航天器控制原理
- 格式:rtf
- 大小:79.30 KB
- 文档页数:8
航天器控制原理周军课后答案1、问题:下列描述的是开普勒第三定律——周期律的是:选项:A:行星绕太阳公转的周期的平方与椭圆轨道的长半径的立方成正比。
B:动量变化率与作用力成正比。
C:对每一个作用,总存在一个大小相等的反作用。
D:每个行星沿椭圆轨道绕太阳运行。
答案: 【行星绕太阳公转的周期的平方与椭圆轨道的长半径的立方成正比。
】2、问题:在推导圆锥曲线时,在二体运动方程的两侧同时与();在推导比角动量时,在二体运动方程两侧同时与()。
选项:A:叉乘,叉乘B:点乘,叉乘C:叉乘,点乘D:点乘,点乘答案: 【叉乘,叉乘】3、问题:下列不属于牛顿贡献的是:选项:A:提出行星运动“椭圆律”B:建立微积分C:提出万有引力定律D: 发现白光是由各种不同颜色的光组成的答案: 【提出行星运动“椭圆律”】4、问题:任何两个物体间均有一个相互吸引的力,这个力与它们的质量成_,与两物体间距离平方成__。
选项:A:正比;反比B:正比;正比C:反比;正比D:反比;反比答案: 【正比;反比】5、问题:根据以下哪个式子能推出比机械能守恒。
选项:A:B:C:D:E:答案: 【】6、问题:开普勒第三定律“周期的平方与椭圆轨道长半轴的立方成正比”,即,其中与()有关。
选项:A:引力常数B:航天器到中心引力体的距离C:偏心率D:比机械能答案: 【引力常数】7、问题:根据以下哪个式子能推出比角动量守恒。
选项:A:B:C:D:E:答案: 【】8、问题:以下哪个是二体运动方程?选项:A:B:C:D:E:答案: 【】9、问题:引力参数和什么因素有关?选项:A:中心体质量B:中心体体积C:中心体密度D:中心体组成成分E:中心体速度答案: 【中心体质量】10、问题:航天器的运行轨道为双曲线轨道,当它与行星相遇时,其轨道拐过角度,那么它与双曲线几何参数的关系为()。
选项:A:B:C:D:答案: 【】11、问题:关于卡文迪许扭秤实验正确的是:选项:A:测出万有引力常数B:测出地球圆周长C:发现了光谱D:证明了重力和加速度的存在答案: 【测出万有引力常数】12、问题:航天器的轨道运动有哪些特点?选项:A:二体运动中航天器唯一可能的运动轨道是圆锥曲线。
航天器结构振动控制与优化设计航天器结构振动控制与优化设计是现代航天领域中的重要课题,它对于保障航天器的安全性、可靠性和性能具有重要意义。
本文将探讨航天器结构振动控制的原理与方法,并介绍优化设计在航天器结构振动控制中的应用。
一、航天器结构振动控制原理航天器在发射、飞行和着陆过程中都会面临各种振动问题。
这些振动问题既会影响航天器的正常工作,又会对载人航天员的生命安全造成潜在威胁。
因此,航天器结构振动控制就显得尤为重要。
航天器结构振动控制的原理主要包括两个方面:被动控制和主动控制。
被动控制是通过改变结构材料和形状等因素来改善结构的振动性能,例如使用减振材料、减振器等。
主动控制则是利用控制装置主动调节结构的振动状态,包括振动传感器、执行器和控制算法等。
二、航天器结构振动控制方法1.模态分析航天器结构的振动分析是了解结构动力学特性的重要手段,其中模态分析是一种常用的方法。
模态分析通过求解结构的固有振动模态和频率,可以确定结构存在的固有振动模式和相应的频率。
这为航天器的振动控制提供了依据。
2.振动控制策略振动控制策略主要包括主动振动控制和被动振动控制。
主动振动控制是基于主动控制技术,通过控制装置实时感知航天器的振动状态,并采取相应的控制措施来减小振动。
被动振动控制是通过设计合理的结构形状和材料来减小结构的振动响应。
3.优化设计优化设计在航天器结构振动控制中起着重要的作用。
通过优化设计可以改善结构的振动特性,减小结构的振动响应。
优化设计可以基于模态分析和振动控制策略进行,通过改变结构参数和材料等因素,使得结构在满足特定约束条件下达到最佳的振动控制效果。
三、航天器结构优化设计案例研究以某型号航天器为例进行航天器结构振动控制的优化设计。
首先,进行模态分析,确定航天器的固有振动频率和模态;然后,采用主动振动控制策略,设计并安装振动传感器和执行器;最后,利用优化算法对航天器结构参数进行调整,以达到最佳的振动控制效果。
航空航天工程师的航天器测量与控制技术航天工程是现代科技的重要组成部分,而在航空航天工程中,航天器的测量与控制技术是至关重要的一环。
本文将介绍航天器测量与控制技术的基本概念、主要原理以及近年来的发展动向。
一、航天器测量技术航天器测量技术是指对航天器各种物理量和运动参数进行测量的科学与技术方法。
在航天器的设计、制造以及运行过程中,准确获取和分析各种数据是非常重要的。
1.1 航天器姿态测量航天器姿态测量是航天器测量技术的核心内容之一。
姿态测量包括航天器的位置、姿态角、角速度等参数的测量。
目前常用的姿态测量方法有陀螺仪、星敏感器、加速度计等。
1.2 航天器静力学测量航天器的静力学测量主要是针对航天器在发射和运行过程中所受到的各种力的测量。
静力学测量可以帮助工程师提供设计依据,确保航天器在各种环境中的安全。
1.3 航天器环境参数测量航天器环境参数测量是指对航天器所处的环境参数进行测量。
这些参数包括气温、气压、湿度、辐射等。
测量这些参数可以为航天器的设计和操作提供重要参考。
二、航天器控制技术航天器控制技术是指对航天器进行控制和调整的技术方法。
航天器控制技术的目标是保持航天器的姿态、定位和轨道稳定。
2.1 航天器姿态控制航天器姿态控制是指对航天器的位置、角度等姿态参数进行控制和调整,以满足航天器在宇宙环境中稳定运行和完成任务的要求。
姿态控制主要依靠推进器、姿态控制器和惯性导航系统等设备完成。
2.2 航天器轨道控制航天器轨道控制是指对航天器的轨道进行精确调整和控制。
轨道控制技术的主要手段是利用航天器自身的动力系统,通过火箭发动机推进、推进剂控制等方法来调整轨道的形状、高度和速度等参数。
2.3 航天器定位控制航天器定位控制是指对航天器在宇宙中的位置进行准确定位和控制。
利用卫星导航系统、雷达测距等技术手段,可以实现对航天器的准确定位和导航。
三、航天器测量与控制技术的发展趋势近年来,随着航天技术的快速发展,航天器测量与控制技术也在不断推陈出新。
航天器姿态与轨道控制原理
从系统建模的角度来看,航天器的姿态与轨道控制原理包括两部分:旋转系统和平衡系统。
旋转系统包括控制方法、动力方法、传感方法和反馈控制方法等,来实现航天器姿态控制。
平衡系统则运用轨道力学、轨道建模、轨道规划以及发动机控制等方法,以轨道航行、轨道改良等为目标,保证航天器完成任务。
通常情况下,旋转系统使用发动机以及由发动机带动的旋转机构来控制和调节航天器构型和姿态。
旋转系统的主要控制方式有:有限旋转系统控制、控制反馈系统控制、面向目标的制导控制和旋转目标控制等,结合传感器系统通过利用陀螺仪、角速度矢量积分等方法,对航天器角度、转矩控制进行调节,使最终姿态稳定。
平衡系统使用发动机以及由发动机带动的旋转机构来推进航天器的空间轨道控制,通过改变发动机输出力及轨道建模下的参数,如卫星质量、平衡系数等,来调节航天器轨道,如通过线加速、混乱改正、超密对抗等方式,来实现轨道的航行控制。
总之,航天器姿态与轨道控制原理是结合发动机控制技术与建模技术,将航天器位置、朝向以及运动控制起来,以实现宇宙任务的一系列原理。
航空航天工程师的航天器遥测和控制系统航天器遥测和控制系统是航空航天工程师在航天器飞行中至关重要的组成部分。
它不仅能够监测航天器的各种参数,还能实现对航天器的远程操作和控制。
本文将介绍航天器遥测和控制系统的基本原理、应用以及发展趋势。
一、航天器遥测和控制系统的基本原理航天器遥测和控制系统基于遥测技术,通过测量和传输航天器上各种传感器采集的数据,实时监测航天器的运行状态。
同时,它还可以接收地面指令,控制航天器的姿态、航向和速度等参数。
航天器遥测和控制系统由传感器、遥测数据传输模块、指令接收模块和执行机构等组成。
传感器是航天器遥测和控制系统中最基础的部分,它能够感知航天器上各种物理量,如温度、压力、姿态等。
传感器将采集到的数据转化为电信号,并通过遥测数据传输模块传送给地面控制中心。
遥测数据传输模块是连接航天器和地面控制中心的纽带,它可以通过无线电或卫星通信等方式将传感器采集到的数据传输回地面。
遥测数据传输模块可以实现高速、可靠的数据传输,保证航天器上各个部分数据的实时更新。
指令接收模块是地面控制中心向航天器发送指令的接收装置。
通过接收地面发出的指令,指令接收模块可以将指令传递给执行机构,实现对航天器各个部分的控制。
执行机构是根据接收到的指令实现对航天器姿态、航向和速度等参数的调整。
执行机构通过控制航天器上的发动机、推力装置等来实现对航天器运动状态的控制和调节。
二、航天器遥测和控制系统的应用航天器遥测和控制系统广泛应用于各类航天任务中,包括卫星发射、航天器在轨运行以及返回舱的控制等。
它可以监测航天器的运行状态,及时发现并修正运行中的异常情况,确保航天任务的圆满完成。
在卫星发射过程中,航天器遥测和控制系统可以实时监测发射过程中的各种参数,如推力、姿态和温度等。
通过对这些参数的监测,航天工程师可以及时调整发射参数,确保卫星顺利进入预定轨道。
在航天器在轨运行过程中,航天器遥测和控制系统则起到了关键的作用。
它可以实时监测航天器的各项性能指标,如电力系统、姿态控制系统和燃料消耗等。
航天测控通信原理及应用航天测控通信原理及应用随着现代科技的不断发展,航天技术也得到了迅速的发展。
而航天测控通信就是航天技术中不可缺少的一部分。
下面将从原理和应用两个方面介绍航天测控通信。
一、原理1.航天测控的基本原理:航天器在太空中运行时,通过地面站向航天器发送指令,收集空间信息,控制航天器,保证其安全降落。
这就需要航天测控系统。
2.航天测控通信的原理:在航天测控过程中,必须采用通信方式完成地面站和卫星之间的数据传输。
这就是航天测控通信。
通信利用无线电波传播。
一般采用发射功率较小的卫星遥测遥控技术,通过地面站向卫星发出指令,并从卫星收到数据,完成数据传输。
3.航天测控通信系统的构成:航天测控通信系统由地面站和卫星两部分组成。
地面站主要包括天线、收发设备、终端设备、数据处理设备等。
其中最主要的装备为卫星接收机和卫星发射机。
卫星上装配有天线控制装置(ACU)、卫星通信模块、遥控遥测模块等电子设备。
二、应用1.卫星通信:在航天测控中,卫星通信是必不可少的一部分。
利用航天测控技术的无线电波传导特点,将指令传输到卫星,使卫星按指令完成任务。
2.星载测控:随着卫星的发展,测控技术也不断进步。
星载测控技术就是指在卫星上安装测控设备,实现卫星测控的一种技术。
3.深空测控:深空测控是指对行星、卫星、彗星等天体进行跟踪观测,并根据观测结果进行数据分析和处理。
4.测量和确定地球重力场:航天测控通信技术也可以用于测量和确定地球的重力场,帮助科学家更好地研究地球的内部结构和演化历史。
综上所述,航天测控通信是航天技术中不可缺少的一部分,它为航天器的安全运行提供了难以替代的保障。
同时,在工况监测、环境监测、人类生活等多个领域也有广泛应用。
随着信息技术的不断进步,航天测控通信技术也将不断完善和发展。
航天器动力系统双模型调控原理航天器的动力系统是确保航天器顺利进行各项任务的关键要素之一。
在航天器的动力系统中,双模型调控是一种常见且有效的控制原理。
本文将详细介绍航天器动力系统双模型调控的原理和应用。
一、双模型调控原理概述双模型调控是指在航天器的动力系统中采用两种不同的数学模型进行控制。
一种模型用于正常工作状态下的控制,另一种模型则用于故障发生时的应急控制。
通过双模型调控,可以保证航天器在各种情况下都能够保持稳定运行,并在发生故障时采取相应的措施保持安全。
二、双模型调控原理详解1. 正常工作模型:在航天器正常工作状态下,双模型调控使用一种基于航天器正常运行数据建立的数学模型进行控制。
这个模型会根据航天器的运行数据和参数,通过运算预测出航天器的状态,并基于此进行控制。
正常工作模型的任务是确保航天器在正常工作状态下的稳定运行,其控制策略会根据航天器的状态和目标进行调整,以达到最佳控制效果。
2. 应急控制模型:当航天器发生故障或异常情况时,双模型调控会切换到应急控制模型进行控制。
应急控制模型是一种根据航天器可能出现的故障情况建立的数学模型,它会预测并模拟故障对航天器的影响,并制定相应的控制策略。
应急控制模型的任务是在故障发生后,通过相应的控制策略保证航天器的安全运行。
3. 切换策略:双模型调控的关键之处在于切换策略,即如何在发生故障时从正常工作模型切换到应急控制模型,并确保切换过程的平稳进行。
切换策略通常是基于航天器的状态和故障信息进行决策的。
一般情况下,当航天器检测到故障信号时,会触发切换策略,将控制模式从正常工作切换到应急控制。
同时,为了保证切换的平稳,在切换过程中可能会引入一些过渡策略,以确保航天器的稳定运行。
三、双模型调控的优势和应用领域1. 优势:双模型调控在航天器动力系统中具有以下几个优势:- 可靠性:通过使用两种不同的控制模型,可以提高航天器的可靠性和鲁棒性,即使在发生故障时也能保证航天器的安全运行。
基于模型预测控制的航天器姿态控制研究一、引言航天器姿态控制是航天工程中的重要问题之一,它关系着航天器的稳定性和精度,对于载人航天、卫星定位、空间探测等任务都具有重要意义。
传统的姿态控制方法往往基于经验和观察,无法满足对复杂环境中航天器姿态的准确控制需求。
基于模型预测控制(Model Predictive Control,简称MPC)的航天器姿态控制方法在近年来得到了广泛应用,并取得了显著的研究进展。
二、基于模型预测控制的原理与方法1. 模型预测控制原理模型预测控制是一种基于模型的控制方法,通过建立系统的数学模型,对未来一段时间内的系统响应进行预测,并根据预测结果修正控制输入,从而实现对系统的控制。
模型预测控制的核心思想是通过优化问题求解来寻求最优控制策略,以使系统在一定时间范围内满足给定的性能指标。
2. 模型预测控制方法航天器姿态控制中常用的模型预测控制方法包括线性二次型模型预测控制(Linear Quadratic Model Predictive Control,简称LQMPC)和非线性模型预测控制(Nonlinear Model Predictive Control,简称NMPC)。
LQMPC方法假设系统模型是线性的,并通过求解线性二次型优化问题得到最优控制律;而NMPC方法则适用于非线性系统,可以通过迭代求解非线性优化问题近似得到最优控制策略。
三、基于模型预测控制的航天器姿态控制系统1. 系统建模在基于模型预测控制的航天器姿态控制系统中,首先需要建立航天器的数学模型。
航天器姿态控制系统涉及到刚体动力学、航天器运动学等多个方面,因此需要综合考虑刚体力学、电机驱动、传感器测量等多个因素进行建模。
2. 预测模型基于航天器的数学模型,可以通过离散化、线性化等方法获得离散时间的线性预测模型。
预测模型可以用于预测航天器未来一段时间内的姿态变化,进而进行优化计算得到最优控制输入。
3. 优化求解在模型预测控制中,通过求解优化问题得到最优控制输入。
1.1 世界航天技术发展的概况航天技术发展是当今世界上最引人注目的事业之一,它推动着人类科学技术的进步,使人类活动的领域由大气层内扩展到宇宙空间。
航天技术是现代科学技术的结晶,是基础科学和技术科学的集成,力学、热力学、材料学、医学、电子技术、光电子技术、自动控制、计算机、真空技术、低温技术、半导体技术、喷气推进、制造工艺学等学科,以及这些科学技术在航天应用中相互交叉、渗透而产生的大量新学科,都对航天技术的发展起了重要作用。
所以,航天技术是一个国家科学技术水平的重要标志。
航天技术是一门综合性的工程技术,主要包括:制导与控制技术,热控制技术,喷气推进技术,能源技术,空间通信技术,遥测遥控技术,生命保障技术,航天环境工程技术,火箭及航天器的设计、制造和试验技术,航天器的发射、返回和在轨技术等。
由多种技术融于一体的航天系统是现代高技术的复杂大系统,不仅规模庞大,技术高新、尖端,而且人力、物力耗费巨大,工程周期长。
时至今日,航天技术已被广泛应用到政治、军事、经济和科学探测等领域,已成为一个国家综合国力的象征。
.1.2 近代航天技术的发展19世纪末20世纪初,火箭才又重新蓬勃地发展起来。
近代的火箭技术和航天飞行的发展,涌现出许多勇于探索的航天先驱者,其中代表人物K.3.齐奥尔科夫斯基,R.戈达德(Robert Goddard),H.奥伯特(Hermann Oberth)。
航天技术从20世纪50年代末期的研究试验阶段到70年代中期,发展到了广泛实际应用阶段。
其中60年代以来,为科学研究、国民经济和军事服务的各种科学卫星与应用卫星得到了很大发展。
至70年代,军、民用卫星已全面进入应用阶段。
一方面向侦察、通信、导航、预警、气象、测地、海洋、天文观测和地球资源等专门化的方向发展,同时另一方面,各类卫星亦向多用途、长寿命、高可靠性和低成本的方向发展。
这两种趋势相互补充,取得了显著的效益。
80年代中后期,基于模块化和集成化设计思想的新型微、小卫星崛起,成为航天技术发展中的一个新动向。
这类卫星重量轻、成本低、研制周期短、见效快,已逐渐成为今后应用卫星的一支生力军。
1.2 航天器的分类与系统组成航天技术是一门研究和实现如何把航天器送人空间,并在那里进行活动的工程技术。
它主要包括航天器、运载工具和地面测控三大部分。
为了便于了解,我们首先对航天器进行分类。
同一个航天器可兼有数种任务,故机械地、绝对地分类,是不可能的。
同一类航天器,往往包括了几种系列,而每一系列又可分成数种不同的卫星系统或型号。
1.2.1 按载人与否分类航天器可分为无人航天器与载人航天器两大类。
无人航天器按是否绕地球运行又可分为人造地球卫星和宇宙探测器两类。
它们又可以进一步按用途分类,1.人造地球卫星简称人造卫星,是数量最多的航天器(占90%以上)。
它们的轨道长度由100多公里到几十万公里。
按用途它们又可分为:(1) 科学卫星:发展科学卫星的主要目的是:①研究近地空间环境和日地关系,为载人飞船、应用卫星和战略武器的发展提供资料;②进行天文观测;③对地球科学,例如地球磁场、电离层与磁层的关系、地壳力学、海洋动力学等方面进行研究。
(2) 应用卫星:利用星载仪器设备,以应用为目的,在轨道上完成某种任务的卫星,称为应用卫星。
它们直接为国民经济和军事服务,如通信卫星、气象卫星、侦察卫星、导航卫星、测地卫星、地球资源卫星等。
(3) 技术试验卫星:技术试验卫星是针对某些航天器(如应用卫星或飞船等)的特殊新工艺或某项新的系统技术而设计的,其目的是进行预先的飞行试验。
在航天技术发展中,技术试验卫星曾发挥了它的作用,世界各国相当重视这种卫星的研制。
2.载人航天器目前的载人航天器只在近地轨道飞行和从地球到月球的登月飞行。
今后将出现可以到达各种星球的载人飞船,以及供人类长期在空间生活和工作的永久性空间站。
载人航天器按飞行和工作方式可分为:(1) 载人飞船:能保障航天员在外层空间生活和工作,以执行航天任务并能返回地面的航天器;(2) 空间站:可供多名航天员巡访、长期工作和居住的载人航天器;(3) 航天飞机:可以重复使用的,往返于地面和高度在1 000 km以下的近地轨道之间,运送有效载荷的航天器。
3.宇宙探测器飞出地球轨道的探测器,有行星际探测器和恒星际(飞出太阳系)探测器两种。
其中行星际探测器按探测目标又可分为月球和行星(金星、火星、水星、木星、土星等)探测器。
如20世纪60~70年代,前苏联发射的“月球”、“金星”、“火星”、“水星”等系列探测器,美国发射的“水手”、“海盗”、“先驱者”、“旅行者”等系列探测器。
1.2.2 人造地球卫星的功能分类按航天器在轨道上的功能来进行分类,就人造地球卫星而言,可分为观测站、中继站、基准站和轨道武器四类。
每一类又包括了各种不同用途的航天器。
1.观测站卫星处在轨道上,对地球来说,它站得高,看得远(视场大),用它来观察地球是非常有利的。
此外,由于卫星在地球大气层以外不受大气的各种干扰和影响,所以用它来进行天文观测也比地面天文观测站更加有利。
属于这种功能的卫星有下列几种典型的用途。
(1) 侦察卫星:在各类应用卫星中侦察卫星发射得最早(1959年发射),发射的数量也最多。
侦察卫星有照相侦察和电子侦察卫星两种。
照相侦察卫星是用光学设备对地面目标进行拍照的卫星。
20世纪70年代以来,前苏联和美国每年发射的军用卫星中,约有1/3的卫星用于各种形式的照相侦察,它们在200 km的近地轨道上进行普查和详查。
电子侦察卫星利用星载电子设备截获空间传播的电磁波,并转发到地面,通过分析和破译,获得敌方的情报。
电子侦察的目的是确定他方的飞机、雷达等系统的位置和特征参数,窃听他方的无线电和微波通信。
电子侦察卫星以无线电探测和记录设备完成这些使命。
总之,无论对军事战略侦察,还是对军事战术侦察,侦察卫星所提供的情报信息,起着不可忽视的作用,曾为美国和前苏联政策的制定和军事行动提供了依据。
据报道,美国和前苏联将近70%的军事情报来源于侦察卫星。
目前,在美、俄两国的军用卫星中,50%以上都是侦察卫星。
美国已研制了六代侦察卫星,可见光照相分辨率为O.3 m,工作寿命200 d以上;无线电传输型相机分辨率为O.3~3 m,卫星工作寿命两年多。
俄罗斯的侦察卫星工作寿命从几天到几个月。
美国通过延长卫星工作寿命,大大减少发射数量,俄罗斯则通过增加卫星发射数量以保证全年有侦察卫星在天上工作。
(2) 气象卫星:气象卫星利用所携带的各种气象遥感器,接收和测量来自地球、海洋和大气的可见光辐射、红外线辐射和微波辐射信息,再将它们转换成电信号传送给地面接收站。
气象人员根据收集的信息,经过处理,得出全球大气温度、湿度、风等气象要素资料。
几小时就可得到全球气象资料,从而作出中期和长期天气预报,确定台风中心位置和变化,预报台风和其他风暴。
气象卫星对于保证航海和航空的安全,保证农业、渔业和畜牧业生产,都有很大作用。
气象卫星已由单纯的气象试验,发展到多学科和多领域的综合应用;由低轨道系统,发展到高轨道系统,形成了全球气象卫星观测网。
气象卫星在军事活动中的应用也日益加强,有的国家已建立了全球性的军事气象资料的收集系统,向军事单位提供实时的或非实时的气象资料。
随着航天技术的进一步发展,气象遥感器将向多样化、高精度方向发展,大大丰富气象预报的内容和提高预报精度。
同时气象卫星提供的云图也将由静态云图向动态云图方向发展,这将会引起气象卫星发展的一次重大突破。
(3) 地球资源卫星:资源卫星是在侦察卫星和气象卫星的基础上发展而来的。
利用星上装载的多光谱遥感器获取地面目标辐射和反射的多种波段的电磁波,然后把它传送到地面,再经过处理,变成关于地球资源的有用资料。
它们包括地面的和地下的,陆地的和海洋的等等。
地球资源卫星可广泛用于:地下矿藏、海洋资源和地下水源调查;土地资源调查,土地利用,区域规划;调查农业、林业、畜牧业和水利资源合理规划管理;预报农作物长势和收成;研究自然植物的生成和地貌;考查和监视各种自然灾害如病虫害、森林火灾、洪水等;环境污染、海洋污染;测量水源,雪源;铁路,公路选线,港口建设,海岸利用和管理,城市规划。
地球资源卫星具有重大的经济价值和潜在的军事用途。
(4) 海洋卫星:海洋是生命的摇篮和风雨的故乡,海洋与人类的密切关系正逐渐被认识。
海洋控制着自然界中水的循环和大气运动,主导调节大陆的气候,提供廉价的运输条件和高质量的水产食物。
海洋中蕴藏着巨大的能源和矿物资源。
对海洋、海岸线的调查、研究、利用和开发,虽然可以利用气象卫星、地球资源卫星获得一些资料和数据,但不解决根本问题,例如资源卫星遥感器波段主要在可见光和近红外波段,而海洋遥感器波段主要在红外和微波波段。
我国既是一个大陆国家(9 600 000 km2土地),又是一个海洋国家(海岸线18 000 km,拥有4 700 000 km2海域,多于4 000 000 km2的经济开发区),发展海洋卫星是国民经济和军事部门之必需。
海洋卫星的任务是海洋环境预报,包括远洋船舶的最佳航线选择,海洋渔群分析,近海与沿岸海洋资源调查,沿岸与近海海洋环境监测和监视,灾害性海况预报和预警,海洋环境保护和执法管理,海洋科学研究,以及海洋浮标、台站、船舶数据传输,海上军事活动等。
当然,作为观测站的卫星远不止以上几种,预警卫星、核爆炸探测卫星、天文预测卫星(如美国的“哈勃”太空望远镜)等均属于这一类。
虽然它们的功能各有侧重,但基本观测原理都是相似的。
2.中继站中继站是一种在轨道上对信息进行放大和转发的卫星。
具体分为两类:一类用于传输地面上相隔很远的地点之间的电话、电报、电视和数据;另一类用于传输卫星与地面之间的电视和数据。
这种卫星有下列几种:(1) 通信卫星:利用卫星进行通信和平常的地面通信相比较,具有下列优点:①通信容量大;②覆盖面积广;③通信距离远;④可靠性高;⑤灵活性好;⑥成本低。
通信卫星一般采用地球静止轨道,相当于静止在天空上。
若有3颗地球静止轨道卫星,彼此相隔120°,就可实现除地球两极部分地区外的全球通信。
通信卫星已用于国际、国内和军事通信业务,同时开展了区域性通信和卫星对卫星的通信。
卫星通信技术已赋有很浓的军事色彩,它在战略通信和战术通信中占有绝对的优势。
目前,各国已有的国际、国内卫星通信系统都承担着军事通信任务。
通信卫星已进入相当成熟的实际应用阶段,特别是随着地球静止轨道卫星通信技术的发展,它的应用日益广泛。
它可用于传输电话、电报、电视、报纸、图文传真、语音广播、时标、数据、视频会议等。
(2) 广播卫星:广播卫星是一种主要用于电视广播的通信卫星。
这种广播卫星不需要经过任何中转就可向地面转播或发射电视广播节目,供公众团体或者个人直接接收,因此又称为直播卫星。