第七章作业解答..
- 格式:ppt
- 大小:481.00 KB
- 文档页数:14
班级学号姓名第七章维生素和辅酶作业1.维生素A参与视紫红质的形式是A.全反视黄醇;B.11-顺视黄醇;C.全反视黄醛;D.11-顺视黄醛;E.9-顺视黄醛2.下列胡萝卜素类物质在动物体内转为维生素A的转变率最高的是A.α-胡萝卜素;B.β-胡萝卜素;C.γ-胡萝卜素;D.玉米黄素;E.新玉米黄素3.关于维生素D的错误叙述是A.为类固醇衍生物B.重要的有维生素D3和维生素D2C.都存在于动物肝中D.可由维生素原转变而来E.本身无生物学活性4.对碱不敏感的维生素是A.维生素D;B.维生素K;C.维生素B1;D.维生素B2;E.维生素B12 5.儿童缺乏维生素D时易患A.佝偻病B.骨质软化症C.坏血病D.恶性贫血E.癞皮病6.维生素D被列为激素的依据是A.维生素D与类固醇激素同由胆固醇转变而来B.维生素D与类固醇结构上类似C.维生素D能在体内合成D.维生素D能溶于脂肪和有机溶剂E.维生素D能在体内羟化转变成有生物活性的物质7.下类哪种维生素是一种重要的天然抗氧化剂A.硫胺素;D.核黄素;C.维生素E;D.维生素K;E.维生素D8.肠道细菌作用,可给人体提供A.维生素A和维生素D B.维生素K和维生素B6C.维生素C和维生素E D.泛酸和尼克酰胺E.疏辛酸和维生素B129.临床上常用辅助治疗婴儿惊厥和妊娠呕吐的维生素是A.维生素B12;B.维生素B2;C.维生素B6;D.维生素D;E.维生素E10.在紫外光下呈蓝色荧光的维生素是A.维生素B6;B.维生素B1;C.维生素B2;D.维生素B12;E.维生素PP11.下列辅酶或辅基中哪一种含有硫胺素A.FAD;B.FMN;C.TPP;D.NAD+;E.CoASH12.脚气病是由于缺乏哪种维生素所引起的A.维生素B1;B.维生素PP;C.维生素B2;D.维生素E;E.叶酸13.体内可由色氨酸少量生成的维生素是A.维生素K;B.维生素PP;C.维生素D;D.维生素E;E.维生素B114.在长期服用异烟肼时.易引起缺乏的维生素是A.维生素C;B.维生素A;C.维生素D;D.维生素PP;E.维生素K15.下列物质中作为转氨酶辅酶的是A.吡哆醇B.吡哆醛C.吡哆胺D.磷酸吡哆醛E.磷酸吡哆胺16.能被甲氨蝶呤拮抗的维生素是A.硫胺素B.泛酸C.叶酸D.生物素E.核黄素17.维生素C参与的胶原分子中羟化反应的氨基酸是A.甘氨酸B.谷氨酸C.丙氨酸D.赖氨酸E.精氨酸18.对热敏感的维生素有A.维生索A;B.维生素C;C.维生素E;D.维生素;E.维生素PP19.坏血病是由哪一种维生素缺乏所引起的A.核黄素;B.维生素B1;C.维生素C;D.维生素PP;E.硫辛酸20.含金属元素的维生素是A.维生素B1;B.维生素B2;C.维生素B6;D.维生素C;E.维生素B12答案1D;2B;3C;4A;5A;6E;7C;8B;9C;10B;11C;12A;13 B;14D;15D;16C;17D;18B;19C;20. E。
第七章统计指数一、判断题1.分析复杂现象总体的数量变动,只能采用综合指数的方法。
()2.在特定的权数条件下,综合指数与平均指数有变形关系。
()3.算术平均数指数是通过数量指标个体指数,以基期的价值量指标为权数,进行加权平均得到的。
()4.在简单现象总量指标的因素分析中,相对量分析一定要用同度量因素,绝对量分析可以不用同度量因素。
()5.设p表示单位成本,q表示产量,则∑p1q1-∑p0q1表示由于产品单位成本的变动对总产量的影响。
()6.设p表示价格,q表示销售量,则∑p0q1-∑p0q0表示由于商品价格的变动对商品总销售额的影响。
()7.从指数化指标的性质来看,单位成本指数是数量指标指数。
()8.如果各种商品价格平均上涨5%,销售量平均下降5%,则销售额指数不变。
()1、×2、√3、√4、×5、×6、×7、×8、×。
二、单项选择题三、1.广义上的指数是指()。
四、 A.价格变动的相对数 B.物量变动的相对数五、 C.社会经济现象数量变动的相对数 D.简单现象总体数量变动的相对数六、2.编制总指数的两种形式是()。
七、 A.数量指标指数和质量指标指数 B.综合指数和平均数指数八、 C.算术平均数指数和调和平均数指数 D.定基指数和环比指数九、3.综合指数是()。
十、 A.用非全面资料编制的指数 B.平均数指数的变形应用十一、 C.总指数的基本形式 D.编制总指数的唯一方法十二、 4.当数量指标的加权算术平均数指数采用特定权数时,计算结果与综合指数相同,其特定权数是()。
十三、 A.q1p1 B.q0p1 C.q1p0 D.q0p0十四、 5.当质量指标的加权调和平均数指数采用特定权数时,计算结果与综合指数相同,其特定权数是()。
十五、 A.q1p1 B.q0p1 C.q1p0 D.q0p0十六、 6.在由三个指数所组成的指数体系中,两个因素指数的同度量因素通常()。
第七章恒定磁场7 1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管两个螺线管的长度相同R 2r螺线管通过的电流相同为I 螺线管中的磁感强度大小BR 、Br满足 A rRBB2 B rRBB C rRBB2 DrRBB4 分析与解在两根通过电流相同的螺线管中磁感强度大小与螺线管线圈单位长度的匝数成正比根据题意用两根长度相同的细导线绕成的线圈单位长度的匝数之比21RrnnrR 因而正确答案为C。
7 2 一个半径为r 的半球面如图放在均匀磁场中通过半球面的磁通量为ABr2π2 B Br2π CαBrcosπ22 D αBrcosπ2 分析与解作半径为r 的圆S′与半球面构成一闭合曲面根据磁场的高斯定理磁感线是闭合曲线闭合曲面的磁通量为零即穿进半球面S 的磁通量等于穿出圆面S′的磁通量SBmΦ因而正确答案为D 7 3 下列说法正确的是 A 闭合回路上各点磁感强度都为零时回路内一定没有电流穿过 B 闭合回路上各点磁感强度都为零时回路内穿过电流的代数和必定为零C 磁感强度沿闭合回路的积分为零时回路上各点的磁感强度必定为零D 磁感强度沿闭合回路的积分不为零时回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律磁感强度沿闭合回路的积分为零时回路上各点的磁感强度不一定为零闭合回路上各点磁感强度为零时穿过回路的电流代数和必定为零。
因而正确答案为B 7 4 在图和中各有一半径相同的圆形回路L1 、L2 圆周内有电流I1 、I2 其分布相同且均在真空中但在图中L2 回路外有电流I3 P1 、P2 为两圆形回路上的对应点则 A 21LLddlBlB21PPBB B 21LLddlBlB21PPBB C 21LLddlBlB21PPBB D21LLddlBlB21PPBB 分析与解由磁场中的安培环路定律积分回路外的电流不会影响磁感强度沿回路的积分但同样会改变回路上各点的磁场分布因而正确答案为C 7 5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中若导体中流过的恒定电流为I磁介质的相对磁导率为μ μ1则磁介质内的磁化强度为ArIμrπ2/1 B rIμrπ2/1 C rIμrπ2/ D rμIrπ2/ 分析与解利用安培环路定理可先求出磁介质中的磁场强度再由Mμ1H 求得磁介质内的磁化强度因而正确答案为B 7 6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道当环中电子流强度为8 mA 时在整个环中有多少电子在运行已知电子的速率接近光速。
人教版高中数学必修二《第七章 复数》课后作业《7.1.1 数系的扩充和复数的概念》课后作业基础巩固1.复数2i -的虚部为( ) A .2B .1C .-1D .-i2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y =D .2x =,0y =3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .14.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( ) A .0B .1C .1-D .1或1-5.下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +yi =1+i 的充要条件是x =y =1; ②若a ,b ∈R 且a >b ,则a +i >b +i ; ③若x 2+y 2=0,则x =y =0. A .0 B .1 C .2 D .36.以复数3i 3-的实部为虚部的复数是________. 7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6π B .3π C .23π D .3π或23π 10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?《7.1.1 数系的扩充和复数的概念》课后作业答案解析基础巩固1.复数2i -的虚部为( ) A .2 B .1C .-1D .-i【答案】C【解析】复数2i -的虚部为-1,故选C .2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y = D .2x =,0y =【答案】B【解析】由题意得:02x x y =⎧⎨+=-⎩,解得:02x y =⎧⎨=-⎩故选:B3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .1【答案】B【解析】由题意得17,3a a a +=-=,选B.4.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( )A .0B .1C .1-D .1或1-【答案】D【解析】若()21z a a i =+-,a R ∈(i 为虚数单位)为实数,则210, 1.a a -=∴=±本题选择D 选项.5.下列命题中,正确命题的个数是( ) ①若,,则的充要条件是;②若,且,则;③若,则.A .B .C .D . 【答案】A【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题;对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.6.以复数32i 32i -的实部为虚部的复数是________. 【答案】33i -. 【解析】32i -的虚部为3,32i -的实部为3- ∴所求复数为33i -故答案为:33i -7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______.【答案】12x =,2i y = 【解析】由()212i x y -+=,得210,2i ,x y -=⎧⎨=⎩解得12x =,2i y =.故答案为:12x =,2i y =. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.【答案】(1)122x y ⎧=⎪⎨⎪=⎩;(2)42x y =⎧⎨=-⎩ 【解析】(1)()2120x y y i -++-= 21020x y y -+=⎧∴⎨-=⎩,解得:122x y ⎧=⎪⎨⎪=⎩(2)由()()()()12321x y y i x y y i ++-=+++得:23121x y x y y y +=+⎧⎨-=+⎩,解得:42x y =⎧⎨=-⎩能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6πB .3π C .23π D .3π或23π 【答案】B【解析】若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=.10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 【答案】2【解析】依题意可得2220209m m m m m ⎧-=⎪-⎪=⎨⎪<⎪⎩,即0? 22033m m m m =⎧⎪=≠⎨⎪-<<⎩或且,解得2m =.故答案为:2. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.【答案】(1)1m =(2)1m =或3m =-(3)0m = 【解析】(1)若复数z 是零,则()210230m m m m ⎧-=⎨+-=⎩,解得1m =,即当1m =时,复数z 是零.(2)若复数z 是实数,则2230m m +-=,解得1m =或3m =-, 即当1m =或3m =-时,复数z 是实数. (3)若复数z 是纯虚数,则()210230m m m m ⎧-=⎨+-≠⎩,解得0m =,即当0m =时,复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?【答案】①6a =;②1a ≠±且6a ≠;③无解.【解析】()2227656 ()1a a z a a i a R a -+=+--∈- ①若复数z 是实数,则22560,10,a a a ⎧--=⎨-≠⎩即16,1,a a a =-=⎧⎨≠±⎩或即6a =.②若复数z 是虚数,则22560,10,a a a ⎧--≠⎨-≠⎩即16,1,a a a ≠-≠⎧⎨≠±⎩且即1a ≠±且6a ≠.③若复数z 是纯虚数,则222560,760,10,a a a a a ⎧--≠⎪-+=⎨⎪-≠⎩即16161a a a a a ≠-≠⎧⎪==⎨⎪≠±⎩且,且,,此时无解.《7.1.2 复数的几何意义》课后作业基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( ) A .1BCD .54.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3)D .(1,5)6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5D .310.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形?素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.《7.1.2 复数的几何意义》课后作业答案解析基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】复数-2+3i 在复平面内对应的点为(-2,3),故复数-2+3i 对应的点位于第二象限.2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i【答案】D【解析】 由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( )A .1BCD .5【答案】D【解析】由题意,34z i =-,∴z 对应的向量OA 的坐标为()3,4-5=.故选:D .4.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i【答案】C【解析】 复数6+5i 对应的点为A (6,5),复数-2+3i 对应的点为B (-2,3).利用中点坐标公式得线段AB 的中点C (2,4),故点C 对应的复数为2+4i.5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3) D .(1,5)【答案】B【解析】 |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5). 6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________. 【答案】±2【解析】依题意,a 2+1=4+1,∴a =±2.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.【答案】5【解析】由点(3,-5),(1,-1),(-2,a )共线可知a =5.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.【答案】m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.【解析】由题意得z =(m 2+m -2)-(4m 2-8m +3)i ,z 对应的点位于第一象限,所以有⎩⎪⎨⎪⎧m 2+m -2>0,-(4m 2-8m +3)>0,所以⎩⎪⎨⎪⎧m 2+m -2>0,4m 2-8m +3<0,所以⎩⎪⎨⎪⎧m <-2或m >1,12<m <32,即1<m <32,故所求m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5 D .3【答案】D【解析】 ∵|z |=2,∴复数z 对应的轨迹是以原点为圆心,2为半径的圆,而|z -i|表示圆上一点到点(0,1)的距离,∴|z -i|的最大值为圆上点(0,-2)到点(0,1)的距离,易知此距离为3,故选D.10.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 【答案】12【解析】由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0,m 2-9=0,∴m =3,∴z =12i ,∴|z |=12.11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 【答案】(1)|z 1|>|z 2|. (2)见解析 【解析】(1)|z 1|= (3)2+12=2,|z 2|=⎝ ⎛⎭⎪⎫-122+322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.【答案】(1)m =4,|OZ →|=1. (2)m ∈⎝ ⎛⎭⎪⎫3+212,4.【解析】(1)log 2(m 2-3m -3)=0,所以m 2-3m -3=1. 所以m =4或m =-1;因为⎩⎪⎨⎪⎧m 2-3m -3>0,m -2>0,所以m =4,此时z =i ,OZ →=(0,1),|OZ →|=1.(2)⎩⎪⎨⎪⎧log 2(m 2-3m -3)<0,log 2(m -2)>0,m 2-3m -3>0,m -2>0,所以m ∈⎝ ⎛⎭⎪⎫3+212,4.《7.2.1 复数的加、减法运算及其几何意义》课后作业基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i +B .i -C .1D .1- i2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+B .15i -+C .410i -+D .110i -+3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+;(2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .CD .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.《7.2.1 复数的加、减法运算及其几何意义》课后作业答案解析基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i + B .i -C .1D .1- i【答案】C【解析】由题得()()32i i +-+=3+i-2-i=1.故选C 2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+ B .15i -+C .410i -+D .110i -+【答案】A【解析】∵5634z i i +-=+,∴()3456210z i i i =+--=-+,故选:A 3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】34i z =-,5z ∴=,∴()1i 34i 51i 15i z z -+-=--+-=--,∴复数()1i z z -+-在复平面内对应的点为()1,5--,在第三象限.故选:C.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i【答案】D【解析】 由题意可得,在平行四边形中CD BA OA OB ==-, 则(3)(13)42i i i +--+=-,所以CD 对应的复数为42i -,故选D .5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-【答案】A【解析】12()()i 2z z y x x y -=++-=,即2,0,x y x y +=⎧⎨-=⎩1x y ∴==,1xy ∴=.故选:A6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.【解析】21|12|d z z i =-=-==7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 【答案】9i + 【解析】BA OA OB =-,所以,表示向量BA 的复数为()()65349i i i +--+=+.故答案为:9i +.8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+; (2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.【答案】(1)18i --;(2)44i -+;(3)(43)a b i -+-【解析】(1)(12)(34)(56)(42i)(56)18i i i i i ++--+=--+=--. (2)5[(34)(13)]5(4)44i i i i i i -+--+=-+=-+.(3)()(23)3(2)[(3)3](43)a bi a bi i a a b b i a b i +---=-+---=-+-能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .C D .【答案】D【解析】 由题意得1255z z i -=+,所以12()(55)55f z z f i i -=+=+==故选D .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.【答案】(2,)+∞【解析】由题得12z z -=(2-a )+(a-1)i ,因为复数12z z -在复平面内对应的点位于第二象限,所以20,210a a a -<⎧∴>⎨->⎩.故答案为(2,)+∞ 11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.【答案】(1) -3-2i (2) 5-2i (3) 1+6i【解析】(1) AO OA =-,所以AO 所表示的复数为-3-2i . 因为BC AO =,所以BC 所表示的复数为-3-2i .(2) CA OA OC =-,所以CA 所表示的复数为(3+2i )-(-2+4i )=5-2i . (3) OB OA OC =+,所以OB 所表示的复数为(3+2i )+(-2+4i )=1+6i , 即B 点对应的复数为1+6i .素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.【答案】(1)016z i =+;(2)复数z 对应点的轨迹为以1,6B ()为圆心,1为半径的圆【解析】(1)由已知得(3,2),(2,4)OA OC ==-, ∴(1,6)OB OA OC =+=, ∴点B 对应的复数016z i =+. (2)设复数z 所对应的点Z , ∵01z z -=,∴点Z 到点()1,6B 的距离为1,∴复数z 所对应的点Z 的轨迹为以()1,6B 为圆心,1为半径的圆, 且其方程为()()22161x y -+-=.《7.2.2 复数的乘除运算》课后作业基础巩固1.已知复数z =2+i ,则z z ⋅=( )AB C .3D .52.设复数z 满足(1+i)z =2i ,则|z |=( )A .12B .2C D .23.若复数12az i i=+-(i 为虚数单位,a R ∈)的实部与虚部互为相反数,则a =( ) A .53-B .13- C .1- D .5-4.在复平面内,复数11i-的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4-B .3-C .3D .46.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____. 7.设复数z 满足(23)64z i i -=+(其中i 为虚数单位),则z 的模为______. 8.计算:(1)(4)(62)(7)(43)i i i i -+--+; (2)32322323i ii i+-+-+; (3)(2)(1)(1)(1)i i i i i--+-+.能力提升9.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A .1 B .1- C .12D .2-10.在复平面内,复数z 与52i-对应的点关于实轴对称,则z =______.11.在复数范围内解下列一元二次方程: (1)290x +=;(2)210x x -+=.素养达成12.古代以六十年为一个甲子用十天干和十二地支相配六十年轮一遍,周而复始。
第七章作业参考答案12.设复位势为()()()()()2211ln 123ln 4z i z i z z ω=+++-++ 试分析它们是由哪些基本流动组成的?并求沿园周229x y +=的速度环量Γ及通过该圆周的流体体积流量Q .解:()()()()()()()11ln ln 23ln 2ln 2z i z i z i i z i z i zω=+++-+-++-+⎡⎤⎡⎤⎣⎦⎣⎦ =()()()()()()ln ln ln ln 2ln 22ln 2z i z i i z i i z i z i z i ++-+++-+++-()()13ln 23ln 2i z i i z i z-+--+ 它可看成是在()0,1±处强度为2π的点源,在()0,2±处强度为4π的的点源和在()0,1±处强度为2π-的点涡,在()0,2±处强度为6π的点涡,以及在原点强度为2M π=-的偶极子。
所以8πΓ=,12Q π=13.设复位势为()1ln z m z z ω⎛⎫=- ⎪⎝⎭试问它们是由哪些基本流动组成的?求流线和单位时间通过z i =和1/2z =两点连线的流体体积.习题册,习题六(7)题中m 的定义有所不同。
18.证明沿正x 轴的均匀流V 加上在z a =-处强度为2m π的点源和在z a =处强度为2m π点汇组成卵形体的绕流,求驻点及卵形体方程.由题知()()()ln ln z vz m z a m z a ω=++--d m m V V dz z a z aω==+-+-,当0V =时为驻点。
,则驻点位置为z =()()()ln ln z vz m z a m z a ω=++--,z 用x iy +带入,则流线为()2222Im arctan y ay V m x y a ω=++-所以卵形体的方程为: 2222arctan 0y ay V m x y a+=+- 32.设一圆柱半径为a ,在距圆柱中心为()f f a >处分别放置(1)强度为2Q π的点源;(2)强度为2m π的偶极子;(3)强度为2πΓ的点涡.分别计算以上各种情况下圆柱所受的合力,设流体密度为ρ.解:(1)()()22()ln ln ln ln ln a a z Q z f Q f Q z f z z c z f ω⎛⎫⎛⎫⎛⎫=-+-=-+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭根据恰普雷金公式222211122c c i d i Q R dz dz z f z a f z ρωρ⎛⎫⎛⎫==+- ⎪ ⎪--⎝⎭⎝⎭⎰⎰ ()22222a Q f f a πρ=- (2)(3)方法同(1)结果为(2)()223224a m fR f a πρ=-,(3)()22222a R f f a ρπΓ=-。
习题七1. 指出下列微分方程的阶数: (1)一阶 (2)一阶 (3)一阶 (4)三阶 (5)二阶3.求下列微分方程的通解或在所给初始条件下的特解: 2(1)d y d x=解:分离变量得:2d y y=两边积分得:221(1)12d y d xcy+==+⎰⎰即 -y微分方程的通解为:y =-(C 为任意常数)2(2)(y x y )y '-=解:分离变量得:21y d y d x x=-两边积分得:21d x x=-⎰⎰11ln (1)ln (1)22x x c '=--+++微分方程的通解为:11ln21x c x-=++(5)0,(1)0yyy xe y '+== 0yydy xe dx+=解:分离变量得yy d yx d x e=-两边积分得yy d yx d x e=-⎰⎰左边分部积分 21(1)2y e y x c-+=- 当1,0x y ==时,12c =-微分方程的特解为 21(1)(1)2y e y x -+=+ (6)cos (1)sin 0,(0)4xydx eydy y π-++==解:分离变量得 xdx tan ydy1e-=-+两边积分得 xdx tan ydy1e-=-+⎰⎰xxd(e 1)ln cos y ln c 1e+=++⎰xl n (1e )l n c c o s y+=⋅x1+e c cos y∴=⋅ 当x=0,y=4π时, c =∴微分方程的特解为 x s e c y (1+e 22=4、求下列微分方程的通解或在所给初始条件下的特解:y 1xy -yln0x'=()解:整理得:d y y y lnd xxx=y u =,u x u u ln u x'⋅令代入方程得, += d x d uxu ln u u=⋅-两边积分得:d x d u xu (ln u -1)=⎰⎰d (ln u 1)ln x ln u 1-=-⎰ln x ln ln u 1ln c =-+y x=c(ln 1)x∴-所以原方程的通解是 y x ln1xc=+332(2)(x y )dx 3xy dy +=原方程可变形为32y 1dy x dxy 3x ⎛⎫+ ⎪⎝⎭=⎛⎫ ⎪⎝⎭令 y u=,x可得 32d u 1uu +x d x3u+⋅=分离变量得233udx du 1-2ux=两边积分得 311ln(1-2u )ln x ln c 22-=-∴微分方程的通解为 33x 2y cx -=dy x y (5),y(1)2dxy x=+=解:令yu=,x则可得1x u u'⋅=分离变量得 dx u du=x⋅两边积分得 dx u du=x ⋅⋅⎰⎰21u l n xl n c2=+ 22y 2x ln cx∴= 当x=1,y=2时, 2c =e∴微分方程的特解为:22y 2x (ln x 2)=+y (6)xy y x tan,y (1)x2π'-==解:整理得 d y y y t a n d xx x-= 令y u ,x=则x u =tanu'⋅分离变量得d ud x t a n u x =两边积分得d ud xt a n ux=⎰⎰sin u cx∴= ys i n c xx=当x=1,y=2π时, c 1=∴微分方程的特解为 ys i n xx =5.求下列微分方程的通解或在所给初始条件下特解:2xdy 12xy xedx--=()解:对应齐次方程的通解为()2p x d x2x d x x 1y c e c ec e---⎰⎰===设原方程的通解为 ()2xy c x e = 代入原方程()22xxc x exe-'= ()22x c x xe -'=两边积分得 ()22x 1c x e c 4-=-+∴微分方程的通解为 22222x xxx11y (e c)eece44--=-+=-+ 3dy 2y (2)(x 1)dxx 1-=++解:对应齐次方程的通解为 ()2dxp x dx2x 11y ce cec(x 1)---+⎰⎰===+设原方程的通解为 2y c (x )(x 1)=+ 代入原方程 23c (x )(x 1)(x 1)'+=+ c (x )x 1'∴=+ 两边积分得 21c (x )(x1)c2=++∴微分方程的通解为()224211y x 1c (x 1)(x 1)c(x 1)22⎡⎤=+++=+++⎢⎥⎣⎦(3)y ln ydx (x ln y)dy 0+-=解:整理得d x x1d yy l n y y+= 对应齐次方程的通解为 1dyp (y )dyy ln y 1c x ce celn y--⎰⎰===设原方程的通解为 c (y )x l n y= 代入原方程c (y )1l n yy'= l n y c (y )y'=两边积分得 211c (y )=l ny +c2∴微分方程的通解为 211(l nyc )2x l n y+= 22x l n y =l n y +c(4)y y cot x 2x sin x'-=解: 对应齐次方程的通解为 p(x )d xc o t xd x1y c e c ec s i n x---⎰⎰===设原方程的通解为 y c (x )s i n = 代入原方程 c (x )s i n x2x s'= c (x )2x '=两边积分得 2c (x )=x c+ ∴微分方程的通解为 2y (x c )s i n x=+ 6.求下列微分方程的通解或在所给初始条件下的特解:(1)230y y y '''+-=解:特征方程为 2230λλ+-= 解得 121,3λλ==-∴微分方程的通解为 312x x y c e c e -=+(2)450y y y '''-+=解:特征方程为 2450λλ-+= 解得 122,2i i λλ=+=-∴微分方程的通解为212(cos sin )x y e c x c x =+8.计算差分:(1)求n n y e =的一阶差分; (2)求ln n y n =的一阶差分; 解:1(1)n n n n y e e e e +∆=-=- 解:1ln(1)ln ln(1)n y n n n ∆=+-=+(3)求sin n y n =的二阶差分;解2212n n n n y y y y ++∆=-+[][]sin(2)sin(1)sin(1)sin n n n n =+-+-+-[][]sin cos 2cos sin 2sin cos1cos sin 1sin cos1cos sin 1sin n n n n n n n =⋅+⋅-⋅-⋅-⋅+-sin (cos 2cos1)cos (sin 2sin 1)sin (cos11)cos sin 1n n n n =-+----sin (cos 2cos1cos11)cos (sin 2sin 1sin 1)n n =--++-- 2sin (2cos 12cos1)cos (2sin 1cos12sin 1)n n =-+-2sin cos1(cos11)2cos sin 1(cos11)n n =-+-2(cos11)(sin cos1cos sin 1)n n =-+214sinsin(1)2n =-+(4)求3(n 1)3n y =++的三阶差分.解:33n y (n 13)+3-3(n+3)3∆=++-23n 21n 37=++26n 24n y ∆=+36n y ∆=。