变电站的防雷接地..共35页
- 格式:ppt
- 大小:3.02 MB
- 文档页数:35
发电厂和变电所的防雷保护供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值,通常情况下变电所雷击有两种情况:一是雷直击于变电所的设备上;二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电所。
其具体表现形式如下:1、直击雷过电压。
雷云直接击中电力装置时,形成强大的雷电流,雷电流在电力装置上产生较高的电压,雷电流通过物体时,将产生有破坏作用的热效应和机械效应。
2、感应过电压。
当雷云在架空导线上方,由于静电感应,在架空导线上积聚了大量的异性束缚电荷,在雷云对大地放电时,线路上的电荷被释放,形成的自由电荷流向线路的两端,产生很高的过电压,此过电压会对电力网络造成危害。
因此,架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电所,是导致变电所雷害的主要原因,若不采取防护措施,势必造成变电所电气设备绝缘损坏,引发事故。
(1)变电所防雷的原则针对变电所的特点,其总的防雷原则是将绝大部分雷电流直接接闪引入地下泄散(外部保护);阻塞沿电源线或数据、信号线引入的过电压波(内部保护及过电压保护);限制被保护设备上浪涌过压幅值(过电压保护)。
这三道防线,相互配合,各行其责,缺一不可。
应从单纯一维防护(避雷针引雷入地———无源保护)转为三维防护(有源和无源防护),包括:防直击雷,防感应雷电波侵入,防雷电电磁感应等多方面系统加以分析。
1、外部防雷和内部防雷避雷针或避雷带、避雷网引下线和接地系统构成外部防雷系统,主要是为了保护建筑物免受雷击引起火灾事故及人身安全事故;而内部防雷系统则是防止雷电和其它形式的过电压侵入设备中造成损坏,这是外部防雷系统无法保证的。
为了实现内部防雷,需要对进出保护区的电缆,金属管道等都要连接防雷、及过压保护器,并实行等电位连接。
2、防雷等电位连接为了彻底消除雷电引起的毁坏性的电位差,就特别需要实行等电位连接,电源线、信号线、金属管道等都要通过过电压保护器进行等电位连接,各个内层保护区的界面处同样要依此进行局部等电位连接,各个局部等电位连接棒互相连接,并最后与主等电位连接棒相连。
题目:变电站防雷接地技术内容摘要变电站接地系统的合理与否是直接关系到人身和设备安全的重要问题。
随着电力系统规模的不断扩大,接地系统的设计越来越复杂。
变电站接地包含工作接地、保护接地、雷电保护接地。
工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。
变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。
关键词:变电站;防雷保护;接地装置目录内容摘要 (I)1 绪论 (1)1.1 课题研究的意义 (1)1.2 变电站防雷接地的研究背景 (2)1.3 本次论文的主要工作 (2)2 变电站的防雷保护 (4)2.1 变电站的直击雷保护 (4)2.2 变电站的侵入波保护 (6)2.3 变电站的进线段保护 (6)2.4 避雷针与避雷线的保护范围的计算 (7)2.5 变电站进线防雷保护 (8)3 变电站的防雷接地 (9)3.1 接地概述 (9)3.2 接地电阻 (9)3.3 变电所接地装置 (10)3.4 变电所接地的原则 (11)3.5 降低变电所接地装置工频接地电阻的措施 (12)4 变电所防雷接地设计实例 (13)4.1 变电所的规模 (13)4.2 变电所位置的自然条件 (14)4.3 避雷针的设置及防雷保护校验 (15)4.4 接地装置的设置 (17)5 结论 (18)参考文献 (19)1 绪论1.1 课题研究的意义接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。
因此,没有合理而良好的接地装置,就不能有效地防雷。
从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。
接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。
变电站防雷接地施工方案在变电站的建设和运行过程中,防雷接地施工是至关重要的环节。
良好的防雷接地系统能有效保护设备和人员安全,确保电力系统的稳定运行。
本文将介绍变电站防雷接地施工方案,包括接地系统设计、施工流程和注意事项等内容。
1. 接地系统设计1.1 接地网设计•针对变电站的具体情况,确定合适的接地网类型(平行接地、串联接地等)。
•根据接地电阻要求和土壤电阻率,设计合理的接地网布置方案。
1.2 接地装置设计•确定合适的接地装置类型(接地极、接地网等)。
•根据接地电阻要求和接地装置特性,设计接地装置的规格和数量。
2. 施工流程2.1 材料准备•准备符合规范要求的接地材料(导线、接地极等)。
•检查施工工具和设备,确保能够正常使用。
2.2 接地网铺设•根据设计要求,进行接地网的铺设工作。
•保证接地网与设备的可靠连接,确保接地系统的连通性。
2.3 接地装置安装•根据设计要求,安装接地装置并与接地网连接。
•保证接地装置的接地性能符合要求,防止接地电阻过大影响系统安全性能。
3. 注意事项3.1 安全第一•在施工过程中,严格遵守安全操作规程,确保施工人员和设备的安全。
•防止雷电天气施工,避免发生意外事故。
3.2 质量把控•施工过程中,不合格材料和设备均不得使用,保证接地系统的质量符合要求。
•施工完成后,进行必要的测试和验收,确保接地系统符合设计要求。
结语变电站的防雷接地施工方案至关重要,直接关系到电力系统的安全稳定运行。
设计合理、施工规范是保证接地系统性能的关键。
在实际施工过程中,需要严格遵循设计要求,确保施工质量和安全性。
希望本文能为变电站防雷接地施工提供一定的参考和指导,保障电力系统的正常运行和人员安全。
35KV变电站防雷接地保护设计摘要雷电事故是对变电站、发电厂安全的主要威胁,如何有效、合理对变电站、发电厂采取防雷接地保护措施有着十分重要的意义。
本文就以农村某35KV变电站为研究对象,以国家《防雷接地标准》为依据且结合变电站具体情况,对变电站的防雷接地进行保护设计,具有一定代表性。
首先根据变电站的电气主接线图等实际情况,在了解雷电参数、雷电机理以及学习各种防雷装置的基础上,采用设计避雷针并计算验证其保护范围实现对变电站直击雷的防护;对变电站雷电侵入波的防护实现,则通过选择安装避雷器型号和设计变电站进线段的保护接线。
最后在了解接地基本知识后,计算其接地电阻、最大土壤电阻率、垂直接地体根数等,实现对此35KV变电站的接地保护设计。
关键词:35KV变电站;直击雷防护;雷电侵入波防护;接地保护35KV substation lightning protection design of ground protectionAbstract:Lightning incident on the substation, power plants, the main threat to security, how to effectively and rationally to the substations, power plants, lightning protection grounding protection measures taken is very important.This article on a 35KV substation in rural areas for the study to state "Lightning grounding standards" based on specific conditions and combination of substation, the substation grounding protection lightning protection design, has a certain representation. First of all, according to the main electrical substation wiring diagram of the actual situation, etc., in the understanding of lightning parameters, the mechanism of lightning, as well as learning a variety of lightning protection devices on the basis of the calculation used to verify the design of a lightning rod and its scope of protection to achieve the protection of the substation direct stroke; of Substation lightning invasion wave to achieve the protection, surge arresters are installed by selecting the type and design of substation protection of wiring into the segment.Finally, grounding in the basic knowledge to understand, calculate the grounding resistance, soil resistivity of the largest vertical root number, such as grounding, to achieve this protection 35KV substation grounding design.Key words: 35KV Substation; Direct stroke protection; Invasive wavelightning protection ; Ground Protection目录摘要 (1)目录 (3)第1章前言 (5)1.1课题的提出和意义 (5)1.2国内外研究现状 (6)1.3本课题的主要工作 (6)1.3.1研究目标 (6)1.3.2主要研究内容 (7)1.4变电站防雷接地国家相关标准 (7)1.5本论文涉及的35KV变电站 (8)1.5.1变电站的概况 (8)1.5.2变电站相关参数 (9)1.5.3变电站电气主接线图 (9)第2章雷电与防雷装置 (11)2.1雷电 (11)2.1.1雷电及其放电过程 (11)2.1.2雷电参数 (13)2.1.3雷击过电压产生的机理 (17)2.2防雷装置 (18)2.2.1避雷针 (18)2.2.2避雷线 (20)2.2.3避雷带和避雷网..................................................... 错误!未定义书签。
山西师范大学学报(自然科学版)研究生论文专刊第22卷2008年03月变电站的防雷接地与应对方法靳萍(临汾电力分公司信通公司,山西临汾041000)摘要:文章综述了变电所防雷接地方面的一些基本概念,以及对接地应有的全面认识.并对一般接地方法进行了分析和探讨,提出了一些做法,以利于变电所的安全运行.关键词:雷电;接地;布线雷电是一种大气中放电现象,产生于积雨中.积雨云在形成过程中,某些云团带正电荷,某些云团带负电荷,当电荷积聚到一定程度时,不同电荷云团之间,或云与大地之间的电场强度可以击穿空气(一般25kV/c m~30kV/c m),开始游离放电,我们称之为“先导放电”.云对地的先导放电是云向地面跳跃式逐渐发展的,当到达地面时(地面上的建筑物、架空输电线等),便会产生由地面向云团的逆导主放电.在主放电阶段里,由于异性电荷的剧烈中和,会出现很大的雷电流(一般为几十千安至几百千安),并随之发生强烈的闪电和巨响,这就形成雷电.雷电防护措施主要包括:直击雷防护、侧击雷防护、感应雷防护三大部分,并采用接闪、分流、屏蔽、均压、等电位、接地等技术措施.这里我们主要讨论接地的有关问题.防雷工程的一个重要方面是接地以及引下线路的布线工程,整个工程的防雷效果甚至防雷器件是不是起作用都取决于此,所以应该认真、系统的研究.电力、电子设备的接地,是保障设备安全、操作人员安全和设备正常运行的必要措施.可以说,凡是与电网连接的所有仪器设备都应当接地;凡是电力需要到达的地方,就是接地工程需要作到的地方.1保护接地防雷接地是受到雷电袭击(直击、感应或线路引入)时,为防止造成损害的接地系统.常有信号(弱电)防雷地和电源(强电)防雷地之分,区分的原因不仅仅是因为要求接地电阻不同,而且在工程实践中信号防雷地常附在信号独立地上,和电源防雷地分开建设.机壳安全接地是将系统中平时不带电的金属部分(机柜外壳,操作台外壳等)与地之间形成良好的导电连接,以保护设备和人身安全.原因是系统的供电是强电供电(380、220、或1I O V),通常情况下机壳等是不带电的,当故障发生(如主机电源故障或其它故障)造成电源的供电火线与外壳等导电金属部件短路时,这些金属部件或外壳就形成了带电体.如果没有很好的接地,那么这带电体和地之间就有很高的电位差.如果人不小心触到这些带电体,那么就会通过人身形成通路,产生危险.因此,必须将金属外壳和地之间作很好的连接,使机壳和地等电位.此外,保护接地还可以防止静电的积聚.、2工作接地工作接地是为了使系统以及与之相连的仪表均能可靠运行并保证测量和控制精度而设的接地.它分为机器逻辑地、信号回路接地、屏蔽接地,在石化和其它防爆系统中还有本安接地.机器逻辑地,也叫主机电源地,是计算机内部的逻辑电平负端公共地,也是+5V等电源的输出地.信号回路接地,如各变送器的负端接地,开关量信号的负端接地等.屏蔽接地(模拟信号的屏蔽层的接地).收稿日期:2007-12-24。
变电站的防雷及接地保护避雷针与被保护物之间,应保持足够的安全距离,即Sk>0.3Rsh+0.1h;Sd>0.3Rsh,其中Rsh为避雷装置的冲击接地电阻;h 为被保护物的高度。
条件许可时,Sk与Sd应尽量大。
一般情况下,Sk>5m,Sd>3m。
避雷装置接地电阻不能太大,否则将增加避雷装置的高度,成本增加。
一般土壤工频接地电阻不大于10Ω。
35kV及以下配电装置的构架或房顶,用独立避雷针保护,装设在距离人行道路大于3m,也可采取均压措施,或铺设50~80mm的沥青加碎石层。
60kV及以上配电装置,可将避雷针(线)安装于架构或房顶。
所有被保护的设备均应在避雷针保护范围内。
一、电气装置接地要求1.接地要求(1)一般要求①接地。
为保证人身和设备安全,电气设备外壳宜接地;交流电气设备充分利用自然接地体,但要校验自然接地体的稳定性;直流电路中,不应利用自然接地体作电流电路的接地线或接地体。
②接地电阻。
设计接地装置时,考虑土壤干燥或冻结等因素,保证接地电阻符合要求。
③接地距离。
不同用途和不同电压的电气设备,除另有规定外,用一个总接地体,但电气设备的工作接地和保护接地,应与防雷接地分开,并保持安全距离。
④中性线。
中性点直接接地的供用电系统中,装设能迅速自动切除接地短路故障的保护装置;中性点非直接接地的供用电系统中,装设迅速反映接地故障的信号装置,必要时可装设延时自动切除故障装置。
(2)防静电接地要求①可靠连接。
车间内每个系统设备和管道应可靠连接,接头处接触电阻小于0.03Ω。
②接地连接。
车间内和栈桥上等平行管道,相距约10cm时,每隔20m要互相连接一次;相交或相距近于10cm的管道,应互相连接,管道与金属构架相距10cm处要互相连接。
③气体场所接地。
气体产品输送管干线头尾部和分支线处都应接地;贮存液化气体、液态氮氢化合物及其他有火灾危险的液体贮液罐,贮存易燃气体贮气罐等都应接地。
(3)特殊设备接地要求①接地体。