控制图(2011-11-12)
- 格式:ppt
- 大小:853.50 KB
- 文档页数:29
控制图1、概念控制图又叫做管制图,是用于分析和判断工序是否处于稳定状态所使用的带有控制界限的一种工序管理图。
控制图是一种对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图,图上有中心线(CL )、上控制线(UCL )、下控制线(LCL ),并有按时间顺序抽取的样本计量值的描点序列。
控制图主要用于:过程分析及过程控制。
图1表示了控制图的基本形状:2、原理控制图的作图原理被称为“3σ原理”,或“千分之三法则”。
根据统计学可以知晓,如果过程受控,数据的分布将呈钟形正态分布,位于“μ±3σ”区域间的数据占据了总数据的99.73%,位于此区域之外的数据占据总数据的0.27%(约千分之三,上、下界限外各占0.135%),因此,在正常生产过程中,出现不良品的概率只有千分之三,所以我们一般将它忽略不计(认为不可能发生),如果一旦发生,就意味着出现了异常波动。
μ:中心线,记为CL ,用实线表示; μ+3σ:上界线,记为UCL ,用虚线表示; μ-3σ:下界线,记为LCL ,用虚线表示。
3、控制图的种类①、计量值控制图:控制图所依据的数据均属于由量具实际测量而得。
A R Chart ); B S Chart );C Chart );D 、单值控制图(X Chart );②、计数值控制图:控制图所依据的数据均属于以计数值(如:不良品率、不良数、缺点数、件数等)。
A 、不良率控制图(P Chart );质 量 特 性 数 据B、不良数控制图(Pn Chart);C、缺点数控制图(C Chart);D、单位缺点数控制图(U Chart)。
4、控制图的用途根据控制图在实际生产过程中的运用,可以将其分为分析用控制图、控制用控制图:①、分析用控制图(先有数据,后有控制界限):用于制程品质分析用,如:决定方针、制程解析、制程能力研究、制程管制之准备。
分析用控制图的主要目的是:(1)分析生产过程是否处于稳态。
管制图简介[计算][应用范围][实施步骤][使用原因]管制图基本原理统计理论认为母体参数可由随机抽取的样本来估计,SPC图的统计基础即在于此。
但是,SPC图并不能控制一个制程,它只是提供制程重要的信息,这个信息可以作为质量决策与修正制程的基础。
一般SPC图提供三条制程信息的管制线:上管制线(upper control limit, UCL)﹑中心线(center line, CL)﹑下管制线(lower control limit, LCL)。
不同制程管制对象有不同的数据,所有的数据都可归类到下列其中一种:1.分类数据-将产品质量分为「好或不好」、「合格或不合格」等计数数据-记录某产品的某个特性发生次数,例如错误次数﹑意外次数﹑销售领先次数等3.连续数据-某个质量特征的量测值,例如尺寸﹑成本﹑时间等前两种数据为计数值数据,第三种为计量值资料。
收集数据时,如果可能应该尽量收集定量数据,因为定量管制图所需的比较性计算较少,而且能提供较多的信息。
基本计算管制图可用一通式来表示,假设y为量测质量特性之样本统计量,y之平均数为μy,标准差为δy,则UCL=μy+kδy中心线=μyLCL=μy-kδy其中kδy为管制界限至中心线之距离。
此管制图之理论首先由美国之Waiter A. Shewhart 博士提出,任何依据此原理发展出之管制图都称为Shewhart (苏华特)管制图。
应用范围管制图之应用有许多方式,在大多数之应用上,管制图是用来做制程之在线(on-line)监视。
亦即收集制程样本数据用来设立管制图,若样本值落在管制界限内且没有任何系统性之变化,则称制程在管制内。
管制图也可以用来决定过去之制程数据是否在管制内,及末来之制程是否将在管制内。
管制图也可用来做为估计之工具,当制程是在管制内时,则可预测一些制程参数,例如平均数、标准差、不合格率等。
此种制程能力分析对于管理者之决策分析有相当大之影响,例如自制或外购之决策,工厂及制程之改善以降低变异,及与供货商或顾客间之合约。
控制图的基本原理质量特性数据具有波动性,在没有进行观察或测量时,一般是未知的,但其又具有规律性,它是在一定的范围内波动的,所以它是随机变量。
一、正态分布如果随机变量受大量独立的偶然因素影响,而每一种因素的作用又均匀而微小,即没有一项因素起特别突出的影响,则随机变量将服从正态分布。
正态分布是连续型随机变量最常见的一种分布。
它是由高斯从误差研究中得出的一种分布,所以也称高斯分布。
随机变量服从正态分布的例子很多。
一般来说,在生产条件不变的前提下,产品的许多量度,如零件的尺寸、材料的抗拉强度、疲劳强度、邮件的内部处理时长、随机测量误差等等都是如此。
定义若随机变量的概率密度函数为:则称的分布为正态分布,记为。
正态分布的概率密度函数如图5—1所示。
图5-l正态分布概率密度曲线从图中我们叫以看出正态分布有如下性质:(1)曲线是对称的,对称轴是x=μ;(2)曲线是单峰函数,当x=μ时取得最大值;(3)当曲时,曲线以x轴为渐近线;(4)在处,为正态分布曲线的拐点;(5)曲线与x轴围成的面积为1。
另外,正态分布的数字特征值为:平均值标准偏差数字特征值的意义:平均值μ规定了图形所在的位置。
根据正态分布的性质,在x=μ处,曲线左右对称且为其峰值点。
标准偏差,规定了图形的形状。
图5-2给出了3个不同的值时正态分布密度曲线。
当小时,各数据较多地集中于μ值附近,曲线就较“高”和“瘦”;当大时,数据向μ值附近集中的程度就差,曲线的形状就比较“矮”和“胖”。
这说明正态分布的形状由的大小来决定。
在质量管理中,反映了质量的好坏,越小,质量的一致性越好。
图5-2大小不同时的正态分布在正态分布概率密度函数曲线下,介于坐标,,,间的面积,分别占总面积的58.26%,95.45%,99.73%和99.99%。
它们相应的几何意义如图5-3听示。
图5-3各种概率分布的几何意义二、控制图的轮廓线控制图是画有控制界限的一种图表。
如图5-4所示。
通过它可以看出质量变动的情况及趋势,以便找出影响质量变动的原因,然后予以解决。