注意下列四点:
(1) k Z
(2) 是任意角;
(3) k 3600与之间是“+”号, 如k 3600-30°,应看成 k 3600+(-30°)
(4)终边相似的角不一定相等,但相等 的角,终边一定相似,终边相似的角 有无数多个,它们相差360°的整数倍.
例1. 在0º到360º范畴内,找出与下列各角终边 相似的角,并判断它是哪个象限的角.
例2终边在y轴正半轴上角的集合 {β︱β= 900 +k·360°,k∈Z}
终边在y轴负半轴上角的集合 {β︱β= 2700+k·360°,k∈Z} 或{β︱β= -900+k·360°,k∈Z}
变式训练 写出终边落在y轴上的角的集合。
• 解:终边落在y轴正半轴上的角的集合为
S1={β| β=900+k∙3600,k∈Z}
4.培养学生用运动变化的观点审 视事物;通过与数的类比,理解正 角、负角和零角,让学生感受图 形的对称美、运动美 教学重点: 1.任意角的概念,象限角的概念 2.掌握终边相似的角的表达办法 及鉴定
教学难点: 把终边相似的角用集合和符号语言 对的地表达出来
突破办法:
在平面内建立适宜的坐标系,通过数 形结合来认识角的几何表达和终边相 同的角集合
小结作业
1.角的概念推广后,角的大小能够任意取值. 把角放在直角坐标系中进行研究,对于一种 给定的角,都有唯一的一条终边与之对应, 并使得角含有代数和几何双重意义.
2.终边相似的角有无数个,在0°~360°范畴 内与已知角β终边相似的角有且只有一种. 用 β除以360°,若所得的商为k,余数为α(α 必须是正数),则α即为所找的角.
1.掌握终边相似的角的 表达办法及鉴定 2.注意: 00到900的角; 00~3600的角; 第一象限角;锐角; 不大于900的角的区别