高中数学必修二第四章同步练习(含答案)
- 格式:docx
- 大小:307.16 KB
- 文档页数:22
高二数学人教A版(2019)选择性必修第二册第四章4.4数学归纳法同步练习(含答案)2021年高中数学人教A版(新教材)选择性必修第二册§4.4数学归纳法一、选择题1.用数学归纳法证明1+++…+1)时,第一步应验证不等式() A.1+<2B.1++<2C.1++<3D.1+++<32.用数学归纳法证明1-+-+…+-=++…+,则当n=k+1时,左端应在n=k的基础上加上()A.B.-C.-D.+3.一个与正整数n有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则()A.该命题对于n>2的自然数n都成立B.该命题对于所有的正偶数都成立C.该命题何时成立与k取值无关D.以上答案都不对4.利用数学归纳法证明1++++…+A.1项B.k项C.2k-1项D.2k项5.对于不等式(1)当n=1时,<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式∴当n=k+1时,不等式成立,则上述证法()A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确6.某命题与自然数有关,如果当n=k(k∈N*)时该命题成立,则可推得n=k+1时该命题也成立,现已知当n=5时该命题不成立,则可推得()A.当n=6时,该命题不成立B.当n=6时,该命题成立C.当n=4时,该命题不成立D.当n=4时,该命题成立7.(多选题)用数学归纳法证明不等式+++…+>的过程中,下列说法正确的是()A.使不等式成立的第一个自然数n0=1B.使不等式成立的第一个自然数n0=2C.n=k推导n=k+1时,不等式的左边增加的式子是D.n=k推导n=k+1时,不等式的左边增加的式子是二、填空题8.已知n为正偶数,用数学归纳法证明1-+-+…+=2时,若已知假设n=k(k≥2)为偶数时,命题成立,则还需要用归纳假设再证________.9.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开________.10.已知f(n)=1+++…+(n∈N*),用数学归纳法证明f(2n)>时,f(2k+1)-f(2k)=________.11.已知n为正偶数,用数学归纳法证明“1-+-+…+-=2”时,第一步的验证为________;若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设证n=________时等式成立.12.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.三、解答题13.(1)用数学归纳法证明:1+2+3+…+(n+3)=(n∈N*);(2)用数学归纳法证明:1+++…+<2(n∈N*).14.已知正项数列{an}中,a1=1,an+1=1+(n∈N*).用数学归纳法证明:an15.是否存在a,b,c使等式+++…+=对一切n∈N*都成立?若不存在,说明理由;若存在,用数学归纳法证明你的结论.参考答案一、选择题1.答案:B解析:因为n∈N*,n>1,故第一步应验证n=2的情况,即1++<2.故选B.]2.答案:C解析:因为当n=k时,左端=1-+-+…+-,当n=k+1时,左端=1-+-+…+-+-.所以,左端应在n=k的基础上加上-.] 3.答案:B解析:由n=k时命题成立可以推出n=k+2时命题也成立,且n =2时命题成立,故对所有的正偶数都成立.]4.答案:D解析:用数学归纳法证明不等式1++++…+5.答案:D解析:在n=k+1时,没有应用n=k时的假设,即从n=k到n =k+1的推理不正确.故选D.6.答案:C解析:若n=4时,该命题成立,由条件可推得n=5命题成立.它的逆否命题为:若n=5不成立,则n=4时该命题也不成立.7.答案:BC解析:n=1时,>不成立,n=2时,+>成立,所以A错误B 正确;当n=k时,左边的代数式为++…+,当n=k+1时,左边的代数式为++…+,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果,即-=为不等式的左边增加的项,故C正确D错误,故选BC.二、填空题8.答案:n=k+2时等式成立解析:由于n为正偶数,已知假设n=k(k≥2)为偶数,则下一个偶数为n=k+2.故答案为:n=k+2时等式成立.9.答案:(k+3)3解析:假设当n=k时,原式能被9整除,即k3+(k+1)3+(k+2)3能被9整除;当n=k+1时,(k+1)3+(k+2)3+(k+3)3.为了能用上面的归纳假设,只需将(k+3)3展开,让其出现k3即可.故答案为(k+3)3.10.++…+解析:因为假设n=k时,f(2k)=1+++…+,当n=k+1时,f(2k+1)=1+++…+++…+,所以f(2k+1)-f(2k)=1+++…+++…+-(1+++…+)=++…+.11.当n=2时,左边=1-=,右边=2×=,等式成立k+2解析:对1-+-+…+-=2在n为正偶数,用数学归纳法证明.归纳基础,因为n为正偶数,则基础n=2,当n=2时,左边=1-=,右边=2×=,等式成立;归纳假设,当n=k(k≥2且k为偶数)时,1-+-+…+-=2成立,由于是所有正偶数,则归纳推广,应到下一个数为n=k+2时,等式成立.12.答案:π解析:由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.三、解答题13.证明:(1)①当n=1时,左边=1+2+3+4=10,右边==10,左边=右边.②假设n=k(k∈N*)时等式成立,即1+2+3+…+(k+3)=,那么当n=k+1时,1+2+3+…+(k+3)+(k+4)=+(k+4)=,即当n=k+1时,等式成立.综上,1+2+3+…+(n+3)=(n∈N*).(2)①当n=1时,左边=1,右边=2,左边②假设当n=k(k∈N*)时不等式成立,即1+++…+<2,那么当n=k+1时,左边=1+++…++<2+,因为4k2+4k<4k2+4k+1,所以2<2k+1,所以2+==综上,由①②可知1+++…+<2.14.证明:①当n=1时,a2=1+=,a1②假设n=k(k∈N*)时,ak=-=>0,所以,当n=k+1时,不等式成立.综上所述,不等式an15.解:取n=1,2,3可得解得:a=,b=,c=.下面用数学归纳法证明+++…+==.即证12+22+…+n2=n(n+1)(2n+1).①n=1时,左边=1,右边=1,∴等式成立;②假设n=k时等式成立,即12+22+…+k2=k(k+1)(2k+1)成立,则当n=k+1时,等式左边=12+22+…+k2+(k+1)2=k(k+1)(2k+1)+(k+1)2=[k(k+1)(2k+1)+6(k+1)2]=(k+1)(2k2+7k+6)=(k+1)(k +2)·(2k+3),∴当n=k+1时等式成立.由数学归纳法,综合①②知当n∈N*时等式成立,故存在a=,b=,c=使已知等式成立.。
4.2.3 直线与圆的方程的应用一、基础过关1.已知两点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .9πB .8πC .4πD .π 2.已知点A (-1,1)和圆C :(x -5)2+(y -7)2=4,一束光线从A 经x 轴反射到圆C 上的最短路程是( )A .62-2B .8C .4 6D .10 3.如果实数满足(x +2)2+y 2=3,则yx的最大值为( )A. 3 B .- 3 C.33D .-334.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是( ) A .3- 2B .3+2C .3-22D.3-225.已知圆x 2+y 2=9的弦PQ 的中点为M (1,2),则弦PQ 的长为________.6.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________. 7.已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)若圆C 与直线l :x +2y -4=0相交于M ,N 两点,且|MN |=45,求m 的值. 8. 如图所示,圆O 1和圆O 2的半径都等于1,|O 1O 2|=4.过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 为切点),使得|PM |=2|PN |.试建立平面直角坐标系,并求动点P 的轨迹方程. 二、能力提升9.已知集合M ={(x ,y )|y =9-x 2,y ≠0},N ={(x ,y )|y =x +b },若M ∩N ≠∅,则实数b 的取值范围是( )A .[-32,32]B .[-3,3]C .(-3,32]D .[-32,3)10.台风中心从A 地以每小时20 km 的速度向东北方向移动,离台风中心30 km 的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区内的时间是( )A .0.5 hB .1 hC .1.5 hD .2 h11.一座圆拱桥,当水面在某位置时,拱顶离水面2 m ,水面宽12 m ,当水面下降1 m 后,水面宽为______米.12.等边△ABC 中,点D 、E 分别在边BC 、AC 上,且|BD |=13|BC |,|CE |=13|CA |,AD 、BE相交于点P,求证:AP⊥CP.三、探究与拓展13.有一种商品,A、B两地均有售且价格相同,但某居住地的居民从两地往回运时,每单位距离A地的运费是B地运费的3倍.已知A、B相距10 km,问这个居民应如何选择A 地或B地购买此种商品最合算?(仅从运费的多少来考虑)答案1.C 2.B 3.A 4.A 5.4 6.(-13,13)7.解 (1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然当5-m >0,即m <5时,方程C 表 示圆.(2)圆的方程化为 (x -1)2+(y -2)2=5-m , 圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离d =|1+2×2-4|12+22=15.∵|MN |=45,∴12|MN |=25.根据圆的性质有r 2=d 2+⎝⎛⎭⎫12|MN |2,∴5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫252,得m =4.8.解 以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示的坐标系,则 O 1(-2,0),O 2(2,0). 由已知|PM |=2|PN |, ∴|PM |2=2|PN |2. 又∵两圆的半径均为1, 所以|PO 1|2-1=2(|PO 2|2-1),设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1],即(x -6)2+y 2=33. ∴所求动点P 的轨迹方程为(x -6)2+y 2=33. 9.C 10.B 11.25112.证明 以B 为原点,BC 边所在直线为x 轴,线段BC 长的16为单位长,建立平面直角坐标系.则A (3,33),B (0,0),C (6,0).由已知,得D (2,0),E (5,3).直线AD 的方程为y =33(x -2).直线BE 的方程为y =35(x -5)+ 3.解以上两方程联立成的方程组,得x =157,y =373.所以,点P 的坐标是(157,373).直线PC 的斜率k PC =-39.因为k AD k PC =33×(-39)=-1, 所以,AP ⊥CP .13.解 以AB 所在的直线为x 轴,AB 的中点为原点建立直角坐标系.|AB |=10,所以A (-5,0),B (5,0),设P (x ,y )是区域分界线上的任一点,并设从B 地运往P 地的单位距离运费为a ,即从B 地运往P 地的运费为|PB |·a ,则A 地的运费为|P A |·3a ,当运费相等时,就是|PB |·a =3a ·|P A |,即3(x +5)2+y 2=(x -5)2+y 2,整理得(x +254)2+y 2=(154)2.①所以在①表示的圆周上的居民可任意选择在A 地或B 地购买,在圆内的居民应选择在A 地购买,在圆外的居民应选择在B 地购买.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
高中数学人教A 版(新教材)选择性必修第二册4.3.2第2课时 等比数列前n 项和公式的应用一、选择题1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .162.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A .152 B .314 C .334 D .1723.设各项都是正数的等比数列{a n },S n 为其前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A .150B .-200C .150或-200D .4004.设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10 ,记{x n }的前n 项和为S n ,则S 20等于( ) A .1 025B .1 024C .10 250D .20 2405.已知公差d ≠0的等差数列{a n } 满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( ) A .30B .20C .10D .5或406.(多选题)已知S n 是公比为q 的等比数列{a n }的前n 项和,若q ≠1,m ∈N *,则下列说法正确的是( ) A .S 2m S m =a 2ma m +1B .若S 6S 3=9,则q =2C .若S 2m S m =9,a 2m a m =5m +1m -1,则m =3,q =2D .若a 6a 3=9,则q =37.在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( ) A .3n-1 B .1-(-3)n 2C .1+3n 2D .3n 2+n 2二、填空题8.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n +k ,则实数k =________. 9.等比数列{a n }共有2n 项,它的全部各项的和是奇数项的和的3倍,则公比q =________. 10.设{a n }是公差不为零的等差数列,S n 为其前n 项和.已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为a n =________.11.等比数列{a n }的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,则这个等比数列的公比q =________,又令该数列的前n 项的积为T n ,则T n 的最大值为________. 12.设数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的第n 项为a n ,前n 项和为S n ,则a n =________,S n =________. 三、解答题13.一个项数为偶数的等比数列,全部项之和为偶数项之和的4倍,前3项之积为64,求该等比数列的通项公式.14.在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.15.设数列{a n }的前n 项和为S n .已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.参考答案一、选择题 1.答案:C解析:由题意得4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2, ∴q =2,∴S 4=1·(1-24)1-2=15.]2.答案:B解析:显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q =4⎝⎛⎭⎫1-1251-12=314.]解析:依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列, 因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),解得S 20=-20或S 20=30, 又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80,S 40=150.故选A. 4.答案:C解析:∵log 2x n +1=1+log 2x n =log 2(2x n ),∴x n +1=2x n ,且x n >0, ∴{x n }为等比数列,且公比q =2,∴S 20=S 10+q 10S 10=10+210×10=10 250,故选C.] 5.答案:A解析:设等差数列的公差为d ,因为a 2,a 4-2,a 6成等比数列,所以(a 4-2)2=a 2·a 6, 即(a 1+3d -2)2=(a 1+d )·(a 1+5d ),即(3d -1)2=(1+d )·(1+5d ),解得d =0或d =3,因为公差d ≠0,所以d =3,所以a m -a n =a 1+(m -1)d -a 1-(n -1)d =(m -n )d =10d =30,故选A.] 6.答案:ABC解析:[∵q ≠1,∴S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q =1+q m.而a 2m a m =a 1q 2m -1a 1qm -1=q m ,∴A 正确;B 中,m =3,∴S 6S 3=q 3+1=9,解得q =2.故B 正确;C 中,由S 2m S m =1+q m =9,得q m =8.又a 2ma m =q m =8=5m +1m -1,得m =3,q =2,∴C 正确;D 中,a 6a 3=q 3=9,∴q =39≠3,∴D 错误,故选ABC.]7.答案:A解析:由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a n a n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a 1(1-q n )1-q =2×(3n -1)3-1=3n-1.]二、填空题解析:由a n +1=ca n 知数列{a n }为等比数列.又∵S n =3n +k , 由等比数列前n 项和的特点S n =Aq n -A 知k =-1.] 9.答案:2解析:设{a n }的公比为q ,则奇数项也构成等比数列,其公比为q 2,首项为a 1, S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q 2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.10.答案:2n -1解析:设等差数列{a n }的公差为d ,(d ≠0), 则S 1=5-2d ,S 2=10-3d ,S 4=20-2d ,因为S 22=S 1·S 4,所以(10-3d )2=(5-2d )(20-2d ),整理得5d 2-10d =0,∵d ≠0,∴d =2, a n =a 3+(n -3)d =5+2(n -3)=2n -1.] 11.答案:122解析:设数列{a n }共有2m +1项,由题意得S 奇=a 1+a 3+…+a 2m +1=8532,S 偶=a 2+a 4+…+a 2m =2116,S 奇=a 1+a 2q +…+a 2m q =2+q (a 2+a 4+…+a 2m )=2+2116q =8532, ∴q =12,∴T n =a 1·a 2·…·a n =a n 1q 1+2+…+n -1=232n -n 22,故当n =1或2时,T n取最大值,为2.] 12.答案:2n -1 2n +1-n -2 解析:因为a n =1+2+22+…+2n -1=1-2n 1-2=2n-1, 所以S n =(2+22+23+…+2n )-n =2(1-2n )1-2-n =2n +1-n -2. 三、解答题13.解:设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇,S 偶, 由题意,知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13.又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,得a 1=12.故所求通项公式为a n =12×⎝⎛⎭⎫13n -1.14.解:(1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.15.解:(1)由题意得⎩⎪⎨⎪⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,故a n =3n -1(n ≥2,n ∈N *),又当n =1时也满足a n =3n -1, 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.n ≥3时,T n =3+9(1-3n -2)1-3-(n -2)(3+n +4)2=3n -n 2-5n +112.∴T n=⎩⎪⎨⎪⎧2, n =1,3, n =2,3n-n 2-5n +112,n ≥3.集合间的基本关系例1 确定整数x 、y ,使得{2,}{7,4}x x y +=.例2 例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合. 例3 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何? 说明 判断两个集合之间的关系时,(1)若能用列举法表示出集合,则可根据各个集合的元素构成情况直接判断;(2)若不能用列举法表示集合,则可以根据(集或真子集的)定义进行判断.空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.例4 已知集合{}2|(2)430,A x a x x x =-+-=∈R 有且仅有两个子集,求实数a 的取值范围,并写出集合A 的子集.说明 一般,若集合含有n 个元素,则共有2n 个子集(21n -个真子集),其中有一个是空集.例5 已知集合{}260P x x x =+-=∣,{10}Q x ax =+=∣.若Q P ⊆,求满足条件时实数a 的所有取值组成的集合.说明 解决此类问题的一般步骤有:第一步,化简集合,即尽可能地将给定的集合化简,这样我们就能搞清楚集合的元素是什么;第二步,根据子集或真子集的定义,分别写出子集或真子集(不要遗忘空集); 第三步,根据子集或真子集的不同情况分别进行分类讨论.例5 已知集合{}510|<+<=ax x A ,⎭⎬⎫⎩⎨⎧<<-=221|x x B .(1)若A B ⊆,求a 的取值范围. (2)若B A ⊆,求a 的取值范围.(3)集合A 与集合B 能否相等?若能,求出a 的值;若不能,说明理由.例6 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件学习检测1.用适当的符号填空:{1,}1-________{}2|10,x x x -=∈R ; {0}________{}2|10,x x x +=∈R .2.集合{1,2,3}的子集共有________个.3.写出集合{(2,1),(1,2)}--的所有子集:________________________.4.已知集合{1,3,}{3,4}A m B =-=,.若B A ⊆,则实数m =________.5.已知集合{|12}{|}A x x B x x a =<<=>,,B={x |x >a }.若A ⫋B ,则实数a 的取值范围是_____________.6.满足{}a ⫋{,,}M a b c ⊆的所有集合M 共有_________个.7.已知集合A B A C ⊆⊆,,且{0,1,2,3,4,5}B =,{}0,2,4,6,8C =,则满足条件的所有集合A 共有______.8.已知a 、b ∈R ,集合{1,,}A a b a =+,0,,bB b a⎧⎫=⎨⎬⎩⎭.若A B =,则b a -的值是( ) A.1; B.-1; C.2; D.-2.9.已知集合{}2230A y y y =--=∣,{}220B x x ax b =-+=∣(a 、b 均为实数).若非空集合B A ⊆,则a b +的值是( )A.12或-2;B.-2或0;C.2或2或0;D.12或-2或010.若1,1x A A x∈∈-且,则称集合A 为“和谐集”.已知集合1122,1,,0,1,,,2,3,223M ⎧⎫=---⎨⎬⎩⎭,则集合M 的子集中,“和谐集”的个数为11.已知集合{}52|≤<-=x x A ,{}121|-<≤+=m x m x B ,且B A ⊆.求实数m 的取值范围并用集合表示.12.给定集合A 和B ,定义运算“⊗”:{|,,}A B x x m n m A n B ⊗==-∈∈.若{}4,5,6A =,{}1,2,3B =:(1)写出A B ⊗,并求集合A B ⊗中的所有元素之和;(2)写出集合A B ⊗的所有子集.13.已知集合}),12(51{Z k k x x M ∈+==,},5154{Z k k x x N ∈±==,则集合NM ,之间的关系为( )A N M ⊆ B M N ⊆ C N M = D N M ≠14、已知集合B A ⊆,},)412({Z k k x x B ∈+==π,},)214({Z k k x x C ∈+==π,那么集合A 与C 的关系为_____15、设集合{}240A x x x =+=,(){}222110B x x a x a =+++-=,A B ⊆求实数a的取值范围。
第四章综合测试答案一、1.【答案】B2.【答案】D3.【答案】C4.【答案】B5.【答案】B6.【答案】B7.【答案】A8.【答案】D9.【答案】D10.【答案】D11.【答案】B12.【答案】B二、13.【答案】114.【答案】15.【答案】216.【答案】1- (1,)+∞三、17.【答案】解:(1)212+12=-11022= (2)13(0)a a a -+=∵>,21122125a a a a --⎛⎫+=++= ⎪⎝⎭∴,1122a a +()222127a a a a --+=+-=,112222a a a a -+=+∴ 18.【答案】解:(1)()3x f x =∵,2(2)318a f a ++==∴,32a =∴,()24x g x =-∴,[0,1]x ∈.(2)设1x ,2x 为区间[0,1]上任意两个值,且12x x <,则()()()()2221212124242222x x x x x x g x g x -=--+=-+.1201x x ∵<,21221x x ∴>.()()21g x g x ∴<∴函数()g x 在[0,1]上是减函数.19.【答案】解:(1)()f x 是奇函数.证明:要使函数有意义,则1010x x +⎧⎨-⎩>>,即11x x -⎧⎨⎩><,即11x -<<,即函数的定义域为(1,1)-.由[]()log (1)log (1)log (1)log (1)()a a a a f x x x x x f x -=-+-+=-+--=-,知函数()f x 是奇函数.(2)若1a >,则由()0f x >得log (1)log (1)0a a x x +-->,即log (1)log (1)a a x x +->,即11x x +->,则0x >. ∵定义域为(1,1)-,01x <<∴,即不等式的解集为(0,1). 20.【答案】解:(1)由题意,当2m =时,12225x x -⋅+=,解得1x =或1x =-.由0x ≥,得1x =,故经过1分钟,该物质的温度为5摄氏度.(2)由题意得1222x x m -⋅+≥对一切0x ≥恒成立,则由20x>,得1222xx m --,即12222x x m --⋅-≥. 令2x t -=则01t <≤,则2211()22222f t t t t ⎛⎫=-+=--+ ⎪⎝⎭ 当12t =时取得最大值为12,所以12m ≥. 21.【答案】解:(1)由1030x x -⎧⎨+⎩>>,得31x -<<,所以函数的定义域为{}|31x x -<<,()log (1)(3)a f x x x =-+. 设2(1)(3)4(1)t x x x =-+=-+,则4t ≤,又0t >,则04t <.当1a >时,()log 4a y f x =≤,值域为{}log 4a y y ≤.当01a <<时,()log 4a y f x =≥,值域为{}log 4a y y ≥.(2)由题意及(1)知,当01a <<时,函数有最小值,所以log 42a =-,解得12a =. 22.【答案】解:(1)因为函数()f x 的图像过点(0,1)P ,所以()02log 21k +=,解得1k =.则()2()log 21x f x =+.因为211x +>,所以()2()log 210x f x =+>, 所以函数()f x 的值域为(0,)+∞.(2)方程有实根,即()m f x x =-有实根,构造函数()2()()log 21x h x f x x x =-=+-,. 则()()()222221log 21log 2log log 212x x xx x h x -+=+-==+ 因为函数21x y -=+在R 上单调递减,而log z y x =在(0,1)上单调递增, 所以复合函数()2()log 21x h x -=+是R 上的单调递减函数. 所以()h x 在[0,1]上的最小值为()122(1)log 21log 31h -=+=-,最大值为()02(0)log 211h -=+=, 即()2()log 31,1h x ∈-,所以当()2log 31,1m ∈-时,方程有实根.。
4.1.1 圆的标准方程1、到原点的距离等于4的动点的轨迹方程是( )A 、x 2+y 2=4B 、 x 2+y 2=16C 、x 2+y 2=2D 、()224(4)16x y -+-=2、已知圆的方程是()222(3)4x y -+-=,则点P (1,2)满足( )A 、是圆心B 、在圆上C 、在圆内D 、在圆外3、已知圆心在点P(-2,3),并且与y 轴相切,则该圆的方程是( )A 、()222(3)4x y -++=B 、()222(3)4x y ++-=C 、()222(3)9x y -++=D 、()222(3)9x y ++-=4、方程()22()0x a y b -++=表示的图形是( )A 、以(a,b)为圆心的圆B 、点(a,b)C 、(-a,-b)为圆心的圆D 、点(-a,-b5、圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( )A 、(1,-1)B 、(12,-1) C 、(-1,2) D 、(-12,-1)、6、方程y=( )A 、一条射线B 、一个圆C 、两条射线D 、半个圆7、(x-3)2 +(y+2)2 =13的周长是( )A B 、 C 、 2π D 、8、过点C (-1,1)和D (1,3),圆心在x 轴上的圆的方程为( )A 、22(2)10x y +-=B 、22(2)10x y ++=C 、22(2)10x y ++=D 、22(2)10x y -+=9、直线y=3x 绕原点按逆时针方向旋转300后所得直线与圆(x-2)2+y 2=3的位置关系是( ) A 、直线过圆心B 、直线与圆相交但不过圆心C 、直线与圆相切D 、直线与圆没有公共点二、填空题10、如果一个圆的圆心在(2,4)点,并且经过点(0,3),那么这个圆的方程是----------------------------------------------。
11、222()()x a y b r -+-=过原点的条件是 。
第四章数列4.1数列的概念基础过关练题组一对数列概念的理解1.下列说法正确的是()A.数列1,3,5,7可以表示为{1,3,5,7}B.数列-2,-1,0,1,2与数列2,1,0,-1,-2是相同的数列C.数列若用图象表示,从图象看都是一群孤立的点D.数列的项数一定是无限的2.下列数列中,既是无穷数列又是递增数列的是()A.1,13,132,133,…B.sinπ13,sin2π13,sin3π13,sin4π13,…C.-1,-12,-13,-14,…D.1,2,3,4,…,30题组二数列的通项公式及其应用3.已知数列{a n}的通项公式为a n=1+(−1) +12,n∈N*,则该数列的前4项依次为(深度解析)A.1,0,1,0B.0,1,0,1C.12,0,12,0D.2,0,2,04.数列{a n}的通项公式为a n=3 +1, 为奇数,2 -2, 为偶数,则a2a3=()A.70B.28C.20D.85.(2020山东菏泽高二上期中)已知数列1,3,5,7,…,2 -1,若35是这个数列的第n项,则n=()A.20B.21C.22D.236.(2020河南郑州八校高二上期中)已知函数f(x)=(3- ) -3, ≤7,-6,x>7,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是(易错)C.(2,3)D.(1,3)7.(多选)下列四个命题中,正确的有()A.k项为1+1B.已知数列{a n}的通项公式为a n=n2-n-50,n∈N*,则-8是该数列的第7项C.数列3,5,9,17,33,…的一个通项公式为a n=2n-1D.数列{a n}的通项公式为a n= +1,n∈N*,则数列{a n}是递增数列8.写出下列各数列的一个通项公式:(1)4,6,8,10,…;(2)12,34,78,1516,3132,…;(3)-1,85,-157,249,…;(4)5,55,555,5555,….9.已知a n=9 (n+1)10 (n∈N*),则数列{a n}中有没有最大项?如果有,求出最大项;如果没有,请说明理由.10.在数列{a n}中,a n=n2-kn(n∈N*),且{a n}为单调递增数列,求实数k的取值范围.题组三数列的递推公式及其应用11.已知a n+1-a n-3=0,n∈N*,则数列{a n}是()A.递增数列B.递减数列C.常数列D.不能确定12.若数列{a n}满足a1=1,a n+1=3a n+1,则a4=()A.7B.13C.40D.12113.若数列{a n}满足a1=2,a n+1=1+ 1− ,则a2021的值为()A.2B.-3C.-12D.1314.下列给出的图形中,星星的个数构成一个数列,则该数列的一个递推公式可以是()A.a n+1=a n+n,n∈N*B.a n=a n-1+n,n∈N*,n≥2C.a n+1=a n+(n+1),n∈N*,n≥2D.a n=a n-1+(n-1),n∈N*,n≥215.数列{a n}中,若a n+1= 2 +1(n∈N*),a1=1,则a n=.16.已知数列{a n}中,a1a2…a n=n2(n∈N*),则a9=.题组四数列的前n项和公式及其应用17.已知数列{a n}的前n项和S n=n2-n(n∈N*),则a5=()A.6B.8C.12D.20∈N*),S n=10,则n等18.已知数列{a n}的前n项和为S n,若a n于()A.90B.119C.120D.12119.已知数列{a n}的前n项和为S n,求数列{a n}的通项公式.(1)S n=2n-1,n∈N*;(2)S n=2n2+n+3,n∈N*.易错20.设数列{a n}的前n项和为S n,且S n=An2+Bn+C,A≠0.(1)当A=2,C=0,且a2=-10时,求数列{a n}的通项公式;(2)设{a n}的各项均为负实数,当a1=-36,a3=-9时,求实数A的取值范围.能力提升练题组一数列的通项公式及其应用1.(2020天津静海一中高二上期中,)设a n=1 +1+1 +2+1 +3+…+12 (n∈N*),那么a n+1-a n等于()A.12 +1B.12 +2C.12 +1+12 +2D.12 +1-12 +22.(2020山东滨州高二上期中,)数列2,0,2,0,…的通项公式可以是()A.a n=2( =2 +1, ∈N*)0( =2 , ∈N*)B.a n=2sin∈N*)C.a n=(-1)n+1(n∈N*)D.a n=cos nπ+1(n∈N*)3.(2020辽宁沈阳东北育才学校高二上期中,)已知数列{a n}的通项公式为a n= 2+130(n∈N*),且数列{a n}从第n项起单调递减,则n的最小值为()A.11B.12C.13D.不存在4.(2020山东滕州一中高二上阶段检测,)已知数列{a n}的通项公式为a n=2020−22021−2 ,且存在正整数T,S,使得a T≤a n≤a S对任意的n∈N*恒成立,则T+S=()A.15B.17C.19D.215.(多选)()若数列{a n}满足:对任意正整数n,{a n+1-a n}为递减数列,则称数列{a n}为“差递减数列”.给出下列数列{a n}(n∈N*),其中是“差递减数列”的有()A.a n=3nB.a n=n2+1C.a n=D.a n=ln +1题组二数列的递推公式及其应用6.(2020辽宁省实验中学高二上期中,)已知数列{a n}满足a n+1=2 ,0≤ <12,2 -1,12≤ <1,若a1=67,则a2020的值为()A.37B.47C.57D.677.(2020浙江浙南名校联盟高二上期中联考,)已知数列{a n}对任意的n∈N*都有a n+1< + +22,且a1+a2+…+a9=9,则下列说法正确的是()A.数列{a n+1-a n}为单调递减数列,且a5>1B.数列{a n+1-a n}为单调递增数列,且a5>1C.数列{a n+1-a n}为单调递减数列,且a5<1D.数列{a n+1-a n}为单调递增数列,且a5<18.()在数列{a n}中,a1=2,a n+1=a n+ln1+∈N*),则a n=.9.(2020湖南娄底高二上期中,)若数列{a n}满足(n-1)a n=(n+1)a n-1(n≥2,n∈N*),且a1=1,则a100=.10.(2020黑龙江牡丹江一中高二上期末,)分形几何学是一门以不规则几何形态为研究对象的几何学,它的创立,为解决传统科学众多领域的难题提供了全新的思路.如图是按照一定的分形规律生长成的一个树形图,则第13行中实心圆点的个数是.题组三数列的前n项和公式及其应用11.(2020山东淄博一中高二上期中,)若数列{an}的通项公式是a n=(-1)n(3n-2)(n∈N*),则S10=()A.15B.12C.-12D.-1512.(2020福建福州高三上期末质量检测,)已知S n为数列{a n}的前n 项和,若a1=52,且a n+1(2-a n)=2(n∈N*),则S21=.13.(2020广东中山高二上期末统考,)若数列{an}满足a n+a n+1= +1- -1(n∈N*),其前n项和为S n,且S99=311,则a100=.14.()设数列{a n}满足a1+3a2+5a3+…+(2n-1)a n=2n(n∈N*).(1)求数列{a n}的通项公式;(2)n项和为S n,求证:S n<23.答案全解全析基础过关练1.C A中,{1,3,5,7}表示集合,不是数列;B中,两个数列中包含的数虽然相同,但排列顺序不同,不是相同的数列;D中,数列的项数可以是有限的也可以是无限的.故选C.2.C数列1,13,132,133,…是无穷数列,但它不是递增数列,而是递减数列;数列sinπ13,sin2π13,sin3π13,sin4π13,…是无穷数列,但它不是递增数列;数列-1,-12,-13,-14,…是无穷数列,也是递增数列;数列1,2,3,4,…,30是递增数列,但不是无穷数列.故选C.3.A解法一:由a n=1+(−1) +12,n∈N*,n分别取1,2,3,4,可得a1=1,a2=0,a3=1,a4=0.故选A.解法二:因为当n∈N*且n为奇数时,1+(-1)n+1=2,当n∈N*且n为偶数时,1+(-1)n+1=0,所以数列{a n}的奇数项的值为1,偶数项的值为0,故该数列的前4项依次为1,0,1,0.方法技巧当一个数列中的项的系数出现“+”“-”相间时,应先把符号分离出来,可用(-1)n或(-1)n+1表示.4.C由通项公式得a2=2×2-2=2,a3=3×3+1=10,所以a2·a3=20.5.D由题意得,2 -1=35,即2n-1=45,解得n=23,故选D.6.C根据题意,得a n=f(n)=(3- ) -3, ≤7, ∈N*,a n-6,n>7,n∈N*,要使{a n}是递增数列,需满足3− >0, >1,(3- )×7-3< 8−6,解得2<a<3.故选C.易错警示分段数列的单调性与相应分段函数的单调性有所不同,分段数列还要使得两段之间满足一定的条件,如本题中数列{a n }递增需满足a 7<a 8,而函数f(x)递增则需满足7(3-a)-3≤a 7-6,二者有较大的区别.7.ABD 对于A,k 项为1+1,A 正确;对于B,令n 2-n-50=-8,得n=7或n=-6(舍去),B 正确;对于C,将3,5,9,17,33,…的各项减去1,得2,4,8,16,32,…,设该数列为{b n },则其通项公式为b n =2n (n ∈N *),因此数列3,5,9,17,33,…的一个通项公式为a n =b n +1=2n +1(n ∈N *),C 错误;对于D,a n = +1=1-1 +1,则a n+1-a n =1 +1-1 +2=1( +1)( +2)>0,因此数列{a n }是递增数列,D 正确.故选ABD.8.解析(1)易知该数列是首项从4开始的偶数,所以该数列的一个通项公式为a n =2n+2,n ∈N *.(2)易知该数列中每一项分子比分母少1,且分母可写成21,22,23,24,25,…,故所求数列的通项公式可写为a n =2 -12 ,n ∈N *.(3)通过观察可知,该数列中的奇数项为负,偶数项为正,故选择(-1)n .又第1项可改写成分数-33,所以每一项的分母依次为3,5,7,9,…,可写成2n+1的形式.分子为3=1×3,8=2×4,15=3×5,24=4×6,……,可写成n(n+2)的形式.所以该数列的一个通项公式为a n =(-1)n · ( +2)2 +1,n ∈N *.(4)这个数列的前4项可以变为59×9,59×99,59×999,59×9999,即59×(10-1),59×(100-1),59×(1000-1),59×(10000-1),即59×(10-1),59×(102-1),59×(103-1),59×(104-1),所以它的一个通项公式为a n=59×(10n-1),n∈N*.9.解析解法一:由a n=9 (n+1)10 (n∈N*)得,a n+1-a n=9 +1(n+2)10 +1-9 (n+1)10 =9 (8-n)10 +1,n∈N*.当n<8时,a n+1-a n>0,即a n+1>a n,即{a n}在n<8时单调递增;当n=8时,a n+1-a n=0,即a n+1=a n,得a8=a9;当n>8时,a n+1-a n<0,即a n+1<a n,即{a n}在n>8时单调递减.所以数列{a n}的最大项是第8项或第9项,即a8=a9=99108.解法二:设a n为最大项,则 ≥ -1,≥ +1(n≥2,n∈N*),≥9 -1·n10 -1,≥9 +1(n+2)10 +1,解得8≤n≤9.又因为n∈N*,所以n=8或n=9,故{a n}的最大项为a8=a9=99108.10.解析由a n=n2-kn,得a n+1=(n+1)2-k(n+1),所以a n+1-a n=(n+1)2-k(n+1)-n2+kn=2n+1-k.因为{a n}为单调递增数列,所以a n+1-a n>0,即2n+1-k>0(n∈N*)恒成立,即k<2n+1(n∈N*)恒成立,所以k<3,所以k的取值范围为(-∞,3).11.A∵a n+1-a n=3>0,n∈N*,∴a n+1>a n,即该数列中的每一项均小于它的后一项,因此数列{a n}是递增数列,故选A.12.C由题意得,a2=3a1+1=4,a3=3a2+1=13,a4=3a3+1=40.故选C.13.A∵a1=2,∴a2=1+21−2=-3,从而a3=1+(−3)1−(−3)=-12,a4=13,a5=1+131−13=2=a1.∴{a n}是以4为周期的数列,又2021=505×4+1,∴a2021=a1=2,故选A.14.B由题中图形知,a1=1,a2=a1+2,a3=a2+3,a4=a3+4,故选B.15.答案12 -1解析由已知得,a2=13,a3=15,a4=17,a5=19,……,以此类推,可得a n=12 -1(n∈N*).16.答案8164解析由题意得,a1a2…a8=82,①a1a2…a9=92,②②÷①得,a9=9282=8164.17.B由S n=n2-n得,S5=52-5=20,S4=42-4=12,∴a5=S5-S4=20-12=8.故选B.18.C∵a n+ +1= +1- ,∴S n=(2-1)+(3-2)+…+( +1- )= +1-1=10,∴n+1=121,∴n=120.19.解析(1)∵S n=2n-1(n∈N*),∴当n=1时,a1=S1=2-1=1;当n≥2时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1.经检验,当n=1时,符合上式,∴a n=2n-1(n∈N*).(2)∵S n=2n2+n+3(n∈N*),∴当n=1时,a1=S1=2×12+1+3=6;当n≥2时,a n=S n-S n-1=2n2+n+3-[2(n-1)2+(n-1)+3]=4n-1.经检验,当n=1时,不符合上式,∴a n=6( =1),4 -1( ≥2, ∈N*).易错警示由数列{a n}的前n项和S n求通项公式时,要注意验证当n=1时的情况.若a1=S1适合a n(n≥2,n∈N*)的表达式,则通项公式可以合并,否则就写成分段的形式.20.解析(1)由题意得,当A=2,C=0时,S n=2n2+Bn.则当n≥2时,a n=S n-S n-1=2n2+Bn-[2(n-1)2+B(n-1)]=4n+(B-2).又a2=-10,∴a2=8+(B-2)=-10,∴B=-16,∴a n=4n-18(n≥2,n∈N*),当n=1时,可得a1=S1=2×12+(-16)×1=-14.经检验,当n=1时,符合a n=4n-18,∴a n=4n-18,n∈N*.(2)由题意得,当n≥2时,a n=S n-S n-1=2An+(B-A),∴a3=6A+(B-A)=5A+B=-9.∴B=-5A-9,∴a n=2An+(B-A)=2An-6A-9(n≥2,n∈N*),若{a n}的各项均为负实数,则A<0,∴a n=2An-6A-9在n≥2时单调递减,又∵a1=-36<0,∴只需a2<0即可,即a2=4A-6A-9<0,∴A>-92.故实数A的取值范围为-92<A<0.能力提升练1.D∵a n=1 +1+1 +2+1 +3+…+12 ,∴a n+1=1 +2+1 +3+…+12 +12 +1+12 +2,∴a n+1-a n=12 +1+12 +2-1 +1=12 +1-12 +2.2.B选项A中,n取不到1,其通项公式中不含a1,A错误;选项B中,当n是奇数时,a n=2×1=2,当n是偶数时,a n=2×0=0,B正确;选项C中,a1=0≠2,C错误;选项D中,a1=cosπ+1=0≠2,D错误.故选B.3.A∵a n= 2+130,∴a n+1= +1( +1)2+130,∴a n+1-a n= +12+2n+131- 2+130=- 2-n+130( 2+2n+131)( 2+130).由数列{a n}从第n项起单调递减可得a n+1-a n<0,即-n2-n+130<0,n∈N*.即n2+n-130>0,解得n<-1-5212或n>521-12,又n∈N*,∴n>521-12.∵22<521<23,∴10.5<521-12<11,∴n≥11,∴a11>a12>a13>…,即从第11项起,{a n}单调递减,∴n的最小值为11,故选A.4.D依题意得,a n=2020−22021−2 =1-12021−2 =1+12 -2021,∴当n≥11(n∈N*)时,2n≥211=2048,数列{a n}递减,且a n>1,∴(a n)max=a11,当n≤10(n∈N*)时,2n≤210=1024,数列{a n}递减,且a n<1,∴(a n)min=a10,∴a10≤a n≤a11,∴T+S=21,故选D.5.CD选项A,由a n=3n,得a n+1-a n=3,则{a n+1-a n}为常数列,不满足“差递减数列”的定义;选项B,由a n=n2+1,得a n+1-a n=(n+1)2+1-n2-1=2n+1,则{a n+1-a n}为递增数列,不满足“差递减数列”的定义;选项C,由a n= ,得a n+1-a n= +1- =显然{a n+1-a n}为递减数列,满足“差递减数列”的定义;选项D,由a n=ln +1,得a n+1-a n=ln +1 +2-ln +1=ln( +1)2 ( +2)=ln1+随着n的增大,此值变小,所以{a n+1-a n}为递减数列,满足“差递减数列”的定义.故选CD.6.D依题意得,a2=2a1-1=2×67-1=57,a3=2a2-1=2×57-1=37,a4=2a3=2×37=67=a1,∴数列{a n}是以3为周期的周期数列.∵2020=3×673+1,∴a2020=a1=67.故选D.7.D∵数列{a n}对任意n∈N*都有a n+1< + +22,∴a n+2-a n+1>a n+1-a n,∴{a n+1-a n}为单调递增数列.∴a6-a5>a5-a4,即a4+a6>2a5,a7-a6>a4-a3,即a3+a7>a4+a6,同理可得,2a5<a4+a6<a3+a7<a2+a8<a1+a9.∴a1+a2+a3+…+a9=(a1+a9)+(a2+a8)+(a3+a7)+(a4+a6)+a5>9a5,即9a5<9,∴a5<1,故选D.8.答案2+ln n解析由a n+1=a n+ln1+得a n+1-a n=ln +1 =ln(n+1)-ln n,∴a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=2+(ln2-ln1)+(ln3-ln2)+…+[ln n-ln(n-1)]=2+ln n(n∈N*).9.答案5050解析由(n-1)a n=(n+1)a n-1,得 -1= +1 -1(n≥2,n∈N*),则a100=a1· 2 1· 3 2·…· 100 99=1×31×42×…×10199=5050.10.答案144解析不妨构造数列{a n}表示第n行实心圆点的个数,由题图可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行实心圆点数之和.易知a1=0,a2=1,且n≥3时,a n=a n-1+a n-2,故第1行到第13行中实心圆点的个数分别为0,1,1,2,3,5,8,13,21,34,55,89,144.11.A依题意得,a2n=6n-2,a2n-1=-6n+5,∴a2n-1+a2n=3,即a1+a2=a3+a4=a5+a6=a7+a8=a9+a10=3,∴S10=a1+a2+…+a10=3×5=15,故选A.12.答案83解析由a n+1(2-a n)=2,得a n+1=22− ,又a 1=52,所以a 2=22− 1=-4,a 3=22− 2=13,a 4=22− 3=65,a 5=22− 4=52=a 1,所以数列{a n }是周期为4的数列,因为21=4×5+1,所以a 21=a 1=52,所以S 21=5(a 1+a 2+a 3+a 4)+a 21-4+13+5+52=83.13.答案10-311解析∵a n +a n+1= +1- -1(n ∈N *),∴a 1+a 2=2-0,a 3+a 4=4-2,a 5+a 6=6-4,……a 99+a 100=100-98,∴S 100=a 1+a 2+a 3+a 4+…+a 99+a 100=(2-0)+(4-2)+(6-4)+…+(100-98)=100-0=10,又S 99=311,∴a 100=S 100-S 99=10-311.14.解析(1)由数列{a n }满足a 1+3a 2+5a 3+…+(2n-1)a n =2n(n ∈N *),①得当n ≥2时,a 1+3a 2+5a 3+…+(2n-3)a n-1=2(n-1),②①-②得(2n-1)a n =2(n ≥2,n ∈N *),即a n =22 -1(n ≥2,n ∈N *),经检验,当n=1时,a 1=2,满足上式,所以a n =22 -1,n ∈N *.(2)证明:设c n = 2 +3,由(1)可知,c n =22 -12 +3=2(2 -1)(2 +3)=12∴S n=c1+c2+…+c n=121−55-9…2 -3-2 +1= 1212 +12 +3=23-14 +2-14 +6=23-2 +2(2 +1)(2 +3),∵n∈N*,∴S n<23.。
第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=03.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1,-1 B.2,-2C.1 D.-14.经过圆x2+y2=10上一点M(2,6)的切线方程是()A.x+6y-10=0 B.6x-2y+10=0C.x-6y+10=0 D.2x+6y-10=05.点M(3,-3,1)关于xOz平面的对称点是()A.(-3,3,-1) B.(-3,-3,-1)C.(3,-3,-1) D.(3,3,1)6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=() A.5 B.13 C.10 D.107.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. 3B. 2C.3或- 3D.2和- 28.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A.4 B.3 C.2 D.19.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=010.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9πB.πC.2π D.由m的值而定11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=112.曲线y=1+4-x2与直线y=k(x-2)+4有两个交点,则实数k的取值范围是()A.(0,512) B.(512,+∞)C .(13,34]D .(512,34] 二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中横线上)13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.14.圆心为(1,1)且与直线x +y =4相切的圆的方程是________.15.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.16.直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于__________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.18.(12分)已知圆M :x 2+y 2-2mx +4y +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0相交于A ,B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标.19.(12分)已知圆C 1:x 2+y 2-3x -3y +3=0,圆C 2:x 2+y 2-2x -2y =0,求两圆的公共弦所在的直线方程及弦长.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.21.(12分)已知⊙C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上动点,求d =|P A |2+|PB |2的最大、最小值及对应的P 点坐标.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1.(1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上;(2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.1解析:将圆x 2+y 2-6x -8y +9=0,化为标准方程得(x -3)2+(y -4)2=16.∴两圆的圆心距(0-3)2+(0-4)2=5,又r 1+r 2=5,∴两圆外切.答案:C2解析:依题意知,所求直线通过圆心(1,-2),由直线的两点式方程得y +21+2=x -12-1,即3x -y -5=0.答案:A 3解析:圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案:D4解析:∵点M (2,6)在圆x 2+y 2=10上,k OM =62,∴过点M 的切线的斜率为k =-63, 故切线方程为y -6=-63(x -2), 即2x +6y -10=0. 答案:D5解析:点M (3,-3,1)关于xOz 平面的对称点是(3,3,1).答案:D6解析:依题意得点A (1,-2,-3),C (-2,-2,-5).∴|AC |=(-2-1)2+(-2+2)2+(-5+3)2=13.答案:B7解析:由题意知,圆心O (0,0)到直线y =kx +1的距离为12, ∴11+k 2=12,∴k =±3.答案:C 8解析:两圆的方程配方得,O 1:(x +2)2+(y -2)2=1,O 2:(x -2)2+(y -5)2=16,圆心O 1(-2,2),O 2(2,5),半径r 1=1,r 2=4,∴|O 1O 2|=(2+2)2+(5-2)2=5,r 1+r 2=5.∴|O 1O 2|=r 1+r 2,∴两圆外切,故有3条公切线.答案:B9解析:依题意知,直线l 过圆心(1,2),斜率k =2,∴l 的方程为y -2=2(x -1),即2x -y =0.答案:A10解析:∵x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0,∴[x -(2m +1)]2+(y -m )2=m 2.∴圆心(2m +1,m ),半径r =|m |.依题意知2m +1+m -4=0,∴m =1.∴圆的面积S =π×12=π.答案:B11解析:设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y . 又点P (x 1,y 1)在圆x 2+y 2=1上,∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1.答案:C12解析:如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1),直线y =k (x -2)+4过定点(2,4),当直线l 与半圆相切时,有|-2k +4-1|k 2+1=2,解得k =512. 当直线l 过点(-2,1)时,k =34. 因此,k 的取值范围是512<k ≤34.答案:D 13解析:圆心(0,0)到直线3x +4y -25=0的距离为5,∴所求的最小值为4.14解析:r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2. 15解析:已知方程配方得,(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.16解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25.圆心(3,1)到直线x +2y =0的距离d =|3+2×1|5= 5.在弦心距、半径、半弦长组成的直角三角形中,由勾股定理得,弦长=2×25-5=4 5.17解:解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·y x -4=-1, 即x 2+y 2-4x =0①当x =0时,P 点坐标为(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内).解法2:由解法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2,由圆的定义知,P 点轨迹方程是以M (2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x -2)2+y 2=4(在已知圆内).18解:由圆M 与圆N 的方程易知两圆的圆心分别为M (m ,-2),N (-1,-1).两圆的方程相减得直线AB 的方程为2(m +1)x -2y -m 2-1=0.∵A ,B 两点平分圆N 的圆周,∴AB 为圆N 的直径,∴AB 过点N (-1,-1),∴2(m +1)×(-1)-2×(-1)-m 2-1=0,解得m =-1.故圆M 的圆心M (-1,-2).19解:设两圆的交点为A (x 1,y 1),B (x 2,y 2),则A 、B 两点的坐标是方程组⎩⎪⎨⎪⎧x 2+y 2-3x -3y +3=0x 2+y 2-2x -2y =0的解,两方程相减得:x +y -3=0,∵A 、B 两点的坐标都满足该方程,∴x +y -3=0为所求.将圆C 2的方程化为标准形式,(x -1)2+(y -1)2=2,∴圆心C 2(1,1),半径r = 2.圆心C 2到直线AB 的距离d =|1+1-3|2=12, |AB |=2r 2-d 2=22-12= 6. 即两圆的公共弦长为 6.20解:如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2. 设P (x ,y ),C (-1,2),|MC |= 2.∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2,化简得点P 的轨迹方程为:2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510. 21解:设点P 的坐标为(x 0,y 0),则d =(x 0+1)2+y 02+(x 0-1)2+y 02=2(x 02+y 02)+2.欲求d 的最大、最小值,只需求u =x 02+y 02的最大、最小值,即求⊙C 上的点到原点距离的平方的最大、最小值.作直线OC ,设其交⊙C 于P 1(x 1,y 1),P 2(x 2,y 2), 如图所示.则u 最小值=|OP 1|2=(|OC |-|P 1C |)2=(5-1)2=16.此时,x 13=y 14=45, ∴x 1=125,y 1=165. ∴d 的最小值为34,对应点P 1的坐标为⎝⎛⎭⎫125,165.同理可得d 的最大值为74,对应点P 2的坐标为⎝⎛⎭⎫185,245.22解:(1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2 ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =-k ,y =-2k -5,消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上.(2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0,∵上式对于任意k ≠-1恒成立, ∴⎩⎪⎨⎪⎧ 2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎪⎨⎪⎧x =1,y =-3.∴曲线C 过定点(1,-3).(3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径,即|-2k -5|=5|k +1|.两边平方,得(2k+5)2=5(k+1)2,∴k=5±3 5.。
第四章 圆与方程§4.1 圆的方程4.1.1 圆的标准方程一、基础过关1.(x +1)2+(y -2)2=4的圆心与半径分别为( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),42.点P (m 2,5)与圆x 2+y 2=24的位置关系是( )A .在圆内B .在圆外C .在圆上D .不确定3.圆的一条直径的两个端点是(2,0),(2,-2),则此圆的方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x +2)2+(y +1)2=14.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离为 ( ) A.12 B.32C .1 D. 3 5.圆O 的方程为(x -3)2+(y -4)2=25,点(2,3)到圆上的最大距离为________.6.圆(x -3)2+(y +1)2=1关于直线x +2y -3=0对称的圆的方程是________________.7.求满足下列条件的圆的方程:(1)经过点P(5,1),圆心为点C(8,-3);(2)经过点P(4,2),Q(-6,-2),且圆心在y轴上.8.求经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上的圆的方程.二、能力提升9.方程y=9-x2表示的曲线是( )A.一条射线 B.一个圆C.两条射线D.半个圆10.若直线y=ax+b通过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于( )A.第一象限B.第二象限C.第三象限D.第四象限11.如果直线l将圆(x-1)2+(y-2)2=5平分且不通过第四象限,那么l的斜率的取值范围是________.12.平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,2)四点,这四点能否在同一个圆上?为什么?三、探究与拓展13.已知点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,求|PA|2+|PB|2+|PC|2的最值.答案1.A 2.B 3.B 4.A5.5+ 26.⎝⎛⎭⎪⎫x -1952+⎝ ⎛⎭⎪⎫y -352=1 7.解 (1)圆的半径r =|CP |= 5-8 2+ 1+3 2=5,圆心为点C (8,-3),∴圆的方程为(x -8)2+(y +3)2=25.(2)设所求圆的方程是x 2+(y -b )2=r 2.∵点P 、Q 在所求圆上,依题意有⎩⎪⎨⎪⎧ 16+ 2-b 2=r 2,36+ 2+b 2=r 2,⇒⎩⎪⎨⎪⎧ r 2=1454,b =-52.∴所求圆的方程是x 2+⎝ ⎛⎭⎪⎫y +522=1454. 8.解 由题意知线段AB 的垂直平分线方程为3x +2y -15=0,∴由⎩⎪⎨⎪⎧ 3x +2y -15=0,3x +10y +9=0, 解得⎩⎪⎨⎪⎧ x =7,y =-3.∴圆心C (7,-3),半径r =|AC |=65.∴所求圆的方程为(x -7)2+(y +3)2=65.9.D 10.D11.[0,2]12.解 能.设过A (0,1),B (2,1),C (3,4)的圆的方程为(x -a )2+(y -b )2=r 2.将A ,B ,C 三点的坐标分别代入有⎩⎪⎨⎪⎧a 2+ 1-b 2=r 2, 2-a 2+ 1-b 2=r 2,3-a 2+ 4-b 2=r 2,解得⎩⎪⎨⎪⎧ a =1,b =3,r = 5.∴圆的方程为(x -1)2+(y -3)2=5.将D (-1,2)代入上式圆的方程,得(-1-1)2+(2-3)2=4+1=5,即D 点坐标适合此圆的方程.故A ,B ,C ,D 四点在同一圆上.13.解 设P (x ,y ),则x 2+y 2=4.|PA |2+|PB |2+|PC |2=(x +2)2+(y +2)2+(x +2)2+(y -6)2+(x -4)2+(y +2)2=3(x 2+y 2)-4y +68=80-4y .∵-2≤y ≤2,∴72≤|PA |2+|PB |2+|PC |2≤88.即|PA |2+|PB |2+|PC |2的最大值为88,最小值为72.。
4.1.1 圆的标准方程练习一一、 选择题1、到原点的距离等于4的动点的轨迹方程是( )A 、x 2+y 2=4B 、 x 2+y 2=16C 、x 2+y 2=2D 、()224(4)16x y -+-=2、已知圆的方程是()222(3)4x y -+-=,则点P (1,2)满足( )A 、是圆心B 、在圆上C 、在圆内D 、在圆外3、已知圆心在点P(-2,3),并且与y 轴相切,则该圆的方程是( )A 、()222(3)4x y -++=B 、()222(3)4x y ++-=C 、()222(3)9x y -++=D 、()222(3)9x y ++-=4、方程()22()0x a y b -++=表示的图形是( )A 、以(a,b)为圆心的圆B 、点(a,b)C 、(-a,-b)为圆心的圆D 、点(-a,-b5、圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( )A 、(1,-1)B 、(12,-1)C 、(-1,2)D 、(-12,-1)、6、方程y=( )A 、一条射线B 、一个圆C 、两条射线D 、半个圆7、(x-3)2 +(y+2)2 =13的周长是( )A B 、C 、 2πD 、8、过点C (-1,1)和D (1,3),圆心在x 轴上的圆的方程为( )A 、22(2)10x y +-=B 、22(2)10x y ++=C 、22(2)10x y ++=D 、22(2)10x y -+=9、直线绕原点按逆时针方向旋转300后所得直线与圆(x-2)2+y 2=3的位置关系是( ) A 、直线过圆心B 、直线与圆相交但不过圆心C 、直线与圆相切D 、直线与圆没有公共点二、填空题10、如果一个圆的圆心在(2,4)点,并且经过点(0,3),那么这个圆的方程是----------------------------------------------。
11、222()()x a y b r -+-=过原点的条件是 。
12、圆()222()x a y b m -++=的圆心是_____,半径是______13、点P (x,y )在圆x 2+y 2=4 上,则44y x --的最大值是 三、解答题14、过圆224x y +=外一点p(2,1)引圆的切线,求切线方程。
15、已知圆方程22(1)(1)9x y -+-=,过点A(2,3)作圆的任意弦,求这些弦的中点P 的轨迹方程。
圆的标准方程练习二一、 选择题1、过点A(1,-1),B(-1,1)且圆心在直线x+y -2=0上的圆的方程。
A 、()223(1)4x y -++=、B 、()223(1)4x y ++-=C 、()221(1)4x y -+-=D 、()221(1)4x y +++=2、圆心为点(3,4)且过点(0,0)的圆的方程是( )A 、 x 2+y 2=25B 、x 2+y 2=5C 、(x-3)2+(y-4)2=25D 、(x+3)2+(y+4)2=253、设M 是圆(x -5)2+(y -3)2=9上的点,则M 到直线3x+4y-2=0的小距离是()A 、9B 、8C 、5D 、24、若直线x+y+m=0与圆x 2+y 2=m 相切,则m 为()A 、 0或2B 、2CD 、无解5、过点P (2,3)且与圆x 2+y 2=4相切的直线方程是()A 、2x+3y=4B 、x=2C 、5x-12y+26=0D 、5x-12y+26=0x=26、已知一圆的圆心为(2,-3),一条直径的端点分别在x 轴和y 轴上,则此圆的方程是( )A 、()222(3)13x y -++=B 、()222(3)13x y ++-=C 、()222(3)52x y -++=D 、()222(3)52x y ++-=7、平面直角坐标系中,横纵坐标都是整数的点称为整点,在圆x 2+y 2=16内所有整点中,到原点距离最远的整点可以在( )A 、直线y -1=0上B 、直线y=x 上C 、直线x+1=0上D 、直线y+3=0上80y +-=截圆x 2+y 2=4得劣弧所对的圆心角为( )A 、300B 、450C 、600D 、900二、填空题9、圆心为(2,-3),一条直径的两个端点分别落在x 轴和y 轴上的圆的方程为 、10、已知两点P 1(4,9)和P 2(6,3),则以P 1P 2为直径的圆的方程是11、在x 轴下方,与x 轴相切于(8,0)点,半径等于1、5的圆的方程是12、若实数x,y 满足x 2+y 2=1,则21y x --的最小值为 。
三、解答题13、求经过点A (-1,4)、B (3,2)且圆心在y 轴上的圆的方程14、已知曲线是与两个定点A (-4,0),B (2,0)距离比为2的点的轨迹,求此曲线的方程15、已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,并判断M (6,9),Q (5,3)是在圆上?圆外?圆内?4.1.2 圆的一般方程练习一一、 选择题1、x 2+y 2-4x+6y=0和x 2+y 2-6x=0的连心线方程是( )A 、x+y+3=0B 、2x-y-5=0C 、3x-y-9=0D 、4x-3y+7=02、已知圆的方程是x 2+y 2-2x+6y+8=0,那么经过圆心的一条直线方程为( )A .2x -y+1=0 B.2x+y+1=0C.2x -y -1=0D.2x+y -1=3、以(1,1)和(2,-2)为一条直径的两个端点的圆的方程为( )A 、 x2+y2+3x-y=0B 、x2+y2-3x+y=0C 、x2+y2-3x+y-25=0 D 、x2+y2-3x-y-25=0 4、方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是( )A 、 a<-2或a>32 B 、-32<a<2 C 、-2<a<0 D 、-2<a<32 5、圆x 2+y 2+4x+26y+b 2=0与某坐标相切,那么b 可以取得值是( )A 、±2或±13B 、1和2C 、-1和-2D 、-1和16、如果方程22220(40)x y Dx Ey f D E F ++++=+->所表示的曲线关于y=x 对称,则必有( )A 、D=EB 、D=FC 、E=FD 、D=E=F7、如果直线l 将圆22240x y x y +--=平分,且不通过第四象限, 那么l 的斜率的取值范围是( )A 、[0,2]B 、[0,1]C 、1[0]2,D 、1[0]3,二、填空题8、已知方程x 2+y 2+4kx-2y+5k=0,当k ∈ 时,它表示圆;当k时,它表示点;当k ∈ 时,它的轨迹不存在。
9、圆x 2+y 2-4x+2y -5=0,与直线x+2y -5=0相交于P 1,P 2两点,则12PP =____。
10、若方程x 2+y 2+Dx+Ey+F=0,表示以(2,-4)为圆心,4为半径的圆,则F=_____11、圆的方程为22680x y x y +--=,过坐标原点作长度为6的弦,则弦所在的直线方程为 。
三、解答题12、如果直线l 将圆22240x y x y +--=平分,且不通过第四象限,求l 的斜率的取值范围。
13、如果实数x 、y 满足x 2+y 2-4x+1=0,求y x的最大值与最小值。
14、ABC 的三个顶点分别为A(-1,5),(-2,-2),(5,5),求其外接圆方程15、已知方程222(3)x y t x +-+22(14)t y +-41690t ++=表示一个圆。
(1) 求t 的取值范围;(2) 求该圆半径r 的最大值及此时圆的标准方程4.1.2 圆的一般方程练习二一、选择题1、若方程x2+y2+4kx-2y+5k=0表示圆,则k的取值范围是( )A,14<k<1 B .k<14或k>1C. k=14或k=1D.k任意实数2.已知圆x2+y2+kx+2y+k2=0,当该圆的面积取最大值时,圆心坐标是()A、(0,-1)B、(1,-1)C、(-1,0)D、(-1,1)3、如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于直线y=x对称,那么必有()A、D=EB、D=FC、E=F D=E=F4、已知x2+y2+4x-2y-4=0,则x2+y2的最大值为( )A、9B、14C、14-、14+5、圆x2+y2+2x+4y-3=0上且到直线x+y+1=0的点共有( )A、1个B、2个C、3个D、4个6、曲线x2+y2y=0关于( )对称。
( )A、直线、直线y=-xC、点(-2、点,0)7、圆的方程是(x-1)(x+2)+(y-2)(y+4)=0,则圆心的坐标是( )A.(1,-1)B.(12,-1)C.(-1,2)D.(-12,-1).二、填空题8、圆x2+y2-2x-6y+9=0关于直线x-y-1=0对称的圆的方程是9、已知圆的方程x2+y2-8x-2y+12=0,P(1,1),则圆上距离P点最远的点的坐标是。
10、三角形ABC的三个顶点A(1,4),B(-2,3),C(4,-5),则△ABC的外接圆方程是。
11、若两圆x2+y2-10x-10y=0与x2+y2-6x+2y-40=0相交于两点,则它们的公共弦所在直线的方程是。
三、解答题12、10、已知直线l:kx-y-3k=0;圆M:x2+y2-8x-2y+9=0,(1)求证:直线l与圆M必相交;(2)当圆M截l所得弦最长时,求k的值。
13、已知圆C的方程为x2+y2+(m-2)x+(m+1)y+m-2=0,根据下列条件确定实数m的取值,并写出相应的圆心坐标和半径。
(1)圆的面积最小;(2)圆心距离坐标原点最近。
14、已知圆M经过直线l: 2x+y+4=0与圆C:x2+y2+2x-4y+1=0的交点,且圆M的圆心到直线2x+6y-5=0的距离为,求圆M的方程15、求经过两点P(-2,4),Q(3,-1),并且在x轴上截得的弦长等于6的圆的方程4.2.1 直线与圆的位置关系练习一一、 选择题1、直线3x+4y-5=0与圆2x 2+2y 2-4x-2y+1=0的位置关系是( )A 、相离B 、相切C 、相交且直线不过圆心D 、相交且过圆心2、圆x 2+y 2+2x+4-3=0上到直线x+y+1=0的距离为2的点共有( )个A1、 B 、2 C 、3 D 、43、圆x 2+y 2=16上的点到直线x-y=3的距离的最大值为( )A 、223B 、4-223C 、4+223D 、04、若直线3x +4y +k=0与圆x 2+y 2-6x +5=0相切,则k 的值等于( )A 、1或-19B 、10或-1C 、-1或-19D 、-1或195、若直线ax +by -1=0与圆x 2+y 2=1相交,则点P(a,b)的位置是( )A 、在圆上B 、在圆外C 、在圆内D 、以上皆有可能6、过点P(3,0)能做多少条直线与圆x 2+y 2-8x -2y +10=0相切( )A 、0条B 、1条C 、2条D 、1条或2条7、若直线3x +4y -12=0与x 轴交 于A 点, 与y 轴于交B 点,那么OAB 的内切圆方程是( )A 、x 2+y 2+2x +2y +1=0B 、x 2+y 2-2x +2y +1=0C 、x 2+y 2-2x -2y +1=0D 、x 2+y 2-2x -2y -1=08、1、221y y x -=-表示的曲线为( )A 、两个半圆B 、一个圆C 、半个圆D 、两个圆二、填空题9、自圆x 2+y 2=r 2外一点P(00,y x )作圆的两条切线,切点分别为21,P P ,则直线21P P 的方程为 10、 已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被C 截得弦长为32时,则a=11、过点(1,-1)的圆x 2+y 2=2的切线方程为________、过点(1,1)的圆(x -1) 2+ (y -2) 2=1的切线方程为________、12、由点P(1,-2)向圆x 2+y 2-6x-2y+6=0引切线方程是13、直线L 过点(-5,-10),且在圆x 2+y 2=25上截得的弦长为52,则直线L 的方程为________三、解答题14、已知圆x 2+y 2=8,定点P(4,0),问过P 点的直线斜率在什么范围内取值时,这条直线与已知圆(1)相切 ,(2)相交, (3)相离?15、已知圆C :(x -1) 2+(y -2) 2=25,直线L :(2m +1)x +(m +1)y -7m -4=0(m ∈R)(1)证明:无论m 取什么实数,L 与圆恒交于两点.(2)求直线被圆C 截得的弦长最小时L 的方程.4.2.1 直线与圆的位置关系练习二一、 选择题1、直线x +y=m 与圆x 2+y 2=m(m>0)相切,则m=( )A 、21B 、22C 、2D 、22、圆心为(1,-2),半径为25的圆在x 轴上截得的弦长为( )A 、8B 、6C 、26D 、343、直线x +y -1=0被圆x 2+y 2-2x -2y -6=0所截得的线段的中点坐标是( )A 、 ( 21,21)B 、 (0,0)C 、 (43,41) D 、 (41,43)4、y=x 的图形和圆x 2+y 2=4所围成的较小面积是( )A 、4πB 、C 、23πD 、43π5、曲线x 2+y 2+22x -22y=0关于( )A 、直线x=2轴对称B 、直线y=-x 轴对称C 、点(-2, 2)中心对称D 、点(-2,0)中心对称6、在圆x 2+y 2=4上与直线4x +3y -12=0距离最短的点的坐标是( )A. (56,58) B 、 (58,56)C 、 (-58,56) D 、 (-56,-58)7、过点P(2,3)做圆C :(x -1) 2+ (y -1) 2=0的切线,设T 为切点,则切线长PT =( )A 、5B 、5C 、1D 、2二、填空题8、圆心在直线y=x 上且与x 轴相切与点(1,0)的圆的方程是________________.9、设圆x 2+y 2-4x -5=0的弦的中点是P(3,1),则直线AB 的方程是___________.10、圆心在x 轴上,且过点A(3,5)和B(-3,7)的圆方程为11、在满足(x-3)2+(y-3)2=6的所有实数对(x,y)中,xy 的最大值是三、解答题12、 求过点A(3,4)与圆C:(x-2)2+(y-1)2=1相切的直线方程13、若x,y 满足(x-1)2+(y+2)2=4,求S=2x+y 的最大值和最小值14、一束光线通过点M(25,18)射入,被x 轴反射到圆C:x 2+(y-7)2=25求通过圆心的反射直线所在的直线方程15、直线y=kx+1与圆x 2+y 2=m 恒有公共点,求m 的取值范围4.2.2 圆与圆的位置关系练习一一、 选择题1、两圆x 2+y 2-6x=0和x 2+y 2+8y+12=0的位置关系是( )A 、相离B 、外切C 、相交D 、内切2、两圆x 2+y 2=r 2,(x-3)2+(y+1)2=r 2外切、则正实数r 的值是( )A 、10B 、210 C 、5 D 、5 3、半径为6的圆与x 轴相切,且与圆x 2+(y-3)2=1内切,则此圆的方程是( )A 、(x-4)2+(y-6)2=6B 、(x4)2+(y-6)2=6C 、(x-4)2+(y-6)2=36D 、 (x4)2+(y-6)2=364、和x 轴相切,并和圆x 2+y 2=1外切的动圆的圆心的轨迹是( )A 、x 2=2y +1B 、x 2=-2y +1C 、x 2=2y +1D 、 x 2=2y -15、以相交两圆C 1: x 2+y 2+4x +1=0及C 2: x 2+y 2+2x +2y +1=0的公共弦为直径的圆的方程( )A (x -1)2+(y -1)2=1B (x +1)2+(y +1)2=1C (x +35)2+(y +65)2=45D(x -35)2+(y -65)2=45 6、圆x 2+y 2+2ax +2ay +1=0与x 2+y 2+4bx +2b 2-2=0的公切弦的最大值是( ) A 12 B 1 C 32D 2 7、若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则l 的方程为( )A 、x +y=0B 、x +y-2=0C 、x-y-2=0D 、x-y+2=08、和x 轴相切,并和圆221x y +=外切的动圆的圆心轨迹方程是( )A 、221x y =+B 、221x y =-+C 、22||1x y =+D 、221x y =- 二、填空题9、圆C 1:x 2+y 2-6x +8y=0与x 2+y 2+b=0没有公共点,则b 的取值范围是______10、已知两圆C 1: x 2+y 2+4x -2ny +n 2-5=0,则C 2: x 2+y 2+2nx +2y +n 2-3=0, C 1与C 2外离时n 的范围是_____,与内含时n 的范围是______11、若圆x 2+y 2-2ax+a 2=2和x 2+y 2-2by+b 2=1外离,则a,b 满足的条件是12、已知两圆22222306-10x y x x y +--=++=和,则它们的公共弦所在的直线方程为______________.13、圆222212:680:0C x y x y C x y b +-+=++=与没有公共点,则b 的取值范围为______.三、解答题14、a 为何值时,圆1C : x 2+y 2-2ax+4y+(a 2-5)=0和圆2C : x 2+y 2+2x-2ay+(a 2-3)=0相交15、已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.4.3.1 空间直角坐标系练习一一、选择题1、有下列叙述:①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c);②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c);③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c);④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。