《基本不等式》教学设计
- 格式:docx
- 大小:42.21 KB
- 文档页数:2
教案分析(优秀5篇)在教学工实际的教学活动中,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。
那么什么样的教案才是好的呢?小编的我精心为您带来了5篇《教案分析》,希望能够给您提供一些帮助。
基本不等式教案篇三【教学目标】1、知识与技能目标(1)掌握基本不等式,认识其运算结构;(2)了解基本不等式的几何意义及代数意义;(3)能够利用基本不等式求简单的最值。
2、过程与方法目标(1)经历由几何图形抽象出基本不等式的过程;(2)体验数形结合思想。
3、情感、态度和价值观目标(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;(2)体会多角度探索、解决问题。
【能力培养】培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程。
【教学难点】幼儿园基本教案分析篇四幼儿园基本教案分析红色冲刺:一、说教材:中班幼儿是各种动作和能力逐步形成的时期,培养幼儿对信号的反应能力和动作的协调性,是建构式教材的重点之一。
新年刚过,幼儿们对红彤彤的新年还余兴未尽。
红色象征着喜庆热闹、吉祥祝福。
选择这个课题引导幼儿积极向上。
团结协作。
分辨多种颜色和按规律接龙是与建构式教材整合多方面知识相吻合的、让幼儿在生活和游戏中体验快乐,增强幼儿的自信心。
二、说教学目的:1、练习快跑,巩固跑步的正确姿势。
2、培养幼儿对信号的反应能力和动作的协调性。
3、区分颜色、能按规律接龙。
三、教学重点:看颜色做跑、爬、跳等相应的动作。
四、说教法:针对这次教育活动的教学目的,根据幼儿的实际情况,在整个活动过程中以竞赛和游戏的形式进行。
使整个过程动静结合,让幼儿在轻松愉快的环境中学习,做到师幼交融互动。
物我交融互动。
活动是有组织、有规范、有秩序、适合整体发展的活动。
五、说教学过程:1、以热身运动,引发幼儿对体育锻炼的兴趣。
2、以“你追我赶“这个游戏让幼儿知道正确跑步的姿势,和探索怎样跑得快的决窍,通过活动激发幼儿的竞争意识和团结协作共同向上的精神。
基本不等式教案
教案:基本不等式
一、教学目标:
1. 理解不等式的概念和意义;
2. 掌握不等式的表示方法;
3. 能够解决基本不等式的求解问题。
二、教学重点:
1. 理解不等式的概念和意义;
2. 掌握不等式的表示方法。
三、教学难点:
能够解决基本不等式的求解问题。
四、教学步骤:
1. 导入新知识:
与学生进行一段对话,了解学生对不等式的认识程度,并引出本节课的主题。
2. 概念解释:
通过例子及图示,简单明了地向学生解释什么是不等式,以及不等式的表示方法,如“大于”、“小于”、“大于等于”、“小于等于”等。
3. 基本不等式的求解方法:
介绍几个基本不等式的求解方法,并通过具体的例子进行讲解,如将不等式转化为方程、利用数轴图解法等。
4. 练习与巩固:
通过对一些简单的不等式进行练习,让学生逐步掌握基本不等式的求
解方法,并在解题过程中注意注意解题步骤和思路。
5. 拓展应用:
给学生一些有挑战性的不等式问题,让他们进一步巩固和应用所学的
求解方法,并在解答过程中培养他们的综合运用能力和创新思维。
6. 归纳总结:
对本节课的内容进行归纳总结,梳理基本不等式的求解方法,并强调
解题时的注意事项。
7. 课堂作业:
布置一些不等式的练习题,让学生独立完成并交作业。
五、教学资源:
教学课件、练习题。
六、教学评估:
通过课堂练习及作业的完成情况,评估学生对基本不等式的掌握情况。
七、教学反思:
根据学生的学习情况及问题反馈,及时调整教学策略,提高教学效果。
基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。
基本不等式教案教案标题:基本不等式教案教学目标:1. 理解和运用基本不等式的概念;2. 掌握基本不等式的性质及解题方法;3. 提升对不等式问题的分析和解决能力。
教学准备:1. 教师:白板、标志笔、多媒体设备;2. 学生:教科书、练习册、笔、纸。
教学过程:步骤一:导入(5分钟)利用一些简单的实例向学生介绍不等式的概念,并引发对不等式的思考,例如:3 > 2、4 ≠ 5。
步骤二:教学(30分钟)1. 解释基本不等式的定义和性质,包括大于、小于、大于等于、小于等于等概念。
2. 介绍不等式的运算规则,如相加、相减、相乘等,以及这些运算对不等式的影响。
3. 演示并分析如何解决一步骤的基本不等式方程,引导学生理解解不等式方程的思路和方法。
4. 提供一些具体的例子,让学生通过实际操作来练习解决不等式方程的能力。
步骤三:巩固(15分钟)1. 设计一些巩固练习,让学生独立或合作完成,检测他们对基本不等式的理解和应用。
2. 在学生完成练习后,逐个检查答案,并解释如何得出正确答案。
步骤四:拓展(10分钟)1. 提出一些扩展问题,要求学生运用基本不等式的知识,解决更复杂的不等式问题。
2. 引导学生思考应用不等式解决实际问题时可能遇到的困难,并讨论如何克服这些困难。
步骤五:总结(5分钟)总结基本不等式的概念、性质和解题方法,并鼓励学生运用这些知识解决更多的不等式问题。
教学扩展:1. 鼓励学生品尝到不同类型不等式的实例,如一元一次不等式、绝对值不等式等,扩展他们对不等式的理解和应用。
2. 提供更多的练习和挑战题,提高学生解决不等式问题的技巧和速度。
3. 引导学生进行小组或个人项目,研究不等式在实际生活中的应用,如经济学、生物学等领域。
衡量评估:1. 教师观察学生在课堂上的互动和参与度;2. 学生完成的练习和作业的准确性和完整性;3. 学生通过小组或个人项目展示的能力和创造性。
注意事项:1. 教师应根据学生的实际情况和学习进度,调整教学步骤和难度,确保教学效果;2. 鼓励学生积极参与互动,提出问题并解答;3. 考虑学生的不同学习特点和能力,利用多种教学方法和资源,提供个性化的教学指导。
《§3.4.1基本不等式》的教学设计教材:人教版高中数学必修5第三章一、教学内容解析本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。
在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。
二、教学目标设置1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。
3.通过例题让学生学会用基本不等式求最大值和最小值。
三、学生学情分析对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。
四、教学策略分析在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。
在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点五、教学过程:(一)情景引入下图是2002年在北京召开的第24届国际数学家大会会议现场。
通过情境引发联想,学生深切感受到我国数学科学的悠久历史和深厚的文化底蕴,以及我国的数学成就对世界数学文明的影响和发展做出的卓越贡献,激发学生喜欢数学,学好数学的热情。
探究一:观察上面的会标。
会标是根据中国古代数学家赵爽的弦图设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、数形结合的思想。
基本不等式教学设计(通用8篇)基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。
启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。
第二章一元二次函数、方程和不等式2.2 基本不等式(第1课时)教学设计一、教材分析《基本不等式》在数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。
本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。
同时本节课的内容也是之后基本不等式应用的必要基础。
二、教学目标与核心素养课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。
2.经历基本不等式的推导与证明过程,提升逻辑推理能力。
3.在猜想论证的过程中,体会数学的严谨性。
数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。
重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.三、教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
四、教学工具:多媒体,交互式电子白板。
五、教学过程(一)引言师:前面我们类比等式的性质研究了不等式的性质及其证明和应用,今天我们来学习一个具体的不等式—基本不等式。
(插入中小学智慧平台)师:我门知道,乘法公式在代数式的运算中有着重要的作用,是否也存在一些不等式,在解军决不等问题时,有着与乘法公式类似的重要作用呢?下面我们就来共同研究这个问题。
其实在不等式里,数学家们也总结了一大堆常用的公式。
今天,我们就来学习最简单,也最常出现的一个不等式,叫作基本不等式。
(展示中小学智慧平台学习任务单)(二)新课探究1、引出基本不等式师:什么是基本不等式呢?大家先来看一个在小学时就学过的一条几何性质:在一组周长相等的矩形形中,正方形的面积最大。
比如,一个长方形的边长为分别为5和3,正方形的边长为4,它们的周长都是16,此时它们的面积呢?S长=15,S正=16。
基本不等式课程设计一、教学目标本节课的教学目标是让学生掌握基本不等式的概念、性质和应用,能够运用基本不等式解决一些简单的问题。
具体目标如下:1.了解基本不等式的定义和性质。
2.掌握基本不等式的证明方法。
3.理解基本不等式在实际问题中的应用。
4.能够运用基本不等式解决一些简单的问题。
5.能够运用基本不等式进行不等式的证明。
情感态度价值观目标:1.培养学生的逻辑思维能力。
2.培养学生的数学美感。
二、教学内容本节课的教学内容主要包括基本不等式的定义、性质和应用。
具体内容如下:1.基本不等式的定义:介绍基本不等式的定义,解释其含义和作用。
2.基本不等式的性质:讲解基本不等式的性质,包括对称性、单调性等。
3.基本不等式的应用:介绍基本不等式在实际问题中的应用,如求最值、证明不等式等。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法:1.讲授法:教师通过讲解基本不等式的定义、性质和应用,引导学生理解并掌握知识。
2.讨论法:教师学生进行小组讨论,让学生通过互动交流,加深对基本不等式的理解。
3.案例分析法:教师通过举例子,让学生运用基本不等式解决实际问题,巩固知识。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:为学生提供《数学课本》等相关教材,作为学习的基本依据。
2.参考书:提供一些数学参考书,供学生课后拓展学习。
3.多媒体资料:制作课件、视频等多媒体资料,帮助学生直观理解基本不等式的性质和应用。
4.实验设备:准备一些实验设备,如白板、黑板等,方便教师进行演示和讲解。
五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。
2.作业:布置与本节课内容相关的作业,评估学生对基本不等式的掌握情况和应用能力。
3.考试:安排一次考试,测试学生对基本不等式的概念、性质和应用的掌握程度。
高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。
②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。
③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。
让学生享受学习数学带来的情感体验和成功喜悦。
二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。
教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。
三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。
以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。
以多媒体作为教学辅助手段,加深学生对基本不等式的理解。
四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。
2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。
教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。
2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。
)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。
五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。
3.1基本不等式(2)
一、教学目标
1.进一步巩固基本不等式求最值问题.
2..在使用基本不等式求最值过程中,强化“一正”,“二定”,“三相等”
二、重点难点点拨
重点:应用基本不等式进行求最值.
难点:将式子转化,拼凑,变形成符合基本不等式条件的形式。
三、教学过程
问题:以下结论中,正确的是________
A. 若x ,y 均为正数,则
2≥+y x x y B. 不等式)0(121232123≠=⋅≥+x x
x x x C. 若10<<x ,则2lg 1lg ≥+
x x D. 函数32
3)(22+++=x x x f 的最小值为22。
例1:若x <0,求函数f (x )=x
12+3x 的最大值. 【分析】 利用基本不等式求最值,必须同时满足3个条件:①两个正数;②其和为定值或积为定值;③等号必须成立.三个条件缺一不可.当两个数均为负数时,首先将它们变为正数,即在前面加一个负号,再利用基本不等式求解. 变式:设x
x y x 42,0--=>的最小值. 例2:(1)已知 21>x ,求函数1
212-+=x x y 的最小值 (2)已知 3
10<<x ,求函数y=x(1-3x) 的最大值. [说明] 解决本题的关键是拼凑.(1)中将4x -2拼凑成4x -5.(2)中将x 拼凑成3x ,从而可产生定值.(1)中是积为定值.(2)中是和为定值
变式:(1)已知 45>x ,求函数5
4124-+-=x x y 最大值; (2)已知 )0,0(22>>=+y x y x ,求x y 的最大值
(3)已知正数a,b 满足 3222=+b a ,求 12+b a 的最大值。
(备用)
例3:已知x>0,y>0且191=+y
x 求x+y 的最小值。
变式:已知x,y 都是正数,且x+y=1,求y
x 41+的最小值。
[说明]:本题的关键是“1”的代换,1)(⨯+=+y x y x ,其中1用y
x 91+代换,从而使式子满足“二定”,再使用基本不等式求解。
三、课后小结:
1、运用基本不等式求最值,要注意两个数或代数式要满足:“一正” “二定” “三相等”
2、对于不符合基本不等式条件的式子,可以通过适当处理,使其满足条件。
四、作业:白皮练习册126页
五、板书。