127.北师大版九年级数学上册3.2 第2课时 概率与游戏的综合运用2-教案
- 格式:doc
- 大小:79.04 KB
- 文档页数:3
3.2 用频率估计概率教学目标:1、借助实验,体会随机事件在每一次实验中发生与否具有不确定性;2、通过操作,体验重复实验的次数与事件发生的频率之间的关系;3、能从频率值角度估计事件发生的概率;4、懂得开展实验、设计实验,通过实验数据探索规律,并从中学会合作与交流。
教学重点与难点:通过实验体会用频率估计概率的合理性。
教学过程: 一、引入:我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:实验者抛掷次数n“正面朝上”次数m频率m/n隶莫弗 布丰 皮尔逊 皮尔逊 2048 4040 12000 24000 1061 2048 6019 12012 0.518 0.5.69 0.5016 0.5005观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作学习(课前布置,以其中一小组的数据为例)让转盘自由转动一次,停止转动后,指针落在红色区域的概率是31,以数学小组为单位,每组都配一个如图的转盘,让学生动手实验来验证:(1)填写以下频数、频率统计表:转动次数 指针落在红色区域次数频率 10 3 0.3 20 8 0.4 30 11 0.36 40 14 0.35 50160.32(2)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:实验次数指针落在红色区域的次数频率80 25 0.3125160 58 0.3625240 78 0.325320 110 0.3438400 130 0.325(3)根据上面的表格,画出下列频率分布折线图(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。
第2课时 概率与游戏的综合应用1.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负. (1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏的规则,对小明、小芳公平吗?试说明理由.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率. (2)你认为这个游戏公平吗?为什么?红 蓝 红 黄 转盘A 红蓝 黄 转盘B答案:1.解:用列表法将所有可能出现的结果表示如下:转盘B转盘A红蓝黄红(红,红)(红,蓝)(红,黄)蓝(蓝,红)(蓝,蓝)(蓝,黄)红(红,红)(红,蓝)(红,黄)黄(黄,红)(黄,蓝)(黄,黄)所以,所有可能出现的结果共有12种.(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是31124=,即小芳获胜的概率是14;但只有2种情况才可能得到绿色,配成绿色的概率是21126=,即小明获胜的概率是16.而1146>,故小芳获胜的可能性大,这个“配色”游戏对小明、小芳双方是不公平的.2.解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为516P=甲.(2)这个游戏对双方不公平,因为甲获胜的概率516P=甲,乙获胜的概率1116P=乙,1116165≠,所以,游戏对双方是不公平的.3.为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?4. 甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘. (1)试用列表或画树形图的方法,求甲获胜的概率; (2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.5. 甲、乙玩转盘游戏时,把质地相同的两个转盘A 、B 平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。
第2课时 概率与游戏的综合应用一、读一读:1、学习目标:经历利用树状图和列表法求出概率并解决问题的过程,提高应用知识解决问题的能力。
2、认真阅读课本65页—67页,思考课本中提出的问题。
二、试一试:1.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)分别利用树状图或列表的方法表示游戏者所有可能出现的结果. (2)游戏者获胜的概率是多少?2.利用图所示的转盘进行“配紫色”游戏. 小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是12。
小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.你认为谁做得对?说说你的理由.归纳总结:你认为用画树状图和列表的方法求概率时应该注意些什么?_______________________________________________________________________________红色 蓝色 红色1 (红1,红) (红1,蓝) 红色2 (红2,红) (红2,蓝) 蓝色(蓝,红)(蓝,蓝)开始红蓝红 蓝红蓝(红,蓝)(蓝,红)(蓝,蓝)(红,红)例题:一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同。
从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率。
四、练一练1.利用如图所示的转盘进行“配紫色”游戏。
游戏规则:连续转动两次转盘A,若两次转盘转出的出的颜色能配成紫色,小明得1分,若两次转出颜色都是红色,则小亮得1分.你认为游戏对双方公平吗?写出解答过程说明理由。
2.游戏者同时转动右边的两个转盘进行““配紫色游戏,若要使游戏者获胜的概率为110,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由。
第2课时 概率与游戏的综合应用一、读一读:1、学习目标:经历利用树状图和列表法求出概率并解决问题的过程,提高应用知识解决问题的能力。
2、认真阅读课本65页—67页,思考课本中提出的问题。
二、试一试:1.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)分别利用树状图或列表的方法表示游戏者所有可能出现的结果. (2)游戏者获胜的概率是多少?2.利用图所示的转盘进行“配紫色”游戏. 小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是12。
小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.你认为谁做得对?说说你的理由.归纳总结:你认为用画树状图和列表的方法求概率时应该注意些什么?_______________________________________________________________________________红色 蓝色 红色1 (红1,红) (红1,蓝) 红色2 (红2,红) (红2,蓝) 蓝色(蓝,红)(蓝,蓝)开始红蓝红 蓝红蓝(红,蓝)(蓝,红)(蓝,蓝)(红,红)例题:一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同。
从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率。
四、练一练1.利用如图所示的转盘进行“配紫色”游戏。
游戏规则:连续转动两次转盘A,若两次转盘转出的出的颜色能配成紫色,小明得1分,若两次转出颜色都是红色,则小亮得1分.你认为游戏对双方公平吗?写出解答过程说明理由。
2.游戏者同时转动右边的两个转盘进行““配紫色游戏,若要使游戏者获胜的概率为110,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由。
3.2 用频率估计概率教学目标:1、借助实验,体会随机事件在每一次实验中发生与否具有不确定性;2、通过操作,体验重复实验的次数与事件发生的频率之间的关系;3、能从频率值角度估计事件发生的概率;4、懂得开展实验、设计实验,通过实验数据探索规律,并从中学会合作与交流。
教学重点与难点:通过实验体会用频率估计概率的合理性。
教学过程: 一、引入:我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:实验者抛掷次数n“正面朝上”次数m频率m/n隶莫弗 布丰 皮尔逊 皮尔逊2048 4040 12000 240001061 2048 6019 120120.518 0.5.69 0.5016 0.5005 观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作学习(课前布置,以其中一小组的数据为例)让转盘自由转动一次,停止转动后,指针落在红色区域的概率是31,以数学小组为单位,每组都配一个如图的转盘,让学生动手实验来验证:(1)填写以下频数、频率统计表:转动次数 指针落在红色区域次数频率 10 3 0.3 20 8 0.4 30 11 0.36 40 14 0.35 50160.32(2)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:实验次数指针落在红色区域的次数频率80 25 0.3125160 58 0.3625240 78 0.325320 110 0.3438400 130 0.325(3)根据上面的表格,画出下列频率分布折线图(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。
三、做一做:1.某运动员投篮5次,投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?2.回答下列问题:(1)抽检1000件衬衣,其中不合格的衬衣有2件,由此估计抽1件衬衣合格的概率是多少?(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?四、例题分析:例1、在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表: 实验种子n(粒) 15501002005001000 2000 3000发芽频数m(粒) 0445921884769511900 2850发芽频数m/n(1)计算表中各个频数.(2)估计该麦种的发芽概率(3)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg? 分析:(1)学生根据数据自行计算(2)估计概率不能随便取其中一个频率区估计概率,也不能以为最后的频率就是概率,而要看频率随实验次数的增加是否趋于稳定。
3.2 用频率估计概率教学目标:1、借助实验,体会随机事件在每一次实验中发生与否具有不确定性;2、通过操作,体验重复实验的次数与事件发生的频率之间的关系;3、能从频率值角度估计事件发生的概率;4、懂得开展实验、设计实验,通过实验数据探索规律,并从中学会合作与交流。
教学重点与难点:通过实验体会用频率估计概率的合理性。
教学过程: 一、引入:我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:实验者抛掷次数n“正面朝上”次数m频率m/n隶莫弗 布丰 皮尔逊 皮尔逊 2048 4040 12000 24000 1061 2048 6019 12012 0.518 0.5.69 0.5016 0.5005观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作学习(课前布置,以其中一小组的数据为例)让转盘自由转动一次,停止转动后,指针落在红色区域的概率是31,以数学小组为单位,每组都配一个如图的转盘,让学生动手实验来验证:(1)填写以下频数、频率统计表:转动次数 指针落在红色区域次数频率 10 3 0.3 20 8 0.4 30 11 0.36 40 14 0.35 50160.32(2)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:实验次数指针落在红色区域的次数频率80 25 0.3125160 58 0.3625240 78 0.325320 110 0.3438400 130 0.325(3)根据上面的表格,画出下列频率分布折线图(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。
3.2 用频率估计概率教学目标:1、借助实验,体会随机事件在每一次实验中发生与否具有不确定性;2、通过操作,体验重复实验的次数与事件发生的频率之间的关系;3、能从频率值角度估计事件发生的概率;4、懂得开展实验、设计实验,通过实验数据探索规律,并从中学会合作与交流。
教学重点与难点:通过实验体会用频率估计概率的合理性。
教学过程: 一、引入:我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:实验者抛掷次数n“正面朝上”次数m频率m/n隶莫弗 布丰 皮尔逊 皮尔逊 2048 4040 12000 24000 1061 2048 6019 12012 0.518 0.5.69 0.5016 0.5005观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作学习(课前布置,以其中一小组的数据为例)让转盘自由转动一次,停止转动后,指针落在红色区域的概率是31,以数学小组为单位,每组都配一个如图的转盘,让学生动手实验来验证:(1)填写以下频数、频率统计表:转动次数 指针落在红色区域次数频率 10 3 0.3 20 8 0.4 30 11 0.36 40 14 0.35 50160.32(2)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:实验次数指针落在红色区域的次数频率80 25 0.3125160 58 0.3625240 78 0.325320 110 0.3438400 130 0.325(3)根据上面的表格,画出下列频率分布折线图(4)议一议:频率与概率有什么区别和联系?随着重复实验次数的不断增加,频率的变化趋势如何?结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。
第2课时概率与游戏的综合运用教学目标1、经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.2、鼓励学生思维的多样性,提高应用所学知识解决问题的能力.重点、难点1、借助于树状图、列表法计算随机事件的概率。
2、在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。
教学步骤与流程一、自主学习,感受新知“配紫色”游戏:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.61(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?二、合作交流,探求新知游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?三、典型例题,应用新知例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。
求两次摸到的球的颜色能配成紫色的概率. 分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)=254四、分层提高,完善新知1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?112.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为3五、课堂小结,回顾新知1.利用树状图和列表法求概率时应注意什么?2.你还有哪些收获和疑惑?六、作业布置,巩固新知习题3.3第1、2、3题2。
第2课时 概率与游戏的综合运用1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A 、B数字分别是1,6,8是4,5,7其他完全相同).A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.二、合作探究探究点一:用表格或树状图求“配紫色”概率用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A 转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B 转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A 转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B 转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解. 解:将A 转盘中“红”区域2等分,B转盘“蓝”区域2等分后列表如下:从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P (紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)这个游戏规则对两个球队是否公平?为什么?解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正;两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正.所以P (王铮去足球队)=P (王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小.三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.。
第三章概率的进一步认识3.2 用频率估计概率1.借助试验,体会随机事件在每一次试验中发生与否具有不确定性.2.通过操作,体验重复试验的次数与事件发生的频率之间的关系.3.能从频率值角度估计事件发生的概率.通过试验体会用频率估计概率的合理性.试验方案的设计.《红楼梦》第62回中有这样的情节:当下又值宝玉生日已到,原来宝琴也是这日,二人相同.……袭人笑道:“这是他来给你拜寿.今儿也是他的生日,你也该给他拜寿.”宝玉听了,喜的忙作下揖去,说:原来今儿也是姐姐的芳诞.”平儿还福不迭.……探春忙问:“原来邢妹妹也是今儿,我怎么就忘了.”……探春笑道:“倒有些意思,一年十二个月,月月有几人生日.人多了,便这等巧了,也有三个一日,两个一日的……”上述一日两人或者多人过生日的现象在生活中也有很多,你能用概率的知识解释一下原因吗?今天我们就来学习用频率估计概率.教师提出问题串:(1)400个同学中,一定有2个同学的生日相同(可以不同年)吗?有什么依据呢?(2)300个同学中,一定有2个同学的生日相同(可以不同年)吗?学生:(1)一定.(2)不一定.教师:我认为咱们班50个同学中很可能就有2个同学的生日相同,你相信吗? 学生:表示怀疑,不太相信.·做一做(1)每个同学课外调查10个人的生日.(2)从全班的调查结果中随机选取50个被调查人的生日,记录其中有无2个人的生日相同.每选取50个被调查人的生日为一次试验,重复尽可能多次试验,并将数据记录在下表中:试验总次数50100150200250…“有2个人的生日相同”的次数“有2个人的生日相同”的频率(3)根据上表中的数据,估计“50个人中有2个人的生日相同”的概率.设计方案:学生自主设计.附学生设计的方案:方案一:将每个同学调查的生日随机排列成一个方阵,然后按某一规则从中选取50个数据进行试验(如从某行某列开始,自左而右,自上而下,选出50个数).方案二:把全班每个同学所调查的数据写在纸条上,放在箱子里随机抽取.方案三:从50个同学手里随机抽取一个调查数据,组成50个数据.方案四:全班分成10个小组,把每个小组调查数据放在一起,打乱次序,随机抽取5个,然后10个小组的结果放在一起成50个数据.在进行大量的重复试验时,随着试验次数的增加,一个不确定事件发生的频率会逐渐稳定到某一个数值.我们可以用平稳时的频率来估计这个事件发生的概率. ·想一想(1)一个口袋中有3个红球、7个白球,这些球除颜色外都相同.从口袋中随机摸出1个球,这个球是红球的概率是多少?(2)一个口袋中有红球、白球共10个,这些球除颜色外都相同.如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球和白球的比例吗?(3)你还能提出并解决哪些与问题(2)类似的问题?与同伴交流.同学们自己探讨交流.学生:(1)310.(2)从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,共摸100次,其中摸到红球n次,则其中红球和白球的比例为n∶(100-n). (3)答案不唯一,比如池塘里不同品种的鱼的比例,一个地区不同鸟类的比例等.例1、在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子1 5 50 100 200 500 1000 2000 3000n(粒)发芽频数0 4 45 92 188 476 951 1900 2850m(粒)发芽频数m/n(1)计算表中各个频数.(2)估计该麦种的发芽概率(3)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg?分析:(1)学生根据数据自行计算(2)估计概率不能随便取其中一个频率区估计概率,也不能以为最后的频率就是概率,而要看频率随实验次数的增加是否趋于稳定。
第2课时概率与游戏的综合运用
教学目标1、经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.
2、鼓励学生思维的多样性,提高应用所学知识解决问题的能力.
重点、难点1、借助于树状图、列表法计算随机事件的概率。
2、在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。
教学步骤与流程
一、自主学习,感受新知
“配紫色”游戏:小颖为学校联欢会设计了一个“配紫色”游戏:
下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇
形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝
色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
6
1
(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
二、合作交流,探求新知
游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.
(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?
三、典型例题,应用新知
例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。
求两次摸到的球的颜色能配成紫色的概率. 分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:
总共有25种可能的结果,每种结果出
现的可能性相同,能配成紫色的共4种
(红1,蓝)(红2,蓝)(蓝,红1)(蓝,
红2),所以P(能配成紫色)=
25
4
四、分层提高,完善新知
1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个
面积相等的三个扇形.请求出配成紫色的概率是多少?
初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180 °
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
24 矩形性质定理 1 矩形的四个角都是直角
25 矩形性质定理 2 矩形的对角线相等
26 矩形判定定理 1 有三个角是直角的四边形是矩形
27 矩形判定定理 2 对角线相等的平行四边形是矩形
28 菱形性质定理 1 菱形的四条边都相等
29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
30 菱形面积= 对角线乘积的一半,即S= (a×b )÷2
31 菱形判定定理1 四边都相等的四边形是菱形
32 菱形判定定理2 对角线互相垂直的平行四边形是菱形
33 正方形性质定理1 正方形的四个角都是直角,四条边都相等
34 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
35 定理1 关于中心对称的两个图形是全等的
36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。