66、设f(x)= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f(x)>2的解集为( ) A.(1,2)⋃(3,+∞) B.(10,+∞) C.(1,2)⋃ (10 ,+∞) D.(1,2)7、下列不等式(1)m-3>m-5;(2)5-m>3-m;(3)5m>3m ;(4)5+m>5-m 其中正确的有( ) (A )1个 (B )2个 (C )3个 (D )4个8、已知等差数列{}n a 的前n 项和为n S ,111a =-,564a a +=-,n S 取得最小值时n 的值为( )A .6B .7C .8D .99、设等差数列{}n a 的前n 项和为n S ,若28515a a a +=-,则9S 等于( )A .18B .36C .45D .6010、S={1,2,…,2003},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是( ) A .32003CB .2100221001C C + C .2100221001A A +D .32003A11、设等差数列{}n a 满足:12741=++a a a ,则=++++7321a a a a ( ) A .14 B .21 C .28 D .3512、在ABC 中,a ,b ,c 分别是A ∠,B ∠,C ∠的对边,已知a ,b ,c 成等比数列,且22a c ac bc -=-,则sin cb B的值为( )A.12二、填空题(注释)13、已知210,0,1x y x y>>+=,若222x y m m +>+恒成立,则实数m 的取值范围_________14、已知不等式(x+y )1()9a x y+≥对任意正实数x ,y 恒成立,则正实数a 的最小值为__________15、在△ABC 中,若222sin sin sin 0A B C +-<,则△ABC 的形状是16、在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C =________.三、解答题(注释)17、设数列{}n a 满足下列关系:12(0,a a a a =≠为常数),212n n a a a a -=-;数列{}n b 满足关系:1n n b a a=-. (1)求证:n a a ≠(2)证明数列{}n b 是等差数列.18、已知集合A ={x |x 2<4},B ={x |1<43x +}. (1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a 、b 的值.19、已知数列}{n a 的各项均为正整数,且12n a a a <<<,设集合1{|101}1,,或,或(≤≤)nk i i ii i i A x x a k n λλλλ====-==∑.性质 1 若对于k x A ∀∈,存在唯一一组i λ(1,2,,i k =⋅⋅⋅)使1ki i i x a λ==∑成立,则称数列}{n a 为完备数列,当k 取最大值时称数列}{n a 为k 阶完备数列.性质 2 若记(1≤≤)kk i m a k n=∑,且对于任意≤k x m ,x ∈Z ,都有k x A ∈成立,则称数列}{n a 为完整数列,当k 取最大值时称数列}{n a 为k 阶完整数列.性质3 若数列}{n a 同时具有性质1及性质2,则称此数列}{n a 为完美数列,当k 取最大值时}{n a 称为k 阶完美数列;(Ⅰ)若数列}{n a 的通项公式为12-=n a n ,求集合2A ,并指出}{n a 分别为几阶完备数列,几阶完整数列,几阶完美数列;(Ⅱ)若数列}{n a 的通项公式为110-=n n a ,求证:数列}{n a 为n 阶完备数列,并求出集合n A 中所有元素的和n S .(Ⅲ)若数列}{n a 为n 阶完美数列,试写出集合n A ,并求数列}{n a 通项公式. 20、已知数列{}n a 为等差数列,公差0≠d ,其中n k k k a a a ,,,21 恰为等比数列, 若21=k ,52=k ,113=k , ⑴求等比数列{}n k a 的公比q ⑵试求数列{}n k 的前n 项和n S21、已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++; (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T .22、在数列{}n a 中,*112,21,n n a a a n n N +==-+∈. (1)证明数列{}n a n -是等比数列;(2)设n S 是数列{}n a 的前n 项和,求使12n n S S +>的最小n 值.参考答案一、单项选择 1、【答案】C 2、【答案】C【解析】由题知()f x 在R 上是增函数,由题得22a a ->,解得21a -<<,故选择C 。
2014-2015学年度吉林一中11月考高二数学理试卷第I 卷 选择题 (共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知集合{}{}=>=>-<=B A x x B x x x A 则或,0log ,112( ) A .{}1>x xB .{}0>x xC .{}1-<x xD .{}11>-<x x x 或2、已知向量=(3,4),=(2,-1),如果向量x +与-垂直,则x 的值为( ) A.52-B.323C. 233 D.2 3、已知3332212, () , ()52P Q R -===,则 P 、 Q 、 R 的大小关系是( )A .P Q R <<B .Q R P <<C .Q P R <<D .R Q P << 4、已知{}n a 是等差数列,245710,22a a a a +=+=,则62S S -等于( ) A .26 B .30 C .32 D .365、在同一坐标系中,将曲线x y 3sin 2=变为曲线x y sin =的伸缩变换是( )A. ⎪⎩⎪⎨⎧==''213)(y y x x AB. ⎪⎩⎪⎨⎧==y y x x B 213)('' C.⎪⎩⎪⎨⎧==''23)(y y x x C D.⎪⎩⎪⎨⎧==yy x x D 23)(''6、下列函数中,图像的一部分如右上图所示的是( )A .sin()6y x π=+B .sin(2)6y x π=-C .cos(4)3y x π=-D .cos(2)6y x π=-7.给出如下四个命题:①||||yz xy z y x >⇒>>;②y x y a x a >⇒>22;③db c a abcd d c b a >⇒≠>>0,,; ④2011b ab ba <⇒<<.其中正确命题的个数是( ) A .1 B .2 C .3 D .48、如图:样本A 和B 分别取自两个不同的总体,他们的样本平均数分别为Ax 第7题图和B x ,样本标准差分别为A s 和B s ,则( ) A. ,A B A B x x s s >> B. ,A B A B x x s s <> C. ,A B A B x x s s >< D. ,A B A B x x s s <<9、右面的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( ) A.25 B. 710 C. 45 D.91010、一个几何体的正视图、侧视图、俯视图如右图所示,则该几何体的表面积和体积分别为( )A .4243ππ++和 B.2π+和43πC.43π和 D.83π和11、若直线42y kx k =++与曲线24x y -=有两个交点,则k 的取值范围是( ). A .[1,+∞) B . [-1,-43) C . (43,1] D .(-∞,-1] 12、定义在R 上的函数f(x)满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2012)的值为( )A .0B .1C .-1D .2第Ⅱ卷 非选择题 (共90分)二、填空题 (本大题共4个小题,每小题5分,共20分) 13、已知0,0,lg 2lg8lg 2,x y x y >>+=则113x y+的最小值是 14、(改编)在区间[0,2]上随机取一个数x ,sin2xπ的值介于0到2之间的概率为__________ 15、如右图,圆锥SO 中,AB 、CD 为底面圆的两条直径,O CD AB = ,且CD AB ⊥,2==OB SO ,P 为SB 的中点.异面直线SA 与PD 所成角的正切值为 .16、已知平行四边形ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在四边形ABCD 的内部(包括边界),则z=2x-5y第10题图第15题图的取值范围是___________.三、解答题(共6个小题,第17题10分,其余12分,共70分)17、(本题满分10分)设ABC ∆的内角A 、B 、C 所对的边长分别为,,a b c ,且4co s 5B =,2b =。
2014—2015学年度吉林一中“教与学”质量检测1高三数学试题(理科)(答题时间120分钟,满分150分)一、选择题(每小题5分,共60分)1.已知集合{}210,,M =,{}M x ,x y |y N ∈==2,则集合=N M A .{}0 B .{}10, C .{}21, D .{}20, 2.已知向量()()2,1,,2a b x ==-,若//a b ,则a b +等于 A .()3,1-B .()3,1-C .()2,1D .()2,1--3. 若命题P :1≤∈∀cosx ,R x ,则P ⌝: A .100>∈∃x cos ,R xB .1,>∈∀x cos R xC .1,00≥∈∃x cos R xD .1,≥∈∀x cos R x4.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 A .a km B.2a kmC .2a kmD.3a km5.某程序框图如图所示,若输出的S = 57,则判断框内应为 A .k >5? B .k >4? C .k >7? D .k >6?6.过点()a ,a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为A .3-<a 或1>aB .23<a C .13<<-a 或23>aD .3-<a 或231<<a 7. 若00x y x y y a -≤⎧⎪+≥⎨⎪≤⎩,若2z x y =+的最大值为3,则a 的值是A .1B .2C .3D .4 8.函数()⎥⎦⎤⎢⎣⎡-∈=22ππ,x ,x sin x x f ,若()()21x f x f >,则下列不等式一定成立的是 A .2221x x >B .021>+x xC .21x x >D .2221x x <9.已知函数()()ϕ+=x sin x f 2,其中ϕ为实数,若()⎪⎭⎫⎝⎛≤6πf x f 对x R ∈恒成立, 且 ()ππf f >⎪⎭⎫⎝⎛2,则()f x 的单调递增区间是 A . ()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡+-63ππππ B .()Z k k ,k ∈⎥⎦⎤⎢⎣⎡+,2πππ C . ()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡++326ππππ D .()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡-πππ2 10.已知等比数列{}n a 的公比0>q 且1≠q ,又06<a ,则 A .5748a a a a +>+ B .5748a a a a +<+C .5748a a a a +=+D .5748||||a a a a +>+11.已知椭圆2222:1(0)x y C a b a b+=>>,21F ,F 为其左、右焦点,P 为椭圆C 上任一点,12F PF ∆的重心为G ,内心I ,且有12IG F F λ=(其中λ为实数),椭圆C 的离心率=eA .12B .13C .23D12.已知函数742)(23---=x x x x f ,其导函数为)(x f '.①)(x f 的单调减区间是⎪⎭⎫ ⎝⎛2,32; ②)(x f 的极小值是15-; ③当2>a 时,对任意的2>x 且a x ≠,恒有))(()()(a x a f a f x f -'+> ④函数)(x f 有且只有一个零点.其中真命题的个数为 A .1个 B .2个C .3个D .4个二、填空题(每小题5分,共20分)13.设()[](]⎪⎩⎪⎨⎧∈∈=e ,x ,x,x ,x x f 11102 (其中e 为自然对数的底数),则()dx x f e ⎰0的值为 _________.14.在平面直角坐标系xOy 中,已知ABC ∆的顶点()05,A -和()05,C ,顶点B 在双曲线191622=-y x 上,则Csin A sin B sin -为___________.15.设P 是不等式组,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩表示的平面区域内的任意一点,向量()()1211,,,==,若n m OP μλ+=,则μλ+2的最大值为 .16.已知函数()()()()⎩⎨⎧>≤--=-77336x ax x a x f x ,若数列{}n a 满足()n a f n =(n N *∈),且{}n a 是递增数列,则实数a 的取值范围是 ___________. 三、解答题17.(本小题满分10分) 已知6π=x 是函数()()21-+=x cos x cos x sin a x f 图象的一条对称轴. (Ⅰ)求a 的值; (Ⅱ)化简()x f 的解析式,并作出函数()x f 在()π,x 0∈上的图象简图(不要求写作图过程).18.(本小题满分12分)已知等差数列{n a }的公差0d ≠,它的前n 项和为n S ,若570S =,且2722,,a a a 成等比数列,(Ⅰ)求数列{n a }的通项公式; (Ⅱ)若数列{1nS }的前n 项和为n T ,求证:1368n T ≤<.19.(本小题满分12分)在ABC ∆中,内角A 、B 、C 所对的边分别为c ,b ,a ,其外接圆半径为6,241=-Bcos b,34=+C sin A sin(Ⅰ)求B cos ;(Ⅱ)求ABC ∆的面积的最大值.20.(本小题满分12分)在直角坐标系xOy 中,以原点O 为圆心的圆与直线043=--y x 相切. (Ⅰ)求圆O 的方程;(Ⅱ)若已知点()23,P ,过点P 作圆O 的切线,求切线的方程.21.(本小题满分12分) 已知函数()()0>++=a c xbax x f 的图象在点()()11f ,处的切线方程为1-=x y . (Ⅰ)用a 表示出b ,c ;(Ⅱ)若()x ln x f ≥在[)∞+,1上恒成立,求a 的取值范围.22.(本小题满分12分)已知椭圆M :2221(0)3x y a a +=>的一个焦点为(1,0)F -,左右顶点分别为A ,B . 经过点F 的直线l 与椭圆M 交于C ,D 两点.(Ⅰ)求椭圆方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求12||S S -的最大值.数学 (理科)参考答案及评分标准一、选择题1. D ; 2. D ;3. A ;4. D ; 5. B ;6. D ;7. A ;8. A ;9. C ;10. A ;11.A ;12. C .二、填空题13.34;14. 54;15. 5 ;16.(2,3).三、解答题17. (本小题满分10分) 解:(I )方法1:x x a x f 2cos 212sin 21)(+=, ………………2分 ∵6π=x 是函数)(x f 图象一条对称轴,∴)3()0(πf f =,…………… 4分 即)3(2cos 21)3(2sin 2121ππ+=,∴3=a ; ………………6分方法2:∵x x a x f 2cos 212sin 21)(+=,∴)(x f 最值是1212+±a ,………………2分∵6π=x 是函数)(x f 图象的一条对称轴,∴1216(2+±=a f π,………………4分∴121)6(2cos 216(2sin 212+±=+a a ππ, 整理得0232(2=-a ,∴3=a ;………………6分(II )()⎪⎭⎫⎝⎛+=62πx sin x f ………………7分()x f 在()π,x 0∈上的图象简图如下图所示. ………………10分18.(本小题满分12分)解:(Ⅰ)由已知,5335,14S a a =∴=, ………………2分又2722,,a a a 成等比数列,由2111(6)()(21)a d a d a d +=++且0d ≠可解得132a d =, ………………4分16,4a d ∴==,故数列{n a }的通项公式为42,*n a n n N =+∈;………………6分(Ⅱ)证明:由(Ⅰ),21()24,2n n n a a S n n +==+ ………………7分211111()2442n S n n n n ==-++,………………9分1111113111(1)()432428412n T n n n n ∴=-+-++-=-++++ 显然,1368n T ≤<. ………………12分19.(本小题满分12分) (Ⅰ)解:26sin 24241cos 1cos b BB B⨯=⇒=-- ,2(1cos )sin B B -=………………3分224(1cos )sin (1cos )(1cos )B B B B -==--31cos 0,4(1cos )1cos ,cos 5B B B B -≠∴-=+∴=,……………………6分 (Ⅱ) 34sin sin =+C A ,4,12123a c ∴+=即16a c +=. 又34cos ,sin 55B B =∴=. ………………………………8分12S ac ∴=2sin 5B =22128()525a c ac +≤=. ……………………10分而8a c ==时,max 1285S =. …………………………………………12分20.(本小题满分12分)解:(Ⅰ)设圆的方程为x 2+y 2=r 2, …………………………1分由题可知,半径即为圆心到切线的距离,故r =44=2, ……………………3分∴圆的方程是x 2+y 2=4;………………………………4分(Ⅱ)∵|OP |=32+22=13>2,∴点P 在圆外.显然,斜率不存在时,直线与圆相离.……………………………6分故可设所求切线方程为y -2=k (x -3), 即kx -y +2-3k =0. ……………………………8分又圆心为O (0,0),半径r =2,而圆心到切线的距离d =|-3k +2|k 2+1=2,即|3k -2|=2k 2+1, ………………9分 ∴k =125或k =0, …………………………………11分 故所求切线方程为12x -5y -26=0或y -2=0. ……………………12分21.(本小题满分12分) 解: (Ⅰ)2'()bf x a x=-, ………………………………………1分由题设,则有(1)0(1)1f a b c f a b =++=⎧⎨'=-=⎩,…………………………3分解得⎩⎨⎧+-=-=121a c ab .………………………………………4分(Ⅱ)由(Ⅰ)知,1()12a f x ax a x-=++-, 令1()()ln 12ln a g x f x x ax a x x-=-=++--,[)1,x ∈+∞ 则 (1)0g =,………………………………………5分22221(1)()11(1)'()aa x x a ax x a a g x a x x x x -------=--==……………7分①当 12o a <<,11aa -> 若 11ax a -<<,则'()0g x <,()g x 是减函数,所以,当⎪⎭⎫⎝⎛-∈a a ,x 11时,有()()01g =<x g , 即()ln f x x >, 故()ln f x x ≥在[)1,+∞上不能恒成立.……………………………9分②当12a ≥时,有11aa-≤ 若1≥x ,则()0>'x g ,()x g 在()∞+,1上为增函数.所以,当()∞+∈,x 1时,()()01=>g x g , 即()ln f x x >, 故当1x ≥时,()ln f x x ≥.……………………………………11分综上所述,所求a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭……………………12分22.(本小题满分12分)解:(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y += …………………………3分(Ⅱ)因为直线的倾斜角为45,所以直线的斜率为1,所以直线方程为1y x =+,和椭圆方程联立得到221431x y y x ⎧+=⎪⎨⎪=+⎩,消掉y ,得到27880x x +-= …………………………5分所以121288288,,77x x x x ∆=+=-=所以1224|||7CD x x =-=…………………………6分(Ⅲ)当直线l 无斜率时,直线方程为1x =-,此时33(1,),(1,)22D C ---, ,ABD ABC ∆∆面积相等,12||0S S -= …………7分 当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠,设1122(,),(,)C x y D x y和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k +++-= 显然0∆>,方程有根,且221212228412,3434k k x x x x k k -+=-=++ ………………8分此时122121|||2||||||2||S S y y y y -=-=+212|(1)(1)|k x k x =+++21212||2|()2|34k k x x k k =++=+ ………………………………10分因为0k ≠,上式1234||||k k =≤==+(k =所以12||S S -………………………………12分另解:(Ⅲ)设直线l 的方程为:1-=my x ()R m ∈,则由⎪⎩⎪⎨⎧=+-=134122y x my x 得,()0964322=--+my y m .设()11y ,x C ,()22y ,x D ,则436221+=+m m y y ,0439221<+-=⋅m y y . ………………8分 所以,2121y AB S ⋅=,1221y AB S ⋅=,()21122142121y y y y AB S S +⨯⨯=-=-43122+=m m ……………………10分 当0=m 时,=-21S S 343212431222=⨯≤+=mmm m ()R m ∈. 由432=m ,得 332±=m . 当0=m 时,3021<=-S S 从而,当332±=m 时,21S S -取得最大值3.…………………………12分。
吉林一中2014-2015届高二年级下学期期末数学理试卷数学理测试试卷学校:__________姓名:__________班级:__________考号:__________ 题号 一 二 三 总分 得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上 评卷人 得分一、单项选择(注释)1、抛物线22x y =的准线方程是( ) A.21=x B.81=y C.21-=y D.81-=y2、双曲线22221x y a b-=的两条渐进线互相垂直,那么该双曲线的离心率是( )A 、2B 、3C 、2D 、323、在平面直角坐标系xoy 中,抛物线C:22(0y px p =>)的焦点为F ,M 是抛物线C 上的点,若OFM 的外接圆与抛物线C 的准线相切,且该圆面积9,则p=( ) A .2 B 2 C .3 D 34、函数ax x x f +-=3)(在),0[+∞上是减函数,则a 的取值范围是( ) A .(),0-∞ B .(],0-∞ C .()0,+∞ D .[)0,+∞5、已知()x f 是可导的函数,且()()x f x f <'对于R x ∈恒成立,则( ) A 、2015(1)(0),(2015)(0)f ef f e f <> B 、2015(1)(0),(2015)(0)f ef f e f >> C 、2015(1)(0),(2015)(0)f ef f e f >< D 、2015(1)(0),(2015)(0)f ef f ef <<6、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 ( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=7、已知1>a ,则=+--∞→xxx a a 321lim( ) A .21 B .31- C .21或31- D .不存在 8、已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为( )(A )10 (B )20 (C )241(D ) 4149、若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值为( ). A .-1 B .0 C .1 D .-210、过双曲线()0,012222>>=-b a by a x 的左焦点()0,c F -作圆222a y x =+的切线,切点为E ,延长FE 交抛物线cx y 42=于点P ,O 为原点,若()+=21,则双曲线的离心率为( ) A .333+ B .251+ C .25D .231+11、已知函数()ln xf x e a x =+的定义域是D ,关于函数()f x 给出下列命题: ①对于任意(0,)a ∈+∞,函数()f x 是D 上的减函数; ②对于任意(,0)a ∈-∞,函数()f x 存在最小值;③存在(0,)a ∈+∞,使得对于任意的x D ∈,都有()0f x >成立; ④存在(,0)a ∈-∞,使得函数()f x 有两个零点. 其中正确命题的序号是( )A .①②B .②③C .②④D .③④12、已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则( ) (A )2132a = (B )213a = (C )212b = (D )22b = 评卷人 得分二、填空题(注释)13、双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为______________。
吉林一中2014-2015届高二年级下学期期末数学理试卷数学理测试试卷考试范围:XXX ;考试时间:100分钟;命题人:XXX学校:__________姓名:__________班级:__________考号:__________1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上一、单项选择(注释)1、抛物线22x y =的准线方程是( ) A.21=x B.81=y C.21-=y D.81-=y2、双曲线22221x y a b-=的两条渐进线互相垂直,那么该双曲线的离心率是( )A 、2B 、323、在平面直角坐标系xoy 中,抛物线C:22(0y px p =>)的焦点为F ,M 是抛物线C 上的点,若∆OFM 的外接圆与抛物线C 的准线相切,且该圆面积9π,则p=( )A .2B .3 D 4、函数ax x x f +-=3)(在),0[+∞上是减函数,则a 的取值范围是( ) A .(),0-∞ B .(],0-∞C .()0,+∞D .[)0,+∞5、已知()x f 是可导的函数,且()()x f x f <'对于R x ∈恒成立,则( ) A 、2015(1)(0),(2015)(0)f ef f e f <> B 、2015(1)(0),(2015)(0)f ef f e f >>C 、2015(1)(0),(2015)(0)f ef f e f ><D 、2015(1)(0),(2015)(0)f ef f e f <<6、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 ( ) A .430x y --= B .450x y +-= C .430x y -+=D .430x y ++=7、已知1>a ,则=+--∞→xxx a a 321lim( ) A .21 B .31- C .21或31- D .不存在 8、已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为( )(A )10 (B )20 (C )241(D ) 4149、若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值为( ). A .-1 B .0 C .1 D .-210、过双曲线()0,012222>>=-b a by a x 的左焦点()0,c F -作圆222a y x =+的切线,切点为E ,延长FE 交抛物线cx y 42=于点P ,O 为原点,若()+=21,则双曲线的离心率为( ) A .333+ B .251+ C .25D .231+11、已知函数()ln x f x e a x =+的定义域是D ,关于函数()f x 给出下列命题: ①对于任意(0,)a ∈+∞,函数()f x 是D 上的减函数; ②对于任意(,0)a ∈-∞,函数()f x 存在最小值;③存在(0,)a ∈+∞,使得对于任意的x D ∈,都有()0f x >成立; ④存在(,0)a ∈-∞,使得函数()f x 有两个零点.其中正确命题的序号是( )A .①②B .②③C .②④D .③④12、已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则( ) (A )2132a = (B )213a = (C )212b = (D )22b =二、填空题(注释)13、双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为______________。
2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。
2014-2015学年高二上学期期末考试数学(理)试题第I 卷(选择题)请修改第I 卷的文字说明一、单项选择1. 已知点M 到两个定点A (-1,0)和B (1,0)的距离之和是定值2,则动点M 的轨迹( )A .一个椭圆B .线段ABC .线段AB 的垂直平分线D .直线AB2. 设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )12D. 123. 已知a R ∈,则“2a >”是“22a a >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件4. 正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ).A .119B .120;C .151;D .154.5. 题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>6. 已知双曲线19222=-y ax ()0>a 的中心在原点, 右焦点与抛物线x y 162=的焦点重合,则该双曲线的离心率等于( ) A. 54 B. 55558 C. 45D. 7747. 如果命题“p q ⌝∨⌝”是假命题,则在下列各结论中,正确的为 ( ) ①命题“p q ∧”是真命题; ②命题“p q ∧” 是假命题; ③命题“p q ∨”是真命题; ④命题“p q ∨”是假命题。
A .②③ B .②④ C .①③ D .①④8. 不等式组⎩⎨⎧>-<-1)1(log 2222x x 的解集为( ) A .(0,3) B .(3,2) C .(3,4) D .(2,4)9. 若函数(1)4a x y e x -=+(x ∈R )有大于零的极值点,则实数a 范围是( ) A .3a >- B .3a <- C .13a >- D .13a <-10. 下列语句是命题的一句是( )A .请把窗户打开B .2+3=8C .你会说英语吗D .这是一棵大树11. 已知椭圆2214x y +=的左、右焦点分别为12F F ,,点P 在椭圆上,当12F PF △的面积为1时,12PF PF =·( ) A.0 B.1C.2D.1212. 设U=R,A={x|mx 2+8mx+21>0},A=∅,则m 的取值范围是( )A.0≤m<1621 B.m>1621或m=0 C.m ≤0 D.m ≤0或m>1621第II 卷(非选择题)请修改第II 卷的文字说明 二、填空题13. 设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 14. 抛物线x y 22=与直线4-=x y 所围成的图形面积是 .15. 设01a a >≠且,函数2lg(23)()xx f x a-+=有最大值,则不等式2log (57)0a x x -+>的解集为 .16. 设函数()||f x x x bx c =++,给出下列四个命题:①0c =时,()f x 是奇函数 ②0,0b c =>时,方程()0f x =只有一个实根 ③()f x 的图象关于点(0,)c 对称 ④方程()0f x =至多两个实根 其中正确的命题是 三、解答题17. 已知函数f(x)=x 3-ax 2+3x.(1) 若x =3是f(x)的极值点,求f(x)在x ∈[1,a]上的最大值和最小值. (2) 若f(x)在x ∈[1,+∞)上是增函数,求实数a 的取值范围;18. 已知n 为正整数,在数列}{n a 中,,12,111+==+n n a a a 在数列}{n b 中,,11a b =当2≥n 时,.111121-+∙∙∙++=n n n a a a a b (1)求数列}{n a 的通项公式; (2)求nn n n a b a b 111+-++ 的值; (3)当2≥n 时,证明.223)1()1)(1(2121n n n b b b b b b ->⋅⋅⋅+⋅⋅⋅++19. 已知函数)1ln()(+-=x e x f x (1)求)(x f 最小值; (2)已知210x x <≤,求证11ln11212+++>-x x ex x ; (3))(x f 图象上三点A 、B 、C,它们对应横坐标为1x ,2x ,3x ,且1x ,2x ,3x 为公差为1 等差数列,且均大于0,比较||AB 和||BC 长大小.20. 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,933=+b a ,1125=+b a .(Ⅰ)求{}n a , {}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .21. P 为椭圆22221(0)x y a b a b+=>>上一点,1F 为它的一个焦点,求证:以1PF 为直径的圆与以长轴为直径的圆相切.22. 设a ∈R ,函数2()()e x f x x ax a =--.(Ⅰ)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在[2,2]-上的最小值.参考答案一、单项选择 1.【答案】B【解析】定值2等于|AB|,选B2.【答案】D【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,则F (c,0),B(0,b)直线FB :bx+cy-bc=0与渐近线y=b x a 垂直,所以1-=⋅-abc b ,即b 2=ac所以c 2-a 2=ac,即e 2-e-1=0,所以e =或e =(舍去).3.【答案】A4.【答案】C ;用k A 表示集k A 的元素个数,设1k A n =+,由20071nk =+,得2006n k =,于是 172006111917A =+=,59200613559A =+=,175910032006131759A A A ==+=⨯;从而 175917591003119353151A A A A A =+-=+-=5.【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x xx x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =>;6.【答案】D7.【答案】B 8.【答案】C9.【答案】B10.【答案】B 11.【答案】A【解析】由已知得a=2,|P 1F |+2PF =4,平方后结合余弦定理和面积公式可得12PF PF =·0。
12.【答案】A【解析】∵A=∅,∴A=R,即mx 2+8mx+21>0恒成立.当m=0时,不等式恒成立.当m ≠0时,则⇒⎩⎨⎧<⨯-=∆>0214)8(,02m m m 0<m<1621. ∴m 的取值范围为[0,1621).二、填空题 13.【答案】9 【解析】{}n a 为等差数列,9553995S a S a ∴== 14.【答案】1815.【答案】23(,)【解析】设22lg(23)lg[(1)2],t x x x =-+=-+当x ∈R 时,min lg 2t =.又函数y=f(x)有最大值,所以20 1.log (57)0a a x x <<-+>由得20571x x <-+<,解得2 3.x <<16.【答案】①②③ 三、解答题 17.【答案】18.【答案】(1)∵1121,1n n a a a +=+= ∴()21213,12,14,121n n a a a a a +=+=+=+=+ ∴{}1n a +是以2为首项,2为公比的等比数列. ∴11222n n n a -+=⨯=,即21n n a =- (2)∵2112111,1b b a a a ==== ∴21211121b b a a +-=-=- ∴当1n =时,1111n n n n b b a a +++-=- 当2n ≥时,∵121111n n n b a a a a -=+++ ∴11121111111n n nn n n n n nb b b a a a a a a a a ++-+=++++=+= ∴1110n n n nb b a a +++-=…… 综上可知当1n =时,1111n n n n b b a a +++-=-;当2n ≥时,1110n n n nb b a a +++-=.(3)由(2)知2112111,1b b a a a ====,即223b a ==. 当2n ≥时,1110n n n n b b a a +++-=,即111n nn n b a b a +++=∴当2n ≥时,()()()12121212121111n n nnb b b b b b b b b b b b ++++++=1311212111231123411111111n n n nn n n n n n b b a a a b b b a b b b b b b b b b a a a a --+++++++++==11121211112n n n n b b b a b b a a +++++==⨯212111112212121n n a a a ⎛⎫⎛⎫=+++=+++⎪ ⎪--⎝⎭⎝⎭121111124221213122212n n n-⎡⎤⎛⎫- ⎪⎢⎥⎛⎫⎝⎭⎢⎥>+++=+=- ⎪⎝⎭⎢⎥-⎢⎥⎣⎦∴当2n ≥时,()()()1212111232n n nb b b b b b +++>-19.【答案】(1))1(11)(->+-='x x e x f x ,0>x 时0)(>'x f ,01<<-x 时0)(<'x f ,故)(x f 在0=x 时,)(x f 取最小值,1)0(=f (2)由(1)可得1)(≥x f ,故)0()1ln(1>++>x x e x ,)1ln(11212+-+>-x x e x x只需比较112+-x x 与11112+-+x x x 大小 ∵01>x ,∴121121x x x x x -<+- 11ln1)1ln(11212+++>+-+x x x x 故结论成立(3)2122122)()(||y y x x AB -+-= 2232232)()(||y y x x BC -+-=∵)(x f 在0>x 为增函数,∴12y y >,23y y >∴比较||AB 和||BC 大小,只需比较12y y -和23y y -大小)]1ln()1ln([)]1ln([2)(2)(3123122312312x e x e x e y y y y y y y x x x +-++--+-=+-=---)]1ln(2)1)(1[ln()](2[231312x x x e e e x x x +-++++-=∵2313122x x x x xe e ee =>++ 2223131)1()22()1)(1(x x x x x +=++<++ ∴12y y -<23y y - ∴||||BC AB <20.【答案】(Ⅰ)依题意得⎩⎨⎧=++=++11492121q d a q d a 得22d q =⎧⎨=⎩,121,2n n n a n b -=-=(Ⅱ)1212n n n a n b --=,()01211111135212222n n S n -⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12n S =()()12111111323212222n nn n -⎛⎫⎛⎫⎛⎫⎛⎫⋅+⋅++-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭12n S =()02111111122122222nn n -⎛⎫⎛⎫⎛⎫⋅++++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()111121211212nn n --⎛⎫=+-- ⎪⎝⎭- 3232nn+=-13262n n nS -+=-21.【答案】如右图,设1PF 的中点为M ,则两圆圆心之间的距离为211111(2)222OM PF a PF a PF ==-=-, 即两圆圆心之间的距离等于两圆半径之差.∴两圆内切,即以1PF 为直径的圆与以长轴为直径的圆相切.22.【答案】(Ⅰ)2()(2)e ()e x x f x x a x ax a '=-+--(2)()e x x x a =+-. 当1a =时,(0)2f '=-,(0)1f =-,所以曲线()y f x =在点(0,(0))f 处的切线方程为(1)2y x --=-,即210x y ++=. (Ⅱ)令()0f x '=,解得2x =-或x a =.① 2a ≥,则当(2,2)x ∈-时,()0f x '<,函数()f x 在(2,2)-上单调递减, 所以,当2x =时,函数()f x 取得最小值,最小值为2(2)(43)e f a =-. ② 22a -<<,则当()2,2x ∈-时, 当x 变化时,()f x ',()f x 的变化情况如下表x2-(2,)a - a(,2)a 2()f x ' -0 +()f x 2(4)e a -+ 递减极小值 递增2(43)e a -所以,当x a =时,函数()f x 取得最小值,最小值为()e a f a a =-⋅.③ 2a ≤-,则当(2,2)x ∈-时,()0f x '>,函数()f x 在(2,2)-上单调递增, 所以,当2x =-时,函数()f x 取得最小值,最小值为2(2)(4)e f a --=+.综上,当2a ≤-时,()f x 的最小值为2(4)e a -+;当22a -<<时,()f x 的最小值为e a a -⋅; 当2a ≥时,()f x 的最小值为2(43)e a -.。