归纳《图形的全等》参考课件1.ppt
- 格式:ppt
- 大小:1.11 MB
- 文档页数:23
2023《图形的全等》课件contents •知识导入•基础概念与定理•应用与实践•全等四边形的概念与性质•全等五边形的概念与性质•全等六边形的概念与性质目录01知识导入图形全等是指两个图形能够完全重合,即它们的形状和大小都相同。
定义全等是几何中一个非常重要的概念,在后续的学习中我们将学习如何判定两个图形是否全等以及如何进行图形的全等变换。
理解什么是图形的全等相似是指两个图形形状相同,但大小不一定相等。
全等与相似是两个不同的概念,虽然它们有一定的联系。
在全等变换中,可以将一个图形放大或缩小,但它的形状保持不变。
举例:正方形和其中心对称图形是全等的,但它们不是相似的。
图形的全等与相似的关系图形全等的证明方法通过证明两个图形的对应边相等,对应角相等来证明两个图形全等。
定义法判定定理举例注意通过证明两个图形满足 SSS、SAS、ASA、AAS 中的任意一个来证明两个图形全等。
在三角形全等的证明中,我们通常使用 SSS、SAS、ASA、AAS 中的任意一个进行证明。
在证明图形全等时,要注意对应边和对应角的位置和顺序,避免出现“张冠李戴”的情况。
02基础概念与定理全等形形状和大小都相同的图形称为全等形。
全等三角形如果有两个三角形全等,则它们的三组对应边分别相等,三个对应角也相等。
基础概念1图形的全等的定理23对于两个三角形,如果对应边相等、对应角相等,则这两个三角形全等。
定理1对于两个三角形,如果一个三角形的三边分别与另一个三角形的对应边成比例,且它们的夹角相等,则这两个三角形全等。
定理2对于两个三角形,如果一个三角形的三个角分别等于另一个三角形的对应角,则这两个三角形全等。
定理3全等三角形的对应边相等。
性质1性质2性质3全等三角形的对应角相等。
全等三角形的对应中线、对应角平分线、对应中垂线分别相等。
03全等三角形的性质020103应用与实践证明两个三角形全等运用全等三角形证明线段和角相等利用全等三角形进行测量的应用全等三角形的应用明确问题首先需要明确需要解决的问题是什么,并收集相关的已知条件。
《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。