高中数学必修二第四章 4.3.2课件
- 格式:ppt
- 大小:2.24 MB
- 文档页数:147
4.3.2 等比数列的前n 项和公式(第2课时)素养目标学科素养 1.掌握等比数列前n 项和的性质.(重点)2.能够运用所学知识解决等差数列与等比数列的综合应用问题.1.逻辑推理; 2.数学运算情境导学远望巍巍塔七层,红光点点倍加增. 其灯三百八十一,请问尖头几盏灯? 这首古诗给大家呈现一幅美丽夜景的同时,也留给了大家一个数学问题,你能用今天所学的知识求出这首古诗的答案吗?1.等比数列前n 项和的性质(1)若数列{a n }为非常数列的等比数列,且其前n 项和S n =A·q n +B(A ≠0,B ≠0,q ≠0,q ≠1),则必有A +B =0;反之,若某一非常数列的前n 项和S n =A·q n -A(A ≠0,q ≠0,q ≠1),则该数列必为等比数列.(2)如果公比q ≠-1或虽q =-1但n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 构成等比数列. (3)当等比数列{a n }的项数为偶数时,偶数项的和与奇数项的和之比S 偶S 奇=q .2.分组求和某些数列通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.1.判断(正确的打“√”,错误的打“×”).(1)若等比数列{a n }的前n 项和S n =2×⎝ ⎛⎭⎪⎫13n +m ,则m =-2.(√) (2)若数列{a n }是公比q ≠1的等比数列,则其前n 项和公式可表示为-A q n +A(A ≠0,q ≠0且q ≠1,n ∈N *).(√)2.若a n =2n -n ,则{a n }的前n 项和为2n +1-2-错误!.3.数列112,314,518,…,(2n -1)+12n ,…的前n 项和为n 2+1-12n.1.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .140 B .120 C .210D .520A 解析:∵S 2=20,S 4-S 2=40,且(S 4-S 2)2=S 2×(S 6-S 4),∴S 6-S 4=80. 又∵S 4=60,∴S 6=140.2.若数列{a n }是等比数列,且其前n 项和S n =3n +1-3k ,则实数k 等于________. 1 解析:∵S n =3n +1-3k =3×3n -3k ,∴3=3k ,即k =1. 3.若等比数列{a n }的前n 项和S n =2n -2+r 2,则r =________.-12 解析:因为S n =2n -2+r 2=14×2n +r 2, ∴r 2=-14,即r =-12. 4.数列{2n -1}的前n 项和为________.2n +1-2-n 解析:S n =(21-1)+(22-1)+(23-1)+…+(2n -1)=(21+22+23+…+2n )-n =2n +1-2-n .【例1】(1)若等比数列{a n }的前n 项和为S n ,S 2=7,S 6=91,则S 4为( ) A .28 B .32 C .21D .28或-21(2)在等比数列{a n }中,公比q =3,S 80=32,则a 2+a 4+a 6+…+a 80=________.(3)等比数列{a n }共2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. (1)A (2)24 (3)2 解析:(1)∵{a n }为等比数列, ∴S 2,S 4-S 2,S 6-S 4也为等比数列, 即7,S 4-7,91-S 4成等比数列,由(S 4-7)2=7×(91-S 4),得S 4=28或S 4=-21.又∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2=(a 1+a 2)(1+q 2)=S 2(1+q 2)>S 2, ∴S 4=28.(2)设A =a 2+a 4+a 6+…+a 80, B =a 1+a 3+a 5+…+a 79, 则AB=q =3,即A =3B . 又A +B =S 80=32,∴43A =32,解得A =24.即a 2+a 4+a 6+…+a 80=24.(3)根据题意得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,∴⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160.∴q =S 偶S 奇=-160-80=2.等比数列前n 项和的常用性质: (1)若共有2n 项,则S 偶∶S 奇=q .(2)“片断和”性质:等比数列{a n }中,公比为q ,前m 项和为S m (S m ≠0),则S m ,S 2m -S m ,S 3m -S 2m ,…,S km -S (k -1)m ,…构成公比为q m 的等比数列.在等比数列{a n }中,若前10项的和S 10=10,前20项的和S 20=30,则前30项的和S 30=________. 70 解析:(方法一)设数列{a n }的首项为a 1,公比为q (q ≠1),则错误! 两式相除得1+q 10=3,∴q 10=2. ∴a11-q=-10. ∴S 30=错误!=-10×(1-8)=70.(方法二)∵S 10,S 20-S 10,S 30-S 20仍成等比数列,又S 10=10,S 20=30, ∴S 30-30=错误!, 即S 30=70.【例2】已知数列{a n }:a 1,a 2,a 3,…,a n ,…构成一个新数列:a 1,a 2-a 1,…,a n -a n -1,…,此数列是首项为1,公比为13的等比数列.求:(1)数列{a n }的通项公式; (2)数列{a n }的前n 项和S n .解:(1)a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13n -1=32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n . (2)S n =a 1+a 2+a 3+…+a n=32⎝ ⎛⎭⎪⎫1-13+32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫132+…+32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n=32n -34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n =错误!+错误!×错误!n -1.如果一个数列的每一项是由几个独立的项组合而成的,并且各独立项也可组成等差数列或等比数列,则该数列的前n 项和可考虑拆项后利用公式求解.若一数列为“1,1+2,1+2+22,…,1+2+22+…+2n -1,…”,如何求其前n 项和? 解:设该数列的第n 项为a n ,则a n =1+2+22+…+2n -1=1-2n 1-2=2n -1,所以该数列的前n 项和S n =(21-1)+(22-1)+(23-1)+…+(2n -1) =(2+22+…+2n )-n =错误!-n =2n +1-n -2.探究题1 在各项均为正数的等比数列{a n }中,a 1=2,且a 2,a 4+2,a 5成等差数列,S n 是数列{a n }的前n 项和,则S 10-S 4=________. 解析:设数列{a n }的公比为q (q >0). ∵a 2,a 4+2,a 5成等差数列, ∴2a 4+4=a 2+a 5.∴2×2×q 3+4=2×q +2×q 4. ∴q 4-2q 3+q -2=0. ∴(q -2)(q 3+1)=0. ∴q =2或q =-1(舍).∴S 10-S 4=错误!-错误!=2 016.探究题2 在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为|a 2|的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d , 依题意得a 3+a 8-(a 2+a 7)=2d =-6, 从而d =-3.所以a 2+a 7=2a 1+7d =-23,解得a 1=-1. 所以数列{a n }的通项公式为a n =-3n +2. (2)由(1)得a 2=-4,所以|a 2|=4.而数列{a n +b n }是首项为1,公比为4的等比数列, 所以a n +b n =4n -1,即-3n +2+b n =4n -1, 所以b n =3n -2+4n -1,于是S n =[1+4+7+…+(3n -2)]+(1+4+42+…+4n -1)=错误!+错误!=错误!+错误!. 探究题3 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2), 由于a 1≠0,故2q 2+q =0. 又q ≠0,从而q =-12.(2)由(1)可得a 1-a 1⎝ ⎛⎭⎪⎫-122=3,故a 1=4. 从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n .探究题4 已知正项等比数列{a n }(n ∈N *),首项a 1=3,前n 项和为S n ,且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式; (2)求数列{na n }的前n 项和T n . 解:(1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以有2(S 5+a 5)=(S 3+a 3)+(S 4+a 4),即2(a 1+a 2+a 3+a 4+2a 5)=(a 1+a 2+2a 3)+(a 1+a 2+a 3+2a 4), 化简得4a 5=a 3,从而4q 2=1,解得q =±12.因为a n >0,所以q =12,所以a n =3×⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,na n =3n ⎝ ⎛⎭⎪⎫12n -1.T n =3×1+3×2×12+3×3×⎝ ⎛⎭⎪⎫122+…+3n ⎝ ⎛⎭⎪⎫12n -1,12T n =3×1×12+3×2×⎝ ⎛⎭⎪⎫122+…+3(n -1)·⎝ ⎛⎭⎪⎫12n -1+3n ⎝ ⎛⎭⎪⎫12n ,两式相减得 12T n =3×1+3×12+3×⎝ ⎛⎭⎪⎫122+…+3×⎝ ⎛⎭⎪⎫12n -1-3n ⎝ ⎛⎭⎪⎫12n=3×1-⎝ ⎛⎭⎪⎫12n1-12-3n ⎝ ⎛⎭⎪⎫12n =6-6+3n 2n .所以T n =12-6+3n2n -1.解决等差数列和等比数列的综合问题,一般不能直接套用公式,要先对已知条件转化变形,使之符合等差数列或等比数列的形式,然后利用公式求解.同时,要注意在题设条件下,寻求等差数列之间的内在联系.已知数列{a n }是公差为2的等差数列,它的前n 项和为S n ,且a 1+1,a 3+1,a 7+1成等比数列. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1Sn 的前n 项和T n .解:(1)由题意,得a 3+1=a 1+5,a 7+1=a 1+13, 所以由(a 3+1)2=(a 1+1)(a 7+1), 得(a 1+5)2=(a 1+1)(a 1+13),解得a 1=3,所以a n =3+2(n -1),即a n =2n +1. (2)由(1)知a n =2n +1,则S n =n (n +2), 所以1Sn =12⎝ ⎛⎭⎪⎫1n -1n +2,所以T n =12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-错误!.1.已知{a n }为等差数列,{b n }为等比数列,其公比q ≠1且b i >0(i =1,2,…,n ),若a 1=b 1,a 11=b 11,则( )A .a 6>b 6B .a 6=b 6C .a 6<b 6D .a 6<b 6或a 6>b 6A 解析:由题意可得四个正数满足a 1=b 1,a 11=b 11, 由等差数列和等比数列的性质可得a 1+a 11=2a 6,b 1b 11=b 26.由基本不等式可得2a 6=a 1+a 11=b 1+b 11≥2b1b11=2b 6,当且仅当b 1=b 11时等号成立. 又公比q ≠1,故b 1≠b 11,上式取不到等号,∴2a 6>2b 6,即a 6>b 6.故选A .2.已知等比数列{a n }的公比q >1,且a 1a 4=8,a 2+a 3=6,则数列{a n }的前n 项和为( ) A .2n B .2n -1 C .2n -1D .2n -1-1C 解析:等比数列{a n }中,有a 1a 4=a 2a 3=8, 而a 2+a 3=6,可得a 2=2,a 3=4或a 2=4,a 3=2. 根据公比q >1可知{a n }是递增数列,所以a 2=2,a 3=4,可得q =a3a2=2,a 1=a2q =1,所以{a n }的前n 项和S n =错误!=错误!=2n -1.故选C .3.已知等比数列{a n }的前n 项和为S n ,若a 2S 4=a 4S 2,则S2 019S1=( )A .1B .-1C .2 019D .-2 019A 解析:由题得a 1q (a 1+a 1q +a 1q 2+a 1q 3)=a 1q 3(a 1+a 1q ), 即q (1+q +q 2+q 3)=q 3(1+q ),所以1+q +q 2+q 3=q 2(1+q ),所以q =-1. 所以S2 019S1=错误!=1.故选A .4.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:⎩⎨⎧⎭⎬⎫an +12是等比数列;(2)求数列{a n }的前n 项和S n .(1)证明:由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎫an +12,所以an +1+12an +12=3,所以⎩⎨⎧⎭⎬⎫an +12是首项为a 1+12=32,公比为3的等比数列,所以a n +12=32·3n -1.(2)解:由(1)知{a n }的通项公式为a n =3n -12(n ∈N *),则S n =⎝ ⎛⎭⎪⎫312+322+…+3n 2-n 2,所以S n =3n +1-2n -34.1.分类讨论的思想:(1)利用等比数列前n 项和公式时要分公比q =1和q ≠1两种情况讨论. (2)研究等比数列的单调性时应进行讨论:当a 1>0,q >1或a 1<0,0<q <1时为递增数列;当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.2.函数的思想:等比数列的通项a n =a 1q n -1=a1q ·q n (q >0且q ≠1)常和指数函数相联系.等比数列前n 项和S n =a1q -1·(q n -1)(q ≠1).设A =a1q -1,则S n =A(q n -1)也与指数函数相联系. 3.整体思想:应用等比数列前n 项和时,常把q n ,a11-q当成整体求解. 课时分层作业(十)等比数列的前n 项和公式(第2课时)(50分钟 100分) 基础对点练基础考点 分组训练知识点1 等比数列前n 项和的性质1.(5分)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a nD 解析:在等比数列{a n }中,S n =a1-anq1-q =1-an ×231-23=3-2a n .2.(5分)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a1+1a2+1a3+1a4等于( )A .35B .53C .-35D .-53D 解析:设等比数列{a n }的公比为q ,则a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=158,a 2a 3=a 21q 3=-98, ∴1a1+1a2+1a3+1a4=1a1⎝ ⎛⎭⎪⎫1+1q +1q2+1q3=q3+q2+q +1a1q3=错误!=错误!=-错误!. 3.(5分)等比数列{a n }共有2n 项,它的全部项的和是奇数项的和的3倍,则公比q =________.2 解析:设{a n }的公比为q ,由已知可得q ≠1,则奇数项也构成等比数列,其公比为q 2,首项为a 1,S 2n =错误!,S 奇=错误!.由题意得错误!=错误!,∴1+q =3, ∴q =2.4.(5分)在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项的和S 15=________.11 解析:∵S 3=1,S 6-S 3=-2,∴S 9-S 6=4,S 12-S 9=-8,S 15-S 12=16,∴S 15=S 3+S 6-S 3+S 9-S 6+S 12-S 9+S 15-S 12=1-2+4-8+16=11. 知识点2 分组求和5.(5分)数列12,12+14,12+14+18,…,12+14+…+12n 的前n 项和为( )A .n +12nB .n -1+12nC .n -1+12n +1D .n +12n -1B 解析:∵数列的通项a n =12+14+…+12n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n,∴前n 项和S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-14+…+⎝ ⎛⎭⎪⎫1-12n=n -⎝ ⎛⎭⎪⎫12+14+ (12)=n -1+12n. 6.(5分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若数列{c n }是1,1,2,…,则数列{c n }的前10项和为( )A .978B .557C .467D .979A 解析:设等比数列{a n }的公比为q ,等差数列{b n }的公差为d .∵c n =a n +b n ,∴⎩⎪⎨⎪⎧ a1+b1=1,a2+b2=1,a3+b3=2,解得⎩⎪⎨⎪⎧ a1=1,d =-1,q =2.∴c n =2n -1+(1-n ). ∴{c n }的前10项和为1-2101-2+错误!=978. 知识点3 等差数列与等比数列的综合问题7.(5分)已知数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=( )A .1 033B .1 034C .2 057D .2 058A 解析:∵a n =n +1,b n =2n -1,∴ab 1+ab 2+…+ab 10=a 1+a 2+a 4+…+a 29=(1+1)+(2+1)+(22+1)+…+(29+1)=10+(1+2+22+…+29)=10+1-2101-2=1 033. 8.(5分)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2C .12D .-12 D 解析:∵S 1,S 2,S 4成等比数列,∴S 2=S 1·S 4,∴(2a 1-1)2=a 1·(4a 1-6),∴a 1=-12. 9.(5分)(多选)已知{a n }为等比数列,S n 是其前n 项和.若a 2a 3=8a 1,且a 4与2a 5的等差中项为20,则( )A .a 1=-1B .公比q =-2C .a 4=8D .S 5=31CD 解析:∵a 2a 3=8a 1,∴a 1q 3=8,即a 4=8.∵a 4+2a 5=40,∴a 4(1+2q )=40,∴q =2,a 1=1.∴S 5=1-251-2=31.能力提升练能力考点 拓展提升10.(5分)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S10S5等于()A .-3B .5C .-31D .33D 解析:设{a n }的公比为q ,∵S 3=错误!=2,S 6=错误!=18,∴1+q 3=9,∴q =2,∴S10S5=1-q101-q5=1+q 5=33.11.(5分)设等比数列的前n 项和、前2n 项和、前3n 项和分别为A ,B ,C ,则( )A .A +B =C B .B 2=ACC .A +B -C =B 2D .A 2+B 2=A(B +C)D 解析:∵S n ,S 2n -S n ,S 3n -S 2n 成等比数列,∴(S 2n -S n )2=S n (S 3n -S 2n ),即(B -A)2=A(C -B),∴A 2+B 2=A(B +C).12.(5分)已知等比数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前12项和等于( )A .66B .55C .45D .6A 解析:∵S n =2n -1,∴S n -1=2n -1-1(n ≥2),两式相减得a n =2n -1(n ≥2).又a 1=S 1=1,∴a n =2n -1.∴log 2a n =n -1.∴{log 2a n }是等差数列,首项为0,公差为1.∴前12项和为66.13.(5分)已知{a n }是等比数列,若a 1=1,a 6=8a 3,数列⎩⎨⎧⎭⎬⎫1an 的前n 项和为T n ,则T 5=( ) A .3116B .31C .158D .154A 解析:∵a 1=1,a 6=8a 3,∴q =2.∴⎩⎨⎧⎭⎬⎫1an 是等比数列,首项为1,公比为12, ∴T 5=1×⎝ ⎛⎭⎪⎫1-1251-12=3116. 14.(5分)在等比数列{a n }中,公比q =2,前n 项和为S n ,若S 5=1,则S 10=________.33 解析:∵S 5=错误!=1,∴a 1=错误!.∴S 10=错误!=错误!× 1 023=33.15.(5分)若等比数列{a n }的前n 项和S n =2×3n +r ,则r =________.-2 解析:∵S n =2×3n +r ,∴当n ≥2时,a n =S n -S n -1=2×3n -2×3n -1=4×3n -1.当n =1时,a 1=S 1=6+r .∵{a n }为等比数列,∴6+r =4.∴r =-2.16.(12分)已知等差数列{a n }(n ∈N *)的前n 项和为S n ,且a 3=5,S 3=9.(1)求数列{a n }的通项公式;(2)等比数列{b n }(n ∈N *),若b 2=a 2,b 3=a 5,求数列{a n +b n }的前n 项和T n . 解:(1)由S 3=9,得3a 2=9,所以a 2=3.又因为a 3=5,所以公差d =2.从而a n =a 2+(n -2)d =2n -1.(2)由(1)可得b 2=a 2=3,b 3=a 5=9,所以公比q =3.从而b n =b 2q n -2=3n -1,则a n +b n =(2n -1)+3n -1,分组求和可得T n =n 2+12(3n -1).17.(13分)已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6成等比数列.证明:∵a 1,a 7,a 4成等差数列,∴2a 7=a 1+a 4,∴2q 6=1+q 3,∴q 3=-12或q 3=1. 若q 3=1,则2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1.∴2S 3,S 6,S 12-S 6成等比数列.若q 3=-12, 则2S 3=3a11-q ,S 6=34a11-q ,S 12-S 6=316a11-q. ∵⎝ ⎛⎭⎪⎪⎫34a11-q 2=3a11-q ·316a11-q ,即S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.重难强化训练(二)等比数列(60分钟 120分)练易错易错点1| 对等比数列的定义理解不透彻致误[防范要诀]等比数列中任一项a n ≠0,且q ≠0.[对点集训]1.(5分)已知等比数列{a n }的前三项为a,2a +2,3a +3,则a =________.-4 解析:由(2a +2)2=a (3a +3)⇒a =-1或a =-4.但当a =-1时,第二、三项均为零,故a =-1舍去,得a =-4.2.(10分)已知数列{a n }中a n ≠0,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,证明:a 1,a 3,a 5成等比数列.证明:由已知,有2a 2=a 1+a 3,①a 23=a 2·a 4,②2a4=1a3+1a5.③ 由③得2a4=a3+a5a3·a5,∴a 4=2a3·a5a3+a5.④ 由①得a 2=a1+a32.⑤ 由④⑤代入②,得a 23=a1+a32·2a3·a5a3+a5. ∴a 3=错误!,即a 3(a 3+a 5)=a 5(a 1+a 3).化简,得a 23=a 1·a 5.又a 1,a 3,a 5≠0,∴a 1,a 3,a 5成等比数列.易错点2| 利用等比中项时忽略判断符号致误[防范要诀](1)等比数列中所有奇数项的符号都相同,所有偶数项的符号都相同;(2)只有同号两数才有等比中项,且有两个,它们互为相反数.[对点集训]3.(5分)如果1,a ,b ,c,16成等比数列,那么b =________,ac =________.4 16 解析:∵b 2=1×16=16,且b =1×q 2>0,∴b =4.又∵b 2=ac ,∴ac =16.4.(5分)等比数列{a n }中,a 2=9,a 5=243,则a 6=________.729 解析:∵a5a2=q 3=27,∴q =3, ∴a 6=a 2q 4=9×81=729.5.(5分)已知-2,a 1,a 2,-8成等差数列,-2,b 1,b 2,b 3,-8成等比数列,则a2-a1b2=________. 12解析:∵-2,a 1,a 2,-8成等差数列, ∴⎩⎪⎨⎪⎧ 2a1=-2+a2,2a2=a1-8,得⎩⎪⎨⎪⎧ a1=-4,a2=-6.又∵-2,b 1,b 2,b 3,-8成等比数列,∴b 2=-2×(-8)=16,∴b 2=4或b 2=-4.由等比数列隔项同号可得b 2=-4, ∴a2-a1b2=错误!=错误!. 易错点3| 忽视对公比q 的讨论[防范要诀]等比数列的公比q ≠0,数列中各项都不为零;当公比q ≠1时,S n =错误!;当公比q =1时,S n =na 1.[对点集训]6.(5分)等比数列1,a ,a 2,a 3,…(a ≠0)的前n 项和S n =________.⎩⎪⎨⎪⎧ n ,a =1,1-an 1-a ,a≠1 解析:当a =1时,S n =n ;当a ≠1时,S n =1-an 1-a. ∴S n =⎩⎪⎨⎪⎧ n ,a =1,1-an 1-a ,a≠1.7.(10分)在首项为a 1且公比为q 的等比数列{a n }中,其前n 项和为S n ,若S 3=4,S 6=36,求a n .解:∵S 6≠2S 3,∴q ≠1.由⎩⎪⎨⎪⎧ S3=4,S6=36得错误!由②①得1-q61-q3=9,即1+q 3=9,∴q =2. 将q =2代入①式得a 1=47. ∴a n =a 1q n -1=47×2n -1=2n +17. 练疑难8.(5分)设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 等于( )A .1B .0C .1或0D .-1A 解析:∵{S n }是等差数列,∴2S 2=S 1+S 3,∴2(a 1+a 2)=a 1+(a 1+a 2+a 3),∴a 2=a 3,∴q =a3a2=1. 9.(5分)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A .2B .1C .12D .18C 解析:∵{a n }为等比数列,∴a 3a 5=a 24,∴a 24=4(a 4-1),解得a 4=2.设等比数列{a n }的公比为q ,则a 1q 3=2,∴q 3=8,∴q =2,∴a 2=a 1q =14×2=12. 10.(5分)已知数列{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列,则公比q 的值为( )A .-12B .-2C .-1或12D .1或-12D 解析:∵a 1,a 3,a 2成等差数列,∴2a 3=a 1+a 2,∴2q 2-q -1=0.∴q =1或-12. 11.(5分)在数列{a n }中,已知S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值为( )A .13B .-76C .46D .76 B 解析:∵S 15=(-4)×7+(-1)14(4×15-3)=29,S 22=(-4)×11=-44,S 31=(-4)×15+(-1)30(4×31-3)=61,∴S 15+S 22-S 31=29-44-61=-76.12.(5分)已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( )A .126B .130C .132D .134C 解析:∵{a n }是正项等比数列,∴{b n }是等差数列.又∵b 3=18,b 6=12,∴d =-2,b 1=22,∴S n =22n +错误!×(-2)=-n 2+23n =-错误!2+错误!, ∴当n =11或12时,S n 最大,∴(S n )max =-112+23×11=132.13.(5分)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2 019项的和S 2 019等于( )A .31 010-2B .31 010-3C .32 009-2D .32 009-3A 解析:因为a 1=1,a 2=3,an +2an =3, 所以S 2 019=(a 1+a 3+…+a 2 019)+(a 2+a 4+…+a 2 018)=1-31 0101-3+错误!=31 010-2. 14.(5分)数列{a n }的通项公式是a n =n cos nπ2,其前n 项和为S n ,则S 2 020等于( ) A .1 010B .2 020C .504D .0A 解析:a 1=cos π2=0,a 2=2cos π=-2,a 3=0,a 4=4,….∴数列{a n }的所有奇数项为0,前2 020项的所有偶数项(共1 010项)依次为-2,4,-6,8,…. 故S 2 020=0+(-2+4)+(-6+8)+…+(-2 018+2 020)=1 010.15.(5分)在等比数列{a n }中,a 3=4,S 3=12,数列{a n }的通项公式a n =________.4或⎝ ⎛⎭⎪⎫-12n -5 解析:当q =1时,a 3=4, a 1=a 2=a 3=4,S 3=a 1+a 2+a 3=12,∴q =1符合题意.a n =4.当q ≠1时,错误!解得q =-12,a n =a 3q n -3=⎝ ⎛⎭⎪⎫-12n -5, 故a n =4或a n =⎝ ⎛⎭⎪⎫-12n -5. 16.(10分)设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,Sn n (n ∈N *)均在直线y =x +12上.若b n =3a n +12,求数列{b n }的前n 项和T n .解:依题意得Sn n =n +12,即S n =n 2+12n . 当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎪⎫n2+12n -错误!=2n -错误!; 当n =1时,a 1=S 1=32,符合a n =2n -12, 所以a n =2n -12(n ∈N *),则b n =3a n +12=32n , 由bn +1bn=错误!=32=9,可知{b n }为等比数列,b 1=32×1=9,故T n =错误!=错误!. 17.(12分)已知等比数列{a n }的各项均为正数,且a 2=6,a 3+a 4=72.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n -n (n ∈N *),求数列{b n }的前n 项和S n . 解:(1)设等比数列{a n }的公比为q ,∵a 2=6,a 3+a 4=72,∴6q +6q 2=72,即q 2+q -12=0,∴q =3或q =-4.又∵a n >0,∴q >0,∴q =3,a 1=a2q=2. ∴a n =a 1q n -1=2×3n -1(n ∈N *).(2)∵b n =2×3n -1-n ,∴S n =2(1+3+32+…+3n -1)-(1+2+3+…+n )=2×1-3n 1-3-错误!=3n -1-错误!. 18.(13分)数列{a n }的前n 项和为S n ,已知a 1=2,a n +1=2S n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)求数列{na n }的前n 项和T n .解:(1)∵a n +1=2S n +1,∴a n =2S n -1+1(n ≥2,n ∈N *),两式相减得a n +1=3a n (n ≥2,n ∈N *). ∵a 2=2S 1+1=5,∴a n =a 23n -2=5·3n -2(n ≥2,n ∈N *),当n =1,a 1=2不满足上式,∴a n =⎩⎪⎨⎪⎧ 2,n =1,5·3n-2,n≥2,n∈N*.(2)由(1)知na n =⎩⎪⎨⎪⎧ 2,n =1,5n·3n-2,n≥2,n∈N*.T n =2+5·2·30+5·3·31+5·4·32+5·5·33+…+5·(n -1)·3n -3+5·n ·3n -2,①3T n =6+5·2·31+5·3·32+5·4·33+…+5·(n -1)3n -2+5·n ·3n -1,②①-②得-2T n =6+5(3+32+33+…+3n -2)-5n ·3n -1=6+5×错误!-5n ·3n -1,∴T n =34+10n -54·3n -1.。