雷诺温度校正图
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
燃烧热的测定Ⅰ 实验目的1、掌握燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别及相互关系;2、熟悉热量计中主要部分的原理和作用,掌握氧弹热量计的实验技术;3、用氧弹热量计测定苯甲酸和萘的燃烧热;4、学会雷诺图解法校正温度改变值。
Ⅱ 实验原理 1、燃烧与量热根据热化学的定义,1mol 物质完全氧化时的反应热称作燃烧热。
燃烧热的测定,除了有其实际应用价值外,还可以用于求算化合物的生成热、键能等。
量热法是热力学的一种基本实验方法。
在恒容或恒压条件下可以分别测得恒容燃烧热Q V 和恒压燃烧热Q p 。
由热力学第一定律可知,Q V 等于体积内能变化∆U ;Q p 等于其焓变∆H 。
若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:Q p = Q V + ∆nRT 2、氧弹热量计氧弹热量计的基本原理是能量守恒定律。
样品完全燃烧后释放的能量使得氧弹本身及其周围的介质和热量计有关附件的温度升高 ,则测量介质在燃烧前后体系温度的变化值,就可求算该样品的恒容燃烧热。
其关系式如下:T C C W qb Q Mw J V ∆+=--)(水水样Ⅲ 仪器 试剂氧弹量热计 1套 万用表 1个 数字式精密温差测量仪 1台 案秤 1台 氧气钢瓶 1只 秒表 1个 氧气减压阀 1只 分析天平 1台 压片机 1台 引燃专用镍铬丝 塑料桶 1个 苯甲酸 剪刀 1把 萘Ⅳ 实验装置图Ⅴ实验步骤1、测定热量计的水当量1.1样品制作用分析天平称取大约1.15g左右的苯甲酸,在压片机上压成圆片。
用镊子将样品在干净的称量纸上轻击,除去表面松散粉末后再用分析天平称量,精确0.0001g。
1.2装样并充氧气打开氧弹盖,将氧弹内部擦干净。
测量金属小杯质量后,小心将样品片放置在金属小杯中部。
称取一定长度的引燃镍铬丝,在直径约2mm的万用电表笔上,将引燃镍铬丝的中段绕成螺旋形8圈。
将螺旋部分紧贴在样片的表面。
旋紧氧弹,将导气口与氧气钢瓶上的减压阀相连接。
而必须经过作图法进行校正-雷诺(Renolds)温度校正图。
具体方法如下。
当适量待测物质燃烧后使热量计中的水温升高1.5~2.0℃。
将燃烧前后历次观测到的水温记录下来,并作图,连成abcd线(图3)。
图中b点相当于开始燃烧之点,c点为观测到的最高温度读数点,由于量热计和外界的热量交换,曲线ab及cd常常发生倾斜。
取b点所对应的温度T1,c点对应的温度T2,其平均温度为T,经过T点作横坐标的平等线TO,与折线abcd相交于O点,然后过O 点作垂直线AB,此线与ab线和cd线的延长线交于E,F两点,则E点和F点所表示的温度差即为欲求温度的升高值ΔT。
如图3所示,E
E'表示环境辐射进来的热量所造成热量计温度的升高,这部分必须扣除;而F
F'表示量热计向环境辐射出热量而造成热量计温度的降低,因此这部分必须加入。
经过这样校正后的温差表示由于样品燃烧使热量计温度升高的数值。
图 3 绝热较差时的雷诺校正图图 4 绝热良好时的雷诺校正图
有时热量计的绝热情况良好,热量散失少,而搅拌器的功率又比较大,这样往往不断引进少量热量,使得燃烧后的温度最高点不明显出现,这种情况下ΔT 仍然可以按照同法进行校正(图4)。
必须注意,应用这种作图法进行校正时,量热计的温度和外界环境温度不宜相差太大(最好不超过2~3℃),否则会引起误差。
华南师范大学实验报告课程名称 物理化学实验 实验项目 燃烧热的测定【实验目的】①明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。
②掌握量热技术的基本原理,学会测定奈的燃烧热。
③了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。
④学会雷诺图解法校正温度改变值。
【实验原理】燃烧热是指1摩尔物质完全燃烧时所放出的热量。
在恒容条件下测得的燃烧热称为恒容燃烧热(O v ),恒容燃烧热这个过程的内能变化(ΔU )。
在恒压条件下测得的燃烧热称为恒压燃烧热(Q p ),恒压燃烧热等于这个过程的热焓变化(ΔH )。
若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式:∆c H m = Q p =Q v +Δn RT (1)本实验采用氧弹式量热计测量蔗糖的燃烧热。
测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。
氧弹是一个特制的不锈钢容器(如图)为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。
但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。
因此燃烧前后温度的变化值不能直接准确测量,而必须经过作图法进行校正。
放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理—能量守恒定律在盛有定水的容器中,样品物质的量为n 摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。
设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C (通常称为仪器的水当量,即量热计及水每升高1K 所需吸收的热量),假设系统与环境之间没有热交换,燃烧前、后的温度分别为T 1、T 2,则此样品的恒容摩尔燃烧热为:nT T C Q m V )(12,--= (2) 式中,Qvm 为样品的恒容摩尔燃烧热(J·mol-1);n 为样品的摩尔数(mol);C 为仪器的总热容(J·K-1或J / oC)。
实验二 燃烧热(焓)的测定一、实验目的1.了解XRY -1A 型数显氧弹式热量计的原理、构造和使用方法;2.掌握有关热化学实验的一般知识和技术;3.测定萘的燃烧热。
二、基本原理燃烧热是指一摩尔物质完全燃烧时的热效应。
所谓完全燃烧是指C 变为CO 2(气)、H 变为H 2O(液)、S 变为SO 2(气)、N 变为N 2(气)、C1变为HCl 水溶液。
燃烧热有等容燃烧热Qv 和等压燃烧热Q P 两种。
等容燃烧热是定容条件下测定的燃烧热,由热力学第一定律可知,它等于此过程的内能变化ΔU ,即Qv =ΔU ;而等压燃烧热是定压条件下测定的燃烧热,它等于等压过程的焓变ΔH ,即Q P =ΔH 。
若把参加反应的气体视为理想气体,则上述两种燃烧热存在如下关系:nRT Q Q V P ∆+= (2-1)式中Δn 为产物与反应物中气体物质的量之差;R 为气体常数,T 为反应温度。
若测得某物质的定容燃烧热Qv ,则可求得定压燃烧热Q P 。
定压燃烧热通常用ΔH 表示。
在盛有定量水的容器中。
放入内装有m g 样品和氧气的密闭氧弹,然后使样品完全燃烧,放出的热量传给水及仪器引起温度上升。
若已知水的质量为w kg ,仪器的水当量为W 1(热量计温度每升高1 K 所需的热量相当于W 1 kg 水温度升高1 K 所需的热量)。
若燃烧前、后的温度分别为t 0和t n ,则m g 物质的恒容燃烧热为:Q ˊ= C (w + W 1) ( t n - t 0) (2-2)式中水的热容C = 4.18×103 J ·kg -1·K -1。
因此,摩尔质量为M 的物质的摩尔燃烧热为: Q = M/m ·C (w + W 1) ( t n - t 0) (2-3)水当量W 1的求法是把已知燃烧热的物质(如本实验用苯甲酸)放在热量计中燃烧,测其始、末温度,按式(2-3)求出。
三、仪器和药品XRY -1A 型数显氧弹式热量计、压片机、剪刀、活动搬手、氧气钢瓶及减压阀、电子天平、2 000 ml 量筒、1 000 ml 量筒、1/10温度计。
物理化学实验思考题与参考答案实验七十恒温水浴组装及性能测试1.简要回答恒温水浴恒温原理是什么?主要由哪些部件组成?它们的作用各是什么?答:恒温水浴的恒温原理是通过电子继电器对加热器自动调节来实现恒温的目的。
当恒温水浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定温度时,又自动停止加热。
这样周而复始,就可以使体系的温度在一定范围内保持恒定。
恒温水浴主要组成部件有:浴槽、加热器、搅拌器、温度计、感温元件和温度控制器。
浴槽用来盛装恒温介质;在要求恒定的温度高于室温时,加热器可不断向水浴供给热量以补偿其向环境散失的热量;搅拌器一般安装在加热器附近,使热量迅速传递,槽内各部位温度均匀;温度计是用来测量恒温水浴的温度;感温元件的作用是感知恒温水浴温度,并把温度信号变为电信号发给温度控制器;温度控制器包括温度调节装置、继电器和控制电路,当恒温水浴的温度被加热或冷却到指定值时,感温元件发出信号,经控制电路放大后,推动继电器去开关加热器。
2.恒温水浴控制的温度是否是某一固定不变的温度?答:不是,恒温水浴的温度是在一定范围内保持恒定。
因为水浴的恒温状态是通过一系列部件的作用,相互配合而获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温元件、温度控制器、加热器等的滞后。
所以恒温水浴控制的温度有一个波动范围,并不是控制在某一固定不变的温度,并且恒温水浴内各处的温度也会因搅拌效果的优劣而不同。
4.什么是恒温槽的灵敏度?如何测定?答: T S为设定温度, T1为波动最低温度,T2为波动最高温度,则该恒温水浴灵敏度为:T2T1S测定恒温水浴灵敏度的方法是在设定温度2下,用精密温差测量仪测定温度随时间的变化,绘制温度 -时间曲线(即灵敏度曲线)分析其性能。
5.恒温槽内各处温度是否相等?为什么?答:不相等,因为恒温水浴各处散热速率和加热速率不可能完全一致。
6.如何考核恒温槽的工作质量?答:恒温水浴的工作质量由两方面考核:(1)平均温度和指定温度的差值越小越好。
华南师范大学实验报告燃烧热的测定一、实验目的(1)明确燃烧热的定义,了解恒压燃烧热与恒容燃烧烧热的差别与联系。
(2)测定萘的燃烧热,掌握量热技术基本原理。
(3)了解氧弹卡计的基本原理,掌握氧弹卡计的基本实验技术。
(4)使用雷诺校正法对温度进行校正。
二、实验原理2.1基本概念1mol物质在标准压力下完全燃烧所放出的热量,即为物质的标准摩尔燃烧焓,用表示。
若在恒容条件下,所测得的1mol物质的燃烧热则称为恒容摩表示,此时该数值亦等于这个燃烧反应过程的热力学能变尔燃烧热,用Q V,mΔr U m。
同理,在恒压条件下可得到恒压燃烧热,用Q p,m表示,此时该数值亦等于这个燃烧反应过程的摩尔焓变Δr H m。
化学反应的热效应通常用恒压热效应Δr H m来表示。
假若1mol物质在标准压力下参加燃烧反应,恒压热效应即为该有机物的标准摩尔燃烧热。
把燃烧反应中涉及的气体看做是理想气体,遵循以下关系式:Q p,m=Q V,m+(ΣV B)RT ①2.2氧弹量热计本实验采用外槽恒温式量热计,为高度抛光刚性容器,耐高压,密封性好。
量热计的内筒,包括其内部的水、氧弹及其搅拌棒等近似构成一个绝热体系。
为了尽可能将热量全部传递给体系,而不与内筒以外的部分发生热交换,量热计在设计上采取了一系列措施。
为了减少热传导,在量热计外面设置一个套壳。
内筒与外筒空气层绝热,并且设置了挡板以减少空气对流。
量热计壁高度抛光,以减少热辐射。
为了保证样品在氧弹内燃烧完全,必须往氧弹中充入高压氧气,这就要求要把粉末状样品压成片状,以免充气时或燃烧时冲散样品。
2.3量热反应测量的基本原理量热反应测量的基本原理是能量守恒定律。
通过数字式贝克曼温度计测量出燃烧反应前后的温度该表ΔT,若已知量热计的热容C,则总共产生的热量即为Q V=CΔT。
那么,此样品的摩尔恒容燃烧热为②式是最理想的情况。
但由能量守恒原理可知,此热量Q V的来源包括样品燃烧放热和点火丝放热两部分。
而必须经过作图法进行校正-雷诺(Renolds)温度校正图。
具体方法如下。
当适量待测物质燃烧后使热量计中的水温升高1.5~2.0℃。
将燃烧前后历次观测到的水温记录下来,并作图,连成abcd线(图3)。
图中b点相当于开始燃烧之点,c点为观测到的最高温度读数点,由于量热计和外界的热量交换,曲线ab及cd常常发生倾斜。
取b点所对应的温度T1,c点对应的温度T2,其平均温度为T,经过T点作横坐标的平等线TO,与折线abcd相交于O点,然后过O 点作垂直线AB,此线与ab线和cd线的延长线交于E,F两点,则E点和F点所表示的温度差即为欲求温度的升高值ΔT。
如图3所示,E
E'表示环境辐射进来的热量所造成热量计温度的升高,这部分必须扣除;而F
F'表示量热计向环境辐射出热量而造成热量计温度的降低,因此这部分必须加入。
经过这样校正后的温差表示由于样品燃烧使热量计温度升高的数值。
图 3 绝热较差时的雷诺校正图图 4 绝热良好时的雷诺校正图
有时热量计的绝热情况良好,热量散失少,而搅拌器的功率又比较大,这样往往不断引进少量热量,使得燃烧后的温度最高点不明显出现,这种情况下ΔT 仍然可以按照同法进行校正(图4)。
必须注意,应用这种作图法进行校正时,量热计的温度和外界环境温度不宜相差太大(最好不超过2~3℃),否则会引起误差。