2017年秋季学期新版新人教版七年级数学上学期4.3.3、余角和补角同步练习15
- 格式:doc
- 大小:73.50 KB
- 文档页数:1
南
西
第四章 几何图形初步
4.3 角
4.3.3 余角和补角
1.如图所示,∠1是锐角,则∠1的余角是( ). A .
1212∠-∠ B .132122∠-∠ C .1(2
1)2∠-∠ D .1
(21)3
∠+∠
2、(1)A 看B 的方向是北偏东21°,那么B 看A 的方向( )
A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°
(2)如图,下列说法中错误的是( )
A: OC 的方向是北偏东60° B: OC 的方向是南偏东60° C: OB 的方向是西南方向 D: OA 的方向是北偏西22°
(3)在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( )
A:100° B:70° C:180° D:140°
3、若一个角的补角等于它的余角4倍,求这个角的度数。
4、如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?
南
北
西
5、如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线.。
4321DBAC45︒30︒60︒68︒O东南西北第四章 几何图形初步4.3 角4.3.3 余角和补角1.如图所示,∠1是锐角,则∠1的余角是( ). A .1212∠-∠ B .132122∠-∠ C .1(21)2∠-∠ D .1(21)3∠+∠2、(1)A 看B 的方向是北偏东21°,那么B 看A 的方向( )A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°(2)如图,下列说法中错误的是( )A: OC 的方向是北偏东60° B: OC 的方向是南偏东60° C: OB 的方向是西南方向 D: OA 的方向是北偏西22°(3)在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( )A:100° B:70° C:180° D:140°3、若一个角的补角等于它的余角4倍,求这个角的度数。
4、如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?南北西5、如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。
4.3.3 余角和补角1.已知∠α=35°,那么∠α的余角等于( B )(A)35° (B)55°(C)65° (D)145°2.(2017广东)已知∠A=70°,则∠A的补角为( A )(A)110°(B)70°(C)30° (D)20°3.如图,点O在直线AB上,若∠1=40°,则∠2的度数是( C )(A)50° (B)60°(C)140°(D)150°4.一个角的余角是这个角的补角的,则这个角的度数是( B )(A)30° (B)45° (C)60° (D)70°5.如果一个角的补角是120°,则这个角的余角是( D )(A)150°(B)90° (C)60° (D)30°6.若∠α的补角为76°28′,则∠α= 103°32′.7.如图,若∠BOC=90°,∠AOD∶∠BOD=2∶7,则∠COD= 50°.第7题图8.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为180 度.第8题图9.如图,射线OP表示的方向是南偏西62 度.第9题图10.∠A与∠B互补,∠A与∠C互余,求2∠B-2∠C的度数.解:因为∠A+∠B=180°,∠A+∠C=90°,所以∠B=180°-∠A,所以2∠B-2∠C=2(180°-∠A)-2∠C=360°-2∠A-2∠C=360°-2(∠A+∠C)=360°-2×90°=180°.11.按图所示的方法折纸,然后回答问题:(1)∠2是多少度的角?为什么?(2)∠1与∠3有何关系?(3)∠1与∠AEC,∠3和∠BEF分别有何关系?解:(1)∠2=90°.因为折叠,则∠1与∠3的和与∠2相等,而这三个角加起来,正好是平角∠BEC, 所以∠2=×180°=90°.(2)因为∠1+∠3=∠2,且三角和是一个平角,所以∠1+∠3=90°,所以∠1与∠3互余.(3)因为∠1与∠AEC的和为180°,∠3与∠BEF的和为180°,所以∠1与∠AEC互补,∠3与∠BEF互补.。
人教新版七年级上学期《4.3.3 余角和补角》同步练习卷一.选择题(共15小题)1.一个角的余角是这个角的补角的,则这个角的度数是()A.30°B.45°C.60°D.70°2.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角3.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个4.若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°5.下列各图中,∠1与∠2互为余角的是()A.B.C.D.6.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.如图所示,∠β>∠α,且∠α与(∠β﹣∠α)关系为()A.互补B.互余C.和为45°D.和为22.5°8.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对9.如图,O为直线AB上一点,∠AOC=α,∠BOC=β,则β的余角可表示为()A.(α+β)B.αC.(α﹣β)D.β10.设一个锐角与这个角的补角的差的绝对值为α,则()A.0°<α<90°B.0°<α≤90°C.0°<α<90°或90°<α<180°D.0°<α<180°11.已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′12.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A 13.如图,△ABC是直角三角形,AB⊥CD,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个14.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°15.一个锐角的余角加上90°,就等于()A.这个锐角的两倍数B.这个锐角的余角C.这个锐角的补角D.这个锐角加上90°二.填空题(共4小题)16.一个角的余角比这个角的补角的一半小40°,则这个角为度.17.一个角的余角是54°38′,则这个角的补角是.18.若∠α补角是∠α余角的3倍,则∠α=.19.已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为.三.解答题(共8小题)20.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.21.一个角的余角比它的补角的大15°,求这个角的度数.22.计算:(1)62.56°的余角等于°′″;(2)140°11′24″的补角等于°.23.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.24.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.25.如图,将一副直角三角尺的直角顶点C叠放在一起.(1)如图1,若CE恰好是∠ACD的角平分线,则CD是∠ECB的;(2)如图2,若∠ECD=α,CD在∠BCE的内部,请你猜想∠ACE与∠DCB是否相等?并简述理由;(3)在(2)的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.26.如图,已知直线AB与CD相交于点O,OE、OF分别是∠BOD、∠AOD的平分线.(1)∠DOE的补角是;(2)若∠BOD=62°,求∠AOE和∠DOF的度数;(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.27.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD与∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?(3)当∠BOC的余角的4倍等于∠AOD,则∠BOC多少度?人教新版七年级上学期《4.3.3 余角和补角》同步练习卷参考答案与试题解析一.选择题(共15小题)1.一个角的余角是这个角的补角的,则这个角的度数是()A.30°B.45°C.60°D.70°【分析】设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值即可.【解答】解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.故选:B.【点评】本题考查的是余角及补角的定义,能根据题意列出关于x的方程是解答此题的关键.2.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角【分析】根据余角的定义,即可解答.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A和∠ADE互为余角.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记余角的定义.3.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°=90°,所以④正确.综上可知,①②④均正确.故选:B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.4.若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°【分析】根据互补的两角之和为180°,可得出答案.【解答】解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选:B.【点评】本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.5.下列各图中,∠1与∠2互为余角的是()A.B.C.D.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.【解答】解:∵三角形的内角和为180°,∴选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故选:B.【点评】本题考查了余角的定义,掌握定义并且准确识图是解题的关键.6.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【解答】解:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故选:A.【点评】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.7.如图所示,∠β>∠α,且∠α与(∠β﹣∠α)关系为()A.互补B.互余C.和为45°D.和为22.5°【分析】首先根据图形可得∠α+∠β=180°,再表示出∠α,然后再把等式变形即可.【解答】解:观察图形可知,∠α+∠β=180°,则∠α=180°﹣∠β,∵180°﹣∠β+(∠β﹣∠α)=180°﹣(∠β+∠α)=180°﹣90°=90°.故∠α与(∠β﹣∠α)关系为互余.故选:B.【点评】此题主要考查了余角和补角,关键是掌握余角和补角的定义.8.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对【分析】根据∠1与∠2互补,∠2与∠3互余,先把∠1、∠3都用∠2来表示,再进行运算.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.【点评】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.9.如图,O为直线AB上一点,∠AOC=α,∠BOC=β,则β的余角可表示为()A.(α+β)B.αC.(α﹣β)D.β【分析】根据补角的性质,余角的性质,可得答案.【解答】解:由邻补角的定义,得∠α+∠β=180°,两边都除以2,得(α+β)=90°,β的余角是(α+β)﹣β=(α﹣β),故选:C.【点评】本题考查了余角和补角,利用余角、补角的定义是解题关键.10.设一个锐角与这个角的补角的差的绝对值为α,则()A.0°<α<90°B.0°<α≤90°C.0°<α<90°或90°<α<180°D.0°<α<180°【分析】根据补角的定义来求.【解答】解:设这个角的为x且0<x<90°,根据题意可知180°﹣x﹣x=α,∴α=180°﹣2x,∴180°﹣2×90°<α<180°﹣2×0°,0°<α<180°.故选:D.【点评】主要考查了余角和补角的概念.互为余角的两角的和为90°,互为补角的两角之和为180°.解此题的关键是能准确的从题意中找出这两个角之间的数量关系,从而判断出两角之间的关系.11.已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【分析】互补即两角的和为180°,互余的两个角的和等于90°.【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.【点评】根据余角和补角的关系进行计算.12.若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A【分析】根据互为补角的和得到∠A,∠B的关系式,再根据互为余角的和等于90°表示出∠A的余角,然后把常数消掉整理即可得解.【解答】解:根据题意得,∠A+∠B=180°,∴∠A的余角为:90°﹣∠A=﹣∠A,=(∠A+∠B)﹣∠A,=(∠B﹣∠A).故选:C.【点评】本题主要考查了互为补角的和等于180°,互为余角的和等于90°的性质,利用消掉常数整理是解题的关键.13.如图,△ABC是直角三角形,AB⊥CD,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个【分析】根据互余的两个角的和等于90°写出与∠A的和等于90°的角即可.【解答】解:∵CD是Rt△ABC斜边上的高,∴∠A+∠B=90°,∠A+∠ACD=90°,∴与∠A互余的角有∠B和∠ACD共2个.故选:B.【点评】本题主要考查了余角的定义,根据直角三角形的性质找出与∠A相加等于90°的角是解题的关键.14.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.【解答】解:由图可知∠1+∠2=180°﹣90°=90°,所以∠2=90°﹣∠1,又因为∠1﹣∠2=∠1﹣(90°﹣∠1)=50°,解得∠1=70°.故选:A.【点评】本题考查了余角和补角,准确识图,用∠1表示出∠2,然后列出方程是解题的关键.15.一个锐角的余角加上90°,就等于()A.这个锐角的两倍数B.这个锐角的余角C.这个锐角的补角D.这个锐角加上90°【分析】相加等于90°的两角互为余角,相加等于180度的两角互为补角,因而可以设这个锐角是x度,再用含x的代数式表示出所求的量,从而得出结果.【解答】解:设这个锐角是x度,则它的余角是(90﹣x)度.那么90﹣x+90=180﹣x.而x+(180﹣x)=180.故选:C.【点评】本题主要考查补角,余角的定义,是一个基础的题目.二.填空题(共4小题)16.一个角的余角比这个角的补角的一半小40°,则这个角为80度.【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°表示出它的余角和补角,然后列出方程求解即可.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),由题意得,(180°﹣x)﹣(90°﹣x)=40°,解得x=80°.故答案为:80.【点评】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解题的关键.17.一个角的余角是54°38′,则这个角的补角是144°38′.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.18.若∠α补角是∠α余角的3倍,则∠α=45°.【分析】分别表示出∠α补角和∠α余角,然后根据题目所给的等量关系,列方程求出∠α的度数.【解答】解:∠α的补角=180°﹣α,∠α的余角=90°﹣α,则有:180°﹣α=3(90°﹣α),解得:α=45°.故答案为:45°.【点评】本题考查了余角和补角的知识,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.19.已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为69.75°.【分析】根据余角定义:若两个角的和为90°,则这两个角互余,直接解答,然后化为用度表示即可.【解答】解:∵∠A与∠B互余,∠A=20°15′,∴∠B=90°﹣20°15′=69°45′=69.75°.故答案为:69.75°.【点评】本题考查互余角的数量关系.理解互余的概念是解题的关键,根据余角的定义:若两个角的和为90°,则这两个角互余列式计算.三.解答题(共8小题)20.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【分析】(1)∠AOB的度数等于已知两角的和,再根据补角的定义求解;(2)根据角平分线把角分成两个相等的角,求出度数后即可判断.【解答】解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°;(2)∠DOC=×∠BOC=×70°=35°∠AOE=×∠AOC=×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.【点评】本题主要考查角平分线的定义和补角的定义,需要熟练掌握.21.一个角的余角比它的补角的大15°,求这个角的度数.【分析】设这个角为x°,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为(180°﹣x),依题意,得:(90﹣x)﹣(180﹣x)=15,解得x=40.答:这个角是40°.【点评】本题主要考查了余角、补角的定义以及一元一次方程的应用.解题的关键是能准确地从题中找出各个量之间的数量关系,列出方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角的和为180°.22.计算:(1)62.56°的余角等于27°26′24″;(2)140°11′24″的补角等于39.81°.【分析】(1)根据余角的含义,用90°减去62.56°,求出62.56°的余角等于多少即可.(2)根据补角的含义,用180°减去140°11′24″,求出140°11′24″的补角等于多少即可.【解答】解:(1)∵90°﹣62.56°=27.44°=27° 26′24″,∴62.56°的余角等于27°26′24″.(2)∵180°﹣140°11′24″=180°﹣140.19°=39.81°,∴140°11′24″的补角等于39.81°.故答案为:27、26、24;39.81.【点评】(1)此题主要考查了余角和补角的含义和运算,要熟练掌握,解答此题的关键是要明确:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.②补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.③性质:等角的补角相等.等角的余角相等.(2)此题还考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.23.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),则(90°﹣x+180°﹣x)﹣×180°=1,x=67°.答:这个角为67°【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.24.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【分析】根据余角和补角的概念进行计算即可.【解答】解:(1)∵∠AOC=∠BOD=90°,∴∠COD+∠AOD=90°,∠COD+∠BOC=90°,∴与∠COD互余的角是∠AOD和∠BOC;(2)∠BOC=∠AOB﹣∠AOC=65°,∴∠COD=∠BOD﹣∠BOC=25°;(3)∠COD与∠AOB、∠AOC与∠BOD互补.【点评】本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角,如果两个角的和等于180°,就说这两个角互为补角.25.如图,将一副直角三角尺的直角顶点C叠放在一起.(1)如图1,若CE恰好是∠ACD的角平分线,则CD是∠ECB的角平分线;(2)如图2,若∠ECD=α,CD在∠BCE的内部,请你猜想∠ACE与∠DCB是否相等?并简述理由;(3)在(2)的条件下,请问∠ECD与∠ACB的和是多少?并简述理由.【分析】(1)是,首先根据直角三角板的特点得到∠ACD=90°,∠ECB=90°,再根据角平分线的定义计算出∠ECD和∠DCB的度数即可;(2)∠ACE与∠DCB相等;根据等角的余角相等即可得到答案;(3)根据角的和差关系进行等量代换即可.【解答】解:(1)是,∵∠ACD=90°,CE恰好是∠ACD的角平分线,∴∠ECD=45°,∵∠ECB=90°,∴∠DCB=90°﹣45°=45°,∴∠ECD=∠DCB,∴此时CD是∠ECB的角平分线;故答案为:角平分线.(2)∠ACE=∠DCB,∵∠ACD=90°,∠BCE=90°,∠ECD=α,∴∠ACE=90°﹣α,∠DCB=90°﹣α,∴∠ACE=∠DCB.(3)∠ECD+∠ACB=180°.理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB=∠ACD+∠ECB=90°+90°=180°.【点评】此题主要考查了角的计算,关键是根据图形分清角之间的和差关系.26.如图,已知直线AB与CD相交于点O,OE、OF分别是∠BOD、∠AOD的平分线.(1)∠DOE的补角是∠AOE或∠COE;(2)若∠BOD=62°,求∠AOE和∠DOF的度数;(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.【分析】(1)根据角平分线的定义可得∠DOE=∠BOE,再根据补角的定义结合图形找出即可;(2)根据角平分线的定义计算即可求出∠BOE,然后根据补角的和等于180°列式计算即可求出∠AOE,先求出∠AOD,再根据角平分线的定义解答;(3)计算出∠EOF的度数是90°,然后判断位置关系为垂直.【解答】解:(1)∵OE是∠BOD的平分线,∴∠DOE=∠BOE,又∵∠BOE+∠AOE=180°,∠DOE+∠COE=180°,∴∠DOE的补角是∠AOE或∠COE;(2)∵OE是∠BOD的平分线,∠BOD=62°,∴∠BOE=∠BOD=31°,∴∠AOE=180°﹣31°=149°,∵∠BOD=62°,∴∠AOD=180°﹣62°=118°,∵OF是∠AOD的平分线,∴∠DOF=×118°=59°;(3)OE与OF的位置关系是:OE⊥OF.理由如下:∵OE、OF分别是∠BOD、∠AOD的平分线,∴∠DOE=∠BOD,∠DOF=∠AOD,∵∠BOD+∠AOD=180°,∴∠EOF=∠DOE+∠DOF=(∠BOD+∠AOD)=90°,∴OE⊥OF.【点评】本题考查余角与补角,角平分线的定义,角度的计算,是基础题,熟记性质并准确识图,找出图中各角之间的关系是解题的关键.27.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD与∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?(3)当∠BOC的余角的4倍等于∠AOD,则∠BOC多少度?【分析】(1)根据角平分线的性质可得∠BOC=∠BOD=45°,根据角的和差可得∠AOC=90°﹣45°=45°,再根据角的和差可得∠AOD+∠BOC的和是多少度;(2)根据角的和差关系可得∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC),依此即可求解;(3)可得方程∠AOD+∠BOC=180°,∠AOD=180°﹣∠BOC,联立即可求解.【解答】解:(1)当OB平分∠COD时,有∠BOC=∠BOD=45°,于是∠AOC=90°﹣45°=45°,所以∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°;(2)当OB不平分∠COD时,有∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,于是∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC,所以∠AOD+∠BOC=90°+90°=180°.(3)由上得∠AOD+∠BOC=180°,有∠AOD=180°﹣∠BOC,180°﹣∠BOC=4(90°﹣∠BOC),所以∠BOC=60°.【点评】考查了角平分线的定义,角度的计算.根据角平分线定义得出所求角与已知角的关系转化求解.注意一副三角板的直角顶点O重叠在一起时角的关系.。
第四章几何图形4.3 角4.3.3 余角和补角【知识点1】余角和补角(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角(互余),其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角(互补),其中一个角是另一个角的补角.(3)余角、补角的性质:同角(等角)的余角相等;同角(等角)的补角相等.注意:①两个角互余(互补)与它们的位置无关,是两个角之间的数量关系;②余角(补角)是成对出现的,单独的一个角不能称为余角(补角);③一个角的余角(补角)可以有多个,但它们的度数是相等的.【典例1】若∠A=34°,则∠A的余角的度数为 ( )A.146° B.54° C.56° D.66°分析:∠A的余角为90°-∠A=90°-34°=56°.答案:C【知识点2】方位角(1)方位角就是用角度和方向表示方位的角.如图所示,与地面上的方向顺序相同,在平面图上的方向为上北、下南、左西、右东.(2)表示方位角时,习惯上把南或北写在前,把东或西写在后.如东北方向表示以正北为角的始边,向东旋转45°时的射线的方向,又叫北偏东45°.同样,东南方向为南偏东45°,西南方向为南偏西45°,西北方向为北偏西45°.(3)在生活实际中,图中的正东、正西、正南、正北、东南、西南、西北、东北8个方向是不够的,需要借助方位角表示,一般地,方位角是以正北、正南为角的始边,向第二个方向转动所形成的角.注意:①表示方位角时,必须以正南或正北方向作为基准,表示时通常说北偏东,北偏西,南偏东,南偏西.②在同一个问题中,观测点可能不止一个,在不同的观测点观测物体时,物体的方位角可能不同,在哪个观测点观察,就要在这个观测点处画出正东、正西、正南、正北方向基准线,以此为基准写出方位角.【典例2】如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是 ( )A.西偏北30 B.北偏西60°C.北偏东30° D.东偏北60°分析:∵射线OB与射线OA垂直,∴∠AOB=90°,∴∠1=90°-30°=60°,故射线OB的方位角是北偏西60°.答案:B1.【2017·广东中考】已知∠A=70°,则∠A的补角为 ( )A.110° B.70° C.30° D.20°2.【2017·湖南常德中考】若一个角为75°,则它的余角的度数为 ( ) A.285° B.105° C.75° D.15°3.下列各图中,∠1与∠2互为余角的是 ( )4.下列说法正确的有 ( )①若∠1+∠2=90°,则∠1与∠2互为余角;②若∠1+∠2=180°,则∠1与∠2互为补角;③120°的角和60°的角互为补角;④同角的余角相等.A.1个 B.2个 C.3个 D.4个5.下列说法正确的是( )A.一个角的补角一定大于它本身B.一个角的余角一定小于它本身C.若两个角的余角相等,则它们的补角也相等D.一个钝角减去一个锐角的差一定是一个锐角6.一个锐角的补角比这个角的余角大 ( )A.30° B.45° C.60°D.90°7.一条船沿北偏东50°的方向航行到某地,然后沿原方向返回,船返回时航行的正确方向是( )A.北偏西130°B.南偏西50°C.北偏西50°D.南偏西130°8.学校、电影院、公园在平面图上的坐标分别是点A、B、C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB为 ( )A.155° B.115° C.65° D.25°9.如果∠1的补角是∠2,且∠1>∠2,那么∠2的余角是()A.12∠1 B.12∠2 C.∠1-90°D.12(90°+∠1)10.一个角的余角比它的补角的13还少20°,则这个角的度数为 ()A .75°B .85°C .95°D .105°11.已知岛P 位于岛Q 的正西方,由岛P 、Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是 ( )12.【黑龙江绥化中考】将一副三角尺按如图方式进行摆放,∠1、∠2不一定互补的是 ( )13.如图,∠AOB =150°,∠AOC =∠BOD =60°,有下列结论:①∠COD =30°;②∠AOD =∠BOC ;③BO ⊥OC .其中正确的是 ( )A .①B .①②C .②③D .①②③14.已知∠A 与∠B 互余,且∠B =45°,则∠A =______,∠A 与∠B 的大小关系是________.15.已知一个角是它的余角的13,那么这个角的余角是___________,补角是____________. 16.已知三角形的内角和为180°,如图,∠A 与∠B 互余,∠1与∠A 互余,∠2与∠B 互余,请指出图中所有相等的角.17.已知∠A 与∠B 互余,∠A 与∠C 互补,且∠B +∠C =120°,求∠A +∠B +∠C 的度数.。
数学七年级上人教新课标4.3.3角同步练习余角和补角1.如果,而与互余,那么与的关系是( )A .互余B .互补C .相等D .不能确定2.下列说法中,错误的是( )A .两个互余的角都是锐角B .钝角的平分线把钝角分为两个锐角C .互为补角的两个角不可能都是钝角D .两个锐角的和必定是直角或钝角3.如果一个锐角和它的余角之比是5∶4,那么这个锐角的补角的度数是( )A .100°B .120°C .130°D .140°4.在海上,灯塔位于一艘轮船的北偏东40°方向,那么这艘轮船位于这个灯塔的()A .北偏东50°方向B .南偏西50°方向C .南偏西40°方向D .北偏东40°方向5.如图所示,甲从A 点出发向北偏东70°方向走50m 至点B ,乙从A 出发向南偏西15°方向走80m 至点C ,则∠BAC 的度数是( )A.85°B.160°C.125°D.105°90αβ∠+∠=︒β∠γ∠α∠γ∠6.若一个角的补角是,则这个角的余角是 度.7.如图所示,点A 在O的北偏东 °,点B 在O 的 °,点C 在O 的 °,点D 在O 的 °.8.若互为余角的两个角的比1:2 ,则这两个角分别是多少?9.一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数.10.把角铁弯成如图的铁架时截去的缺口应是多少度(不考虑角铁厚度)?参考答案1.C .2.D .3.C .4.C .5.C.1306.40°.7.30°,东南,南偏西75°,北偏西75°.8.30°和60°.9.解:设这个角的余角为∠A,则这个角的为90°-∠A,+90°,解得∠A=30°.所以90°-∠A=60°,答:这个角为60°.10.截去的部分,正好与145°角构成平角,因而在角钢上截去的缺口(图①中的虚线)应为180-145=35°.在角钢上截去的缺口(图①中的虚线)应为35°.。
4.3.3余角和补角1.如果α与β互为余角,那么( )A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°2.已知∠A=55°,则它的余角是( )A.25°B.35°C.45°D.55°3.如图,直线a与直线c相交于点O,∠1的余角的度数是( )A.60°B.50°C.40°D.30°4.若∠α=35°,则∠α的补角为 .5.一个角是70°39′,则它的余角的度数是 .6.(1)已知一个角是它的余角的一半,求这个角的度数;(2)如图,∠AOB=114°,OD是∠AOB的平分线,∠1与∠2互余,求∠1的度数.7.已知∠1+∠2=180°,∠3+∠4=180°,如果∠1=∠3,那么∠2=∠4,依据是( )A.同角的余角相等B.同角的补角相等C.等角的余角相等D.等角的补角相等8.已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C( )A.互余B.相等C.互补D.差为90°9.如图,射线OA的方向是北偏西60°,射线OB的方向是南偏东25°,则∠AOB的度数为( )A.120°B.145°C.115°D.130°10.如图,指出OA是表示什么方向的一条射线?仿照这条射线画出表示下列方向的射线:(1)南偏东60°;(2)北偏西70°;(3)西南方向(即南偏西45°).11.已知岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是 ( )A BC D12.一个锐角的补角比它的余角大( )A.45°B.60°C.90°D.120°13.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( )14.若∠1与∠2互余,∠2与∠3互补,∠1+∠3=150°,则∠2= .15.一个角的补角加上10°后等于这个角的余角的3倍,求这个角的度数.16.如图,OD平分∠BOC,OE平分∠AOC,∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.17.如图1所示,∠AOB,∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系,并用推理的方法说明你的猜想是合理的;(2)当∠COD绕着点O旋转到图2所示位置时,你在(1)中的猜想还成立吗?请证明你的结论.参考答案:1.D2.B3.A4. 145°.5. 19°21′.6.解:(1)设这个角的度数是x°,根据题意,得x =12(90-x). 解得x =30.所以这个角的度数是30°.(2)因为OD 平分∠AOB,所以∠2=12∠AOB=12×114°=57°. 又因为∠1和∠2互余,所以∠1=90°-∠2=90°-57°=33°.7.D8.B9.B10.解:OA 表示北偏东40°.(1)(2)(3)画图略.11.D12.C13.C14.60°.15.解:设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得 180°-x°+10°=3×(90°-x°).解得x =40.答:这个角为40°.16.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°.(2)∠DOC=12∠BOC=12×70°=35°, ∠AOE=12∠AOC=12×50°=25°. ∠DOE 与∠AOB 互补.理由:因为∠DOE=∠DOC+∠COE=35°+25°=60°,所以∠DOE+∠AOB=60°+120°=180°.故∠DOE 与∠AOB 互补.17.解:(1)∠AOD 与∠COB 互补.理由:因为∠AOB、∠COD 都是直角,所以∠AOB=∠COD=90°.所以∠BOD=∠AOD-∠AOB=∠AOD-90°,∠BOD=∠COD-∠COB=90°-∠COB.所以∠AOD-90°=90°-∠COB.所以∠AOD+∠COB=180°.所以∠AOD 与∠COB 互补.(2)成立.证明:因为∠AOB,∠COD 都是直角,所以∠AOB=∠COD=90°.因为∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠AOD+∠COB=180°.所以∠AOD 与∠COB 互补.。
2017年七年级数学上4.3.3余角和补角同步练习(人教版附答案)人教版数学七年级上册第4章 4.3.3余角和补角同步练习一、单选题(共12题;共24分) 1、在直线AB上取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数() A、60° B、90° C、120° D、60°或120° 2、如图,已知∠B=30°,∠BAC=90°,AD⊥BC于D,∠B=40°,则图中互余的角有()对. A、4对 B、5对 C、6对 D、7对 3、下列各图中,∠1与∠2互为余角的是() A、B、 C、 D、 4、下列说法:①35=3×3×3×3×3;②�1是单项式,且它的次数为1;③若∠1=90°�∠2,则∠1与∠2互为余角;④对于有理数n、x、y(其中xy≠0),若 = ,则x=y.其中不正确的有() A、3个 B、2个 C、1个 D、0个 5、如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为() A、60° B、50° C、40° D、30° 6、时钟显示为9:30时,时针与分针所夹角度是() A、90° B、100° C、105° D、110° 7、如图,直线AB⊥CD于点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是() A、互为余角 B、互为补角 C、互为对顶角 D、互为邻补角 8、如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是() A、 B、 C、 D、不能确定 9、已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是() A、相等 B、互余 C、互补 D、互为对顶角 10、如果一个角的两边和另一个角的两边互相平行,那么这两个角之间关系为() A、相等 B、互补 C、相等或互补 D、不能确定 11、如图,AB∥CD,CE⊥BD,则图中与∠1互余的角有() A、1个 B、2个 C、3个 D、4个 12、已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为()A、3个 B、2个 C、1个 D、0个二、填空题(共5题;共6分) 13、如果两个角互补,并且它们的差是30°,那么较大的角是________. 14、若一个角的3倍比这个角补角的2倍还少2°,则这个角等于________. 15、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________. 16、如果∠1+∠2=90°,而∠2与∠3互余,那么∠1与∠3的数量关系是________. 17、看图填空,并在括号内说明理由:如图,已知∠BAP 与∠APD互补,∠1=∠2,说明∠E=∠F.∵∠BAP与∠APD互补,________ ∴∠E=∠F.________.三、解答题(共3题;共15分)18、一个锐角的补角等于这个锐角的余角的3倍,求这个锐角? 19、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么? 20、已知,如图,AC⊥BC,HF⊥AB,CD⊥AB,∠1与∠2互补.求证:DE⊥AC.四、综合题(共3题;共31分) 21、如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD. (1)写出图中与∠EOB互余的角; (2)若∠AOF=30°,求∠BOE和∠DOF的度数. 22、如图,∠AGF=∠ABC,∠1+∠2=180°. (1)试判断BF 与DE的位置关系,并说明理由; (2)若BF⊥AC,∠2=150°,求∠AFG 的度数. 23、已知AM∥CN,点B为平面内一点,AB⊥BC于B. (1)如图1,直接写出∠A和∠C之间的数量关系________; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.答案解析部分一、单选题 1、【答案】D 【考点】余角和补角,垂线【解析】【解答】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=30°时,∠BOD=180°�30°�90°=60°;如图2,当∠AOC=30°时,∠AOD=90°�30°=60°,此时,∠BOD=180°�∠AOD=120°.故选D 【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可. 2、【答案】A 【考点】余角和补角,垂线【解析】【解答】解:图中互余的角有:∠B与∠BAD,∠C,∠C与∠DAC,∠E与∠F,共4对.故选A 【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可. 3、【答案】B 【考点】余角和补角【解析】【解答】解:四个选项中,只有选项B满足∠1+∠2=90°,即选项B中,∠1与∠2互为余角.故选B.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解. 4、【答案】B 【考点】单项式,等式的性质,余角和补角,有理数的乘方【解析】【解答】解:35=3×3×3×3×3,①说法正确,不符合题意;�1是单项式,且它的次数为0,②说法错误,符合题意;若∠1=90°�∠2,则∠1与∠2互为余角,③说法正确,不符合题意;对于有理数n、x、y (其中xy≠0),若 = ,则x与y不一定线段,④说法错误,符合题意,故选:B.【分析】根据有理数的乘方的意义、单项式的概念、余角的定义、等式的性质进行判断即可. 5、【答案】A 【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=30°,∴∠3=180°�90°�30°=60°,∵直尺两边互相平行,∴∠2=∠3=60°.故选:A.【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3. 6、【答案】C 【考点】钟面角、方位角【解析】【解答】解:9:30时,时针与分针所夹角度是30× =105°,故选:C.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 7、【答案】A 【考点】余角和补角,对顶角、邻补角【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°.故选:A.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余,从而求解. 8、【答案】C 【考点】余角和补角,对顶角、邻补角【解析】【解答】解:∵∠α与∠β是邻补角,∴∠α+∠β=180°,∴ (∠α+∠β)=90°,∴∠β的余角是:90°�∠β= (∠α+∠β)�∠β= (∠α�∠β),故选:C.【分析】根据补角定义可得∠α+∠β=180°,进而得到(∠α+∠β)=90°,然后根据余角定义可得∠β的余角是:90°�∠β再利用等量代换可得(∠α+∠β)�∠β,然后计算即可. 9、【答案】B 【考点】余角和补角,对顶角、邻补角,垂线【解析】【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余. 10、【答案】C 【考点】余角和补角,平行线的性质【解析】【解答】解:两个角的两边互相平行,如图(1)所示,∠1和∠2是相等关系,如图(2)所示,则∠3和∠4是互补关系.故选:C.【分析】根据两个角的两边互相平行及平行线的性质,判断两角的关系即可,注意不要漏解. 11、【答案】C 【考点】余角和补角,垂线,平行线的性质【解析】【解答】解:∵CE⊥BD,∴∠CBD=∠EBD=90°,∴∠ABC+∠1=90°,∠1+∠EBF=90°,即∠ABC、∠EBF与∠1互余;∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余. 12、【答案】B 【考点】余角和补角,对顶角、邻补角,平行公理及推论,命题与定理【解析】【解答】解:①对顶角既要考虑大小,还要考虑位置,相等的角不一定是对顶角,故①错误;②互补的角不一定是邻补角,所以不一定是平角,故②错误;③互补的两个角也可以是两个直角,故③错误;④平行于同一条直线的两条直线平行,是平行公理,故④正确;⑤邻补角的平分线的夹角正好是平角的一半,是直角,所以互相垂直,故⑤正确.所以真命题有④⑤两个.故选:B.【分析】根据所学的公理定理对各小题进行分析判断,然后再计算真命题的个数.二、填空题 13、【答案】【考点】余角和补角【解析】【解答】解:设较大角为x,则其补角为180°�x,由题意得:x�(180°�x)=30°,解得:x=105°.故答案为:105°.【分析】设较大角为x,则其补角为180°�x,根据它们的差是30°可列出方程,解出即可. 14、【答案】71.6° 【考点】余角和补角【解析】【解答】解:设这个角为x,由题意得,3x=2(180°�x)�2°,解得,x=71.6° 故答案为:71.6°.【分析】设这个角为x,根据题意和补角的概念列出方程,解方程即可. 15、【答案】50° 【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=40°,∴∠3=180°�∠1�90°=180°�40°�90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【分析】由直角三角板的性质可知∠3=180°�∠1�90°,再根据平行线的性质即可得出结论. 16、【答案】相等【考点】余角和补角【解析】【解答】解:∵∠2与∠3互余,∴∠2+∠3=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.故答案为:相等.【分析】根据同角的余角相等解答. 17、【答案】已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【考点】余角和补角,平行线的判定与性质【解析】【解答】证明:∵∠BAP与∠APD互补(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠BAP�∠1=∠APC�∠2(等量代换),即∠3=∠4,∴AE∥PF,(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【分析】先根据题意得出AB∥CD,再由平行线的性质得出∠BAP=∠APC,根据∠1=∠2可得出∠3=∠4,进而得出AE∥PF,据此可得出结论.三、解答题 18、【答案】解:设这个角的度数为x°,则根据题意得:180�x=3(90�x),解得:x=45,即这个锐角为45°.【考点】余角和补角【解析】【分析】设这个角的度数为x°,则根据题意得出180�x=3(90�x),求出方程的解即可. 19、【答案】解:∠1=∠2,理由:∵∠A=∠C=90°,根据四边形的内角和得,∠ADC+∠ABC=180°,∵BE平分∠ABC,DF 平分∠ADC,∴∠EBC= ∠ABC,∠2= ∠ADC,∴∠EBC+∠2= ∠ABC+ ∠ADC=90°,∵FG⊥BE,∴∠FGB=90°,∴∠1+∠EBC=90°,∴∠1=∠2 【考点】余角和补角,角平分线的性质,多边形内角与外角【解析】【分析】先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论. 20、【答案】证明:如图所示,∵HF⊥AB,CD⊥AB,∴CD∥HF,∴∠2+∠3=180°,又∵∠1与∠2互补,∴∠2+∠1=180°,∴∠1=∠3,∴DE∥BC,∵AC⊥BC,∴DE⊥AC.【考点】余角和补角,平行线的判定与性质【解析】【分析】根据AC⊥BC,DE⊥AC,易证DE∥BC,那么∠2+∠3=180°,而∠1与∠2互补,从而可证∠1=∠3,即可得出DE∥BC,结合AC⊥B C,易得DE⊥AC.四、综合题 21、【答案】(1)解:∵OA平分∠COF,∴∠COA=∠FOA=∠BOD,∵OE⊥CD,∴∠EOB+∠BOD=90°,∴∠COA+∠EOB=90°,∠FOA+∠EOB=90°,∴与∠EOB互余的角是:∠COA,∠FOA,∠BOD (2)解:∵∠AOF=30°,由(1)知∠COA=∠FOA=∠BOD=30°,∴∠DOF=180°�∠FOA�∠BOD=120°,∵OE⊥CD,∴∠BOE=90°�30°=60° 【考点】角平分线的定义,余角和补角,对顶角、邻补角,垂线【解析】【分析】(1)由于OA平分∠COF和∠COA与∠BOD是对顶角,得到∠COA=∠FOA=∠BOD,根据垂直定义有∠EOB+∠BOD=90°,根据互为余角的定义即可得到结论;(2)由(1)知∠COA=∠FOA=∠BOD=30°,由平角的意义可求得∠DOF,根据垂直定义可求得∠BOE. 22、【答案】(1)解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)解:∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°�30°=60°.【考点】余角和补角,垂线【解析】【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数23、【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,① 由AB⊥BC,可得β+β+2α=90°,② 由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【考点】余角和补角,平行线的判定与性质【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.。
4.3.3余角和补角同步练习一.选择题1.若∠A与∠B互为补角,∠A=40°,则∠B=()A.50°B.40°C.140°D.60°2.下列叙述正确的是()A.一个钝角和一个锐角一定互为补角B.每一个锐角都有余角C.两个锐角一定互为余角D.一个钝角的余角是锐角3.如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC的度数为()A.43°B.34°C.56°D.50°4.下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④5.已知锐角α,那么∠α的补角与∠α的余角的差是()A.90°B.120°C.60°+αD.180°﹣α6.若α=27°25',则α的余角等于()A.62°25'B.62°35'C.152°25'D.152°35'7.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3B.∠3=90°+∠1C.∠1=∠3D.∠1=180°﹣∠3 8.如图,∠AOC和∠BOD都是直角.如果∠DOC=58°,则下列判断错误的是()A.∠AOD=∠BOCB.∠AOB=132°C.∠AOB+∠DOC=180°D.若∠DOC变小,则∠AOB变大9.将一副三角尺按不同位置摆放,下列摆放中∠1与∠2互为余角的是()A.B.C.D.10.如图,点A,O,B在一条直线上,OE⊥AB于点O,如果∠1与∠2互余,那么图中相等的角有()A.5对B.4对C.3对D.2对二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.一个角的补角与它的余角的3倍的差是40°,则这个角为.13.已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有对,互余的角有对.14.若一个角的补角与这个角的余角之和为200°,则这个角的度数为度.15.如图,将一副三角尺的直角顶点O重合在一起.若∠COB与∠DOA的比是5:13,OE 平分∠DOA,则∠EOC=度.三.解答题16.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD 和∠AOC互余,并求∠COD的度数.17.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.18.如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=60°,将一直角三角板的直角顶点放在点O处,一边ON在射线OB上,另一边OM在直线AB的上方.(1)在图①中,∠COM=度;(2)将图①中的三角板绕点O按逆时针方向旋转,使得ON在∠BOC的内部,如图②,若∠NOC=∠MOA,求∠BON的度数;(3)将图①中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON恰好平分锐角∠BOC时,旋转的时间是秒.(直接写出结果)参考答案一.选择题1.解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=40°,∴∠B=180°﹣40°=140°.故选:C.2.解:A.一个锐角与一个钝角不一定互为补角,故本选项错误;B.每一个锐角都有余角,故本选项正确;C.只有两个锐角的和为90°时,这两个角才互余,故原说法错误;D.钝角的没有余角,故此选项错误;故选:B.3.解:∠AOB=∠COD=90°,∠AOD=146°则∠BOC=360°﹣2×90°﹣146°=34°则∠BOC=34°.故选:B.4.解:①已知∠A=40°,则∠A的余角是50°,原说法正确;②若∠1+∠2=90°,则∠1和∠2互为余角,原说法正确;③若∠1+∠2+∠3=180°,则∠1、∠2和∠3不能互为补角,原说法错误;④一个角的补角不一定是钝角,原说法错误.说法正确的是①②,故选:A.5.解:(180°﹣∠α)﹣(90°﹣∠α)=180°﹣∠α﹣90°+∠α=90°.故选:A.6.解:α的余角=90°﹣α=90°﹣27°25'=62°35'.故选:B.7.解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.8.解:A、∵∠AOC和∠BOD都是直角,∴∠AOD+∠DOC=∠DOC+∠BOC=90°,∴∠AOD=∠BOC,故A正确,不符合题意;B、∵∠DOC=58°,∴∠AOD=32°,∴∠AOB=32°+90°=122°,故B错误,符合题意,C、∵∠AOD+∠DOC=∠DOC+∠BOC=90°,∴∠AOD+∠DOC+∠DOC+∠BOC=180°,∴∠AOB+∠DOC=180°,故C正确,不符合题意;D、∵∠AOD+∠DOC+∠DOC+∠BOC=180°,∴∠AOB+∠DOC=180°,∴∠DOC变小,则∠AOB变大,故D正确,不符合题意.故选:B.9.解:A、∠1与∠2不互余,故本选项错误;B、∠1与∠2不互余,故本选项错误;C、∠1与∠2不互余,故本选项错误;D、∠1与∠2互余,故本选项正确.故选:D.10.解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∵∠1与∠2互余,∴∠1+∠2=90°,∴∠1=∠AOC,∠2=∠BOD,∠AOE=∠COD,∴图中相等的角有5对.故选:A.二.填空题11.解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x﹣3(90﹣x)=40,解得x=65.故这个角是65°.故答案为:65°.13.解:图形中相等的角有∠A=∠BCD,∠B=∠ACD,∠ACB=∠BDC,∠ACB=∠CDA,∠BDC=∠CDA,一共5对,互余的角有∠A和∠B,∠A和∠ACD,∠B和∠BCD,∠ACD和∠BCD,一共4对.故答案为:5;4.14.解:设这个角为x°,由题意得:90﹣x+180﹣x=200,解得:x=35,故答案为:35.15.解:∵∠COB+∠DOA=∠COB+∠COA+∠COB+∠DOB=∠AOB+∠COD=180°,又∵∠COB与∠DOA的比是5:13,∴∠DOA=180°×=130°,∵OE平分∠DOA,∴∠DOE=65°,故答案为:25.三.解答题16.解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.17.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.18.解:(1)∵将一直角三角板的直角顶点放在点O处,一边ON在射线OB上,另一边OM在直线AB的上方,∴∠MON=90°,∴∠COM=∠MON﹣∠BOC=90°﹣60°=30°,故答案为:30(2)设∠NOC=x,那么∠MOA=6x,∠BON=60°﹣x.由题意,可知6x+90°+60°﹣x=180°,即5x=180°﹣90°﹣60°,即5x=30°,所以x=6°.所以∠BON=60°﹣x=60°﹣6°=54°.(3)∵直线ON平分∠BOC,∠BOC=60°,∴∠BON=30°或∠BON=210°,∵三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,∴直线ON平分∠BOC时,旋转的时间是3或21秒,故答案为:3或21。
4.3.3 余角和补角一、填空题:请将答案填在题中横线上.1.如图,AO⊥BO,CO⊥DO,则∠AOC________∠BOD(选填“>”、“=”或“<”).【答案】=2.如图,∠AOB=∠COD=90°,则∠AOD+∠BOC=__________.【答案】180°3.互余且相等的两个角,它们的补角为__________度.【答案】1354.若∠1的补角为130°,则∠1的余角的度数为__________.【答案】40°二、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.5.如图,OC⊥AB,∠COD=45°,则图中互为补角的角共有A.1对B.2对C.3对D.4对【答案】C6.下列说法正确的是A.锐角的补角一定是钝角B.锐角和钝角的和一定是平角C.互补的两个角可以都是锐角D.互余的两个角可以都是钝角【答案】A7.如果∠1+∠2=90°,∠2+∠3=90°,那么∠1与∠3的关系是A.∠1+∠3=90°B.∠1+∠3=180°C.∠1=∠3 D.不能确定【答案】C8.已知∠1+∠2=90°,∠3+∠4=180°,下列说法正确的是A.∠1是余角B.∠3是补角C.∠1是∠2的余角D.∠3和∠4都是补角【答案】C三、解答题:解答应写出文字说明、证明过程或演算步骤.10.若一个角的补角与它余角的2倍的差是平角的14.求这个角的度数.【解析】设这个角的度数为x,根据题意得(180°–x)–2(90°–x)=14×180°,解得x=45°,即这个角为45°.11.如图所示,AOB是一条直线,OC是一条射线,∠AOC=2∠AOF,∠BOC=2∠BOE.(1)∠1与∠2互余吗?(2)指出图中所有互余和互补的角.【解析】(1)互余(2)互余的角:∠1与∠2,∠1与∠BOE,∠2与∠AOF,∠AOF与∠BOE互补的角:∠AOF与∠BOF,∠1与∠BOF,∠AOC与∠BOC,∠BOE与∠AOE,∠2与∠AOE12.如图,已知∠AOC=∠BOD=90°,∠DOC=55°.求∠AOD和∠BOC的度数.【解析】∠AOD=35O ∠BOC=35O。
D C A B N M (2)
E 余角和补角
基础练习
判断:1.一个锐角和一个钝角的和等于一个平角.( )
2.一个角的补角大于这个角.( )
3.一个钝角减去一个锐角必然得到一个锐角.( )
4.一个角的补角减去这个角的余角是一个直角.( )
5.同角或等角的余角相等,补角也相等.( )
6.若有一个公共顶点和一条公共边的两个角互补,则这两个角的另一边必在同一直线上.( )
7.120.5°=120°50′.( )
填空: 8.两个角的和等于________( ),就说这两个角互为余角;•两个角的和等于________( ),就说这两个角互为补角.
9.已知∠1=43°27′,则∠1的余角是_______,补角是________.
10.•从一个角的顶点引出的一条_______,•把这个角分成两 个相等的角,•这条______叫做这个角的_______. 11.如图,∠AME 的补角是_______,对顶角是_______.
拓展提高
12.互为补角的两个角的比是3:2,则这两个角是( ) A.108°,72° B.95°,85° C.100°,80° D.120°,60°
13.如果两个角的和等于180°,那么这两个角一定是( ).
A.两个锐角;
B.两个直角;
C.一个锐角,一个钝角;
D.两个直角或一个锐角,一个钝角
14.若一个角的补角是这个角余角的3倍,那么这个角是多少度?
15.已知角α的余角为β,β的补角是α的4倍,求证: α=
12β。