二项式定理教学设计
- 格式:docx
- 大小:42.82 KB
- 文档页数:4
二项式定理教学设计及反思引言数学教学是培养学生逻辑思维和分析解决问题能力的重要环节,而二项式定理是中学数学中一个重要的概念。
本文将针对二项式定理的教学设计进行探讨和反思,以提高学生对该概念的理解和运用能力。
一、教学目标设计在进行教学设计之前,我们需要确定教学目标。
对于二项式定理,我们的教学目标可以分为以下几个方面:1. 理解二项式定理的概念和数学含义;2. 掌握二项式定理的公式表达方式;3. 掌握二项式定理的常见应用方法;4. 运用二项式定理解决实际问题。
二、教学内容设计基于上述教学目标,我们可以设计如下的教学内容:1. 二项式定理的概念介绍:a. 通过具体例子引入二项式定理的概念,帮助学生理解。
b. 解释二项式定理在代数中的含义和作用。
2. 二项式定理的公式表达方式:a. 介绍二项式系数的概念和表示方式。
b. 引入二项式定理的公式,讲解其推导过程。
c. 分析二项式定理公式的特点和性质。
3. 二项式定理的常见应用方法:a. 通过具体例题引导学生掌握二项式定理的计算方法。
b. 引导学生归纳总结二项式定理的常见应用场景。
4. 运用二项式定理解决实际问题:a. 提供一些实际问题,帮助学生运用二项式定理解决问题。
b. 鼓励学生思考和讨论解决问题的方法和思路。
三、教学方法设计为了提高教学效果,我们可以运用一些有效的教学方法:1. 讲解与实践相结合:在讲解二项式定理的概念和公式的同时,引导学生进行实际的计算和应用实例。
2. 启发式教学:引导学生通过自主思考和探索,发现并理解二项式定理的规律和应用方法。
3. 小组合作学习:安排学生分小组进行讨论和合作,共同解决有关二项式定理的问题,促进学生间互相学习和交流。
四、教学评估设计为了评估学生对二项式定理的掌握程度,我们可以采用以下方式进行教学评估:1. 小测验:准备一些针对二项式定理的单项选择题或填空题,测试学生对概念、公式和应用的理解。
2. 解题演示:鼓励学生在课堂上进行解题演示,展示他们运用二项式定理解决实际问题的能力。
《二项式定理》教学设计
《《二项式定理》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
1.知识与技能:
(1)理解二项式定理是代数乘法公式的推广.
(2)理解并掌握二项式定理,能利用计数原理证明二项式定理.
2.过程与方法:
(1)通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式.
(2)引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.
3.情感、态度与价值观:
培养学生的自主探究意识、合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨.通过二项式定理的发现、推广、证明及杨辉三角历史的了解,进一步激发学生的学习兴趣,培养对科学的探究与钻研精神,渗透爱国主义教育。
4.活动体验:
通过教师提出问题并引导学生主动探究、解决问题的过程,让学生在教学活动中主动发现、大胆猜想、主动发展,达到提高学习能力与渗透情感教育的目的。
《二项式定理》教学设计这篇文章共1217字。
《二项式定理》教学设计
一、教学目标
1、学习二项式定理的概念;
2、掌握二项式定理的证明方法;
3、熟练运用二项式定理计算阶乘。
二、课前准备
1、准备教学案例:“抛掷次数为n的骰子,其中点数之和为k,求出满足条件的概率”;
2、准备课堂活动:利用抽签游戏,引导学生理解二项式定理;
3、准备实物:骰子;
4、准备实践活动:利用抛掷骰子实验验证二项式定理。
三、课堂教学步骤
第一步、引入
1、介绍课题:二项式定理(一);
2、简单介绍二项式定理的概念:其是指当抛掷次数为n的骰子时,点数之和为k的概率,可以表示为n个“1”和“0”的排列组合,其中“1”代表抛掷出的点数为6,“0”代表抛掷出的点数不为6第二步、活动
1、布置抽签游戏:将班上学生分成2组,每组各抽取一张纸片,纸
片上分别写有“1”和“0”,由学生们举手抽签,当每组中有n个学生均
抽出“1”或“0”时,分数比较高的组即为胜利组;
2、进行讨论:根据抽签游戏,引导学生们讨论,抛掷次数为n的骰子,其中点数之和为k,求出满足条件的概率;
第三步、演示
1、讲解二项式定理:说明抛掷次数为n的骰子,其中点数之和为k。
二项式定理教学设计教案第一章:导入1.1 教学目标让学生了解二项式定理的背景和意义。
引导学生通过实际例子发现问题,激发学习兴趣。
1.2 教学内容引入二项式定理的概念,解释其在数学中的重要性。
通过具体的例子,如完全平方公式,引导学生观察和总结一般规律。
1.3 教学活动利用多媒体展示完全平方公式的例子,引导学生观察和总结。
组织小组讨论,让学生分享自己的发现和思考。
1.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理的理解程度。
第二章:二项式定理的表述2.1 教学目标让学生掌握二项式定理的表述和公式。
引导学生理解二项式定理的推导过程。
2.2 教学内容给出二项式定理的表述和公式,解释各项的系数和指数的含义。
通过示例,引导学生理解二项式定理的推导过程。
2.3 教学活动通过示例和练习,让学生熟悉二项式定理的表述和公式。
引导学生参与推导过程,加深对二项式定理的理解。
2.4 教学评价通过练习和问题解答,评估学生对二项式定理的掌握程度。
第三章:应用二项式定理3.1 教学目标让学生学会运用二项式定理解决实际问题。
引导学生运用二项式定理进行组合计数和概率计算。
3.2 教学内容解释二项式定理在组合计数和概率计算中的应用。
提供实际问题,引导学生运用二项式定理解决问题。
3.3 教学活动通过示例和练习,让学生掌握二项式定理在组合计数和概率计算中的应用。
组织小组讨论,让学生分享自己的解题方法和经验。
3.4 教学评价通过小组讨论和问题解答,评估学生对二项式定理应用的掌握程度。
第四章:拓展与深化4.1 教学目标让学生了解二项式定理的拓展和深化内容。
引导学生思考二项式定理在数学中的广泛应用和意义。
4.2 教学内容介绍二项式定理的拓展内容,如多项式定理和整数定理。
探讨二项式定理在数学中的广泛应用,如组合数学、概率论等领域。
4.3 教学活动通过示例和练习,让学生了解二项式定理的拓展内容。
组织小组讨论,让学生思考二项式定理在数学中的应用和意义。
部编《二项式定理》教学设计教学目标:1.理解二项式定理的概念和公式;2.掌握使用二项式定理计算二项式展开的方法;3.发展学生的逻辑思维和推理能力。
教学重点:1.二项式定理的概念和公式;2.二项式展开的方法。
教学难点:1.二项式展开的运用。
教学准备:1.教师准备教学视频、习题等教学资源;2.学生准备教科书、笔记本等学习工具。
教学过程:步骤一:导入新知识(10分钟)1.教师挂出“二项式定理”的概念和公式,并解释其意义;2.利用教学视频或课件展示一些二项式展开的例子,激发学生的学习兴趣。
步骤二:讲解二项式定理的概念和公式(15分钟)1.教师详细解释二项式定理的概念和公式,引导学生理解;2.利用一些生活中的例子,帮助学生更好地理解二项式定理的意义和应用。
步骤三:讲解二项式展开的方法(15分钟)1.教师介绍二项式展开的方法:使用二项式定理来展开;2.通过示范一些具体的二项式展开计算过程,引导学生掌握方法。
步骤四:课堂练习(20分钟)1.教师出示一些基础的二项式展开题目,让学生尝试解答;2.学生独立或分组完成练习题;3.教师批改答案并讲解,解答学生的疑问。
步骤五:综合应用(15分钟)1.教师设计一些生活中的问题,引导学生运用二项式展开的方法进行计算和推理;2.学生独立或分组完成应用题;3.教师鼓励学生分享解题思路和答案,进行讨论和总结。
步骤六:拓展练习(15分钟)1.教师提供一些较为复杂的二项式展开题目,让学生挑战自己;2.学生独立或分组完成拓展练习;3.教师批改答案并讲解,解答学生的疑问。
步骤七:课堂总结(10分钟)1.教师归纳总结今天所学的知识点,并强调重点;2.学生回答总结问题,检查自己的学习效果;3.教师可以布置一些课后习题,巩固所学内容。
教学反思:通过本堂课的教学,学生对二项式定理的概念和公式有了更深入的理解,能够熟练运用二项式定理来进行二项式展开的计算。
此外,通过拓展练习和综合应用的环节,学生的思维能力和解决问题的能力也得到了提升。
二项式定理教学设计高三一、教学目标1. 理解二项式定理的定义和基本性质。
2. 掌握二项式定理的运用方法。
3. 培养学生的逻辑思维和数学推理能力。
4. 培养学生对数学问题的兴趣和探索精神。
二、教学重点1. 掌握二项式定理的展开和应用。
2. 培养学生的数学思维和运算能力。
三、教学难点1. 帮助学生理解二项式定理的证明过程。
2. 培养学生抽象思维和推理能力。
四、教学过程1. 导入(5分钟)教师通过提问和讲述引导学生回顾高中阶段已学习的数学知识,如排列组合、多项式等内容。
然后向学生介绍今天的学习内容:二项式定理。
2. 概念解释(10分钟)教师通过示意图和具体例子,向学生阐述二项式定理的概念和基本性质。
帮助学生理解二项式定理是将两个数相加或相乘的展开式。
3. 二项式定理的展开(15分钟)教师通过板书和示范展示如何将二项式展开。
先给出一个简单的二项式,并指导学生按照二项式定理的公式进行展开。
然后通过一些具体的例子,让学生逐步掌握二项式定理展开的方法和技巧。
4. 二项式定理的应用(20分钟)教师通过实际问题和应用题,引入二项式定理的应用领域。
如组合数学、概率统计等。
通过解答一些实际问题,让学生认识到二项式定理在数学和实际生活中的重要性和应用价值。
5. 二项式定理的证明(20分钟)教师通过逻辑推理和数学推导,带领学生理解和证明二项式定理。
可以使用归纳法和数学归纳法等方法,引导学生参与证明的过程,提高学生的抽象思维和逻辑推理能力。
6. 练习和巩固(15分钟)教师设计一些练习题,让学生巩固和应用所学知识。
通过学生的练习,检验学生对二项式定理的掌握程度和运算能力。
7. 总结和拓展(5分钟)教师对本节课的内容进行总结,并给出一些延伸阅读和学习资料,鼓励学生在课后继续学习和探索。
五、教学评价1. 教师通过课堂讨论、学生练习和问题解答等形式,对学生的学习情况进行评价和反馈。
2. 鼓励学生积极参与课堂活动,发表自己的观点和思考。
二项式定理教案完整版一、教学目标通过本节课的研究,学生应该能够:- 理解二项式定理的概念和基本公式;- 掌握计算二项式的展开式;- 掌握二项式系数的计算方法;- 能够应用二项式定理解决实际问题。
二、教学重点- 二项式的展开式计算方法;- 二项式系数的计算方法。
三、教学准备- 教材:《数学教材》第X册;- 教具:黑板、彩色粉笔、教学PPT;- 学具:练册、计算器。
四、教学过程步骤一:引入1. 向学生介绍二项式定理的概念,并与生活实际进行关联,引发学生的兴趣;2. 提出问题:“如果我们要计算(2x + 3y)^2,应该怎么做?”步骤二:讲解二项式的展开式1. 分析并解答问题,引出二项式展开式的概念;2. 介绍二项式定理的基本公式:(a + b)^n = C(n,0)·a^n·b^0 +C(n,1)·a^(n-1)·b^1 + ... + C(n,r)·a^(n-r)·b^r + ... + C(n,n)·a^0·b^n;3. 解释二项式系数C(n,r)的含义,并介绍其计算方法:C(n,r) = n! / (r!·(n-r)!);4. 给出示例,讲解二项式展开式的具体计算过程。
步骤三:练与巩固1. 给学生发放练册,并分发相关练题;2. 让学生自主完成练,帮助他们巩固所学知识;3. 监督学生的练过程,及时纠正错误并解答疑惑。
步骤四:应用与拓展1. 提出一些与实际问题相关的二项式展开式计算问题,并让学生尝试解决;2. 引导学生理解二项式展开式在数学和实际生活中的应用价值;3. 鼓励学生拓展思维,探索其他与二项式展开式相关的问题。
五、教学总结通过这节课的研究,我们了解了二项式定理的基本概念和计算方法,掌握了二项式的展开式计算方法,并通过练和应用将理论知识应用到实际问题中。
希望同学们能够继续努力研究,提高自己的数学能力。
教资二项式定理教学设计引言:二项式定理是高中数学中的重要内容之一,也是理解和应用代数运算的基础。
在教育考试中,二项式定理是教育专业考试(简称教资)的必考知识点之一。
本文将从教学设计的角度出发,提供一种针对教资考试中的二项式定理教学设计方案。
一、教学目标本教学设计的目标是帮助学生掌握二项式定理的概念、性质和应用,并能够运用二项式定理解决实际问题。
具体目标如下:1. 学生能够理解二项式定理的定义和公式表达。
2. 学生能够推导二项式定理的常见性质。
3. 学生能够应用二项式定理解决实际问题。
二、教学内容1. 二项式定理的概念和公式表达2. 二项式展开的应用3. 二项式定理的性质三、教学步骤1. 导入引导:通过提问和讨论,引导学生回顾和复习阶乘的概念和性质,为后续的二项式定理教学做铺垫。
2. 二项式定理的概念和公式表达a. 引导学生观察多项式的特点,引出二项式的概念。
b. 讲解二项式定理的定义和公式表达:(a+b)^n=a^n+ C(n,1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, r)a^(n-r)b^r + ... + b^n。
3. 二项式展开的应用a. 通过演示具体例子,讲解如何使用二项式定理展开一个二项式。
b. 练习:让学生通过练习题,熟练掌握二项式展开的方法和技巧。
4. 二项式定理的性质a. 推导二项式定理的常见性质:如二项式系数的对称性、二项式系数的性质等。
通过推导和讨论,培养学生的逻辑思维能力和数学证明能力。
b. 练习:让学生通过练习题,巩固二项式定理的性质。
5. 实际问题的应用a. 引导学生分析实际问题,如排列组合、概率等,帮助学生理解二项式定理在实际问题中的应用。
b. 练习:让学生通过实际问题练习,运用二项式定理解决问题。
四、教学评价在教学过程中,可以通过以下方式对学生进行评价:1. 课堂表现:包括学生对概念的理解和思考能力、运用二项式定理解题的能力等。
1.3.1 二项式定理(第一课时)、教学目标1、知识与技能(1)理解二项式定理,并能简单应用(2)能够区分二项式系数与项的系数2、过程与方法通过学生参与和探究二项式定理的形成过程,培养学生观察,分析,归纳的能力,以及转化化归的意识与知识迁移的能力,体会从特殊到一般的思维方式。
3、情感与态度价值观通过探究问题,归纳假设让学生在学习的过程中养成独立思考的好习惯,在自主学习中体验成功, 在思索中感受数学的魅力,让学生在体验知识产生的过程中找到乐趣。
、教学重点难点1、教学重点:二项式定理及二项式定理的应用2、教学难点:二项式定理中单项式的系数三、教学设计:三、典例分析例1例1、求(2 _)4的展开式x解:(2 -)4C:24C4 23(丄)C4 22(-)2C:2 (-)3C:』)x x x x x “32 24 8 116 2 3 4x x x x例2 (1)求(1 2x)5的展开式中第3项5 23 2 3解.(1 2x)的展开式的第3项疋T2 1 C5 1 (2x) 40 x,1 9 3例3.求(x -)9的展开式中x3的系数x1解:••• (x -)9的展开式的通项是xT k 1 C9x9 k(1)k C9k x9 2k,x二9 2k 3 , k 3,二x3的系数C: 84课堂检测:1.(2a b)4的展开式中的第2项•解:T2 1 C4(2a)3b 32a3b,2.(x 1)10的展开式的第6项的系数(D )厂6 厂6 厂5 厂5A. C10B. C10C. C10D. C10x 5 23.(1 )5的展开式中x2的系数为(C )25A. 10B. 5C. -D. 12四、小结X二项式定理:通理J(灯+小『=Ctf+U十%+…彳U旷方*+…+6弟斤十]域的一,顼成乘数区别:展开式中第2项的系数,第2项二项式系数4思考:展开式中第3项的系数,第3项二项式系数通过例题让学生更好的理解二项式定理强调:通项公式的应用进一步巩固二项式定理学生应用二项式定理明确通项的作用板书设计:1.3.1 二项式定理一. 二项式定理:(a b)n C0n a n C1n a n 1b L C k n a n k b k L C n n b n(n N* )1.项数:n 1项;2•指数:字母a , b的指数和为n ,a 的指数由n 递减至0,b的指数由0递增至n ;3.二项式系数:C n0,C n1,C n2,L ,C n k L ,C n n (k {0,1, 2,L n})4.通项:第k 1项:T k 1 C n k a n k b k二. 典例三. 作业。
高三数学教案《二项式定理》四篇教学过程篇一1.情景设置问题1:若今天是星期二,再过30天后的那一天是星期几?怎么算?预期回答:星期四,将问题转化为求“30被7除后算余数”是多少?问题2:若今天是星期二,再过810天后的那一天是星期几?问题3:若今天是星期二,再过天后是星期几?怎么算?预期回答:将问题转化为求“被7除后算余数”是多少?在初中,我们已经学过了(a+b)2=a2+2ab+b2(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3(提问):对于(a+b)4,(a+b)5如何展开?(利用多项式乘法)(再提问):(a+b)100又怎么办?(a+b)n(n?N+)呢?我们知道,事物之间或多或少存在着规律。
也就是研究(a+b)n(n?N+)的展开式是什么?这就是本节课要学的内容。
这节课,我们就来研究(a+b)n的二项展开式的规律性。
学完本课后,此题就不难求解了。
(设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。
奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。
)2.新授第一步:让学生展开;问题1:以的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。
预期回答:①展开式每一项的次数按某一字母降幂、另一字母升幂排列,且两个字母幂指数的和等于乘方指数;②展开式的项数比乘方指数多1;③展开式中第二项的系数等于乘方指数。
第二步:继续设疑如何展开以及呢?(设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷的方法的欲望。
)继续新授师:为了寻找规律,我们以中为例问题1:以项为例,有几种情况相乘均可得到项?这里的字母各来自哪个括号?问题2:既然以上的字母分别来自4个不同的括号,项的系数你能用组合数来表示吗?问题3:你能将问题2所述的意思改编成一个排列组合的命题吗?(预期答案:有4个括号,每个括号中有两个字母,一个是、一个是。
二项式定理
一、教学目标
1.知识目标:掌握二项式定理及其简单应用
2.过程与方法:培养学生观察、归纳、猜想能力,发现问题,探求问题的能力,逻辑推理
能力以及科学的思维方式。
3.情感态度和价值观:培养学生勇于探索,勇于创新的个性品质,感受和体验数学的简
洁美、和谐美和对称美。
二、教学重点、难点
重点:二项式定理的发现、理解和初步应用及通项公式
难点:展开式中某一项的二项式系数与该项的系数的区别
三、教学过程
创设问题情境:
今天是星期三,15 天后星期几,30 天后星期几,8100天后星期几呢?
前面几个问题全班所有学生都大声地回答出来了,最后一个问题大家都很迷惑,有些学生试图用计算器算,还是觉得很复杂,学习完这节课我们就知道答案了,并且我们不用查日历就能知道未来任何一天是星期几
新课讲解:
问题 1a b c d
的展开式有多少项?有无同类项可以合并?
由于这一节是在学生学习了两个计数原理和排列组合知识之后学习的,所以学生能够快速的说出答案。
问题 2
a b a
的
a b
2
原始展开式有多少项?有几项是同类项?项是怎样构成b
的?有规律吗?
学生根据乘法展开式也很快得出结论
问题 3a b a b a b的
a b
3
原始展开式有多少项?经合并后又只能有几项?
是哪几项?
学生仍然根据乘法公式算出了答案
问题 4
a b a b a b a 的4
b a b 的原始展开式有多少项?
问题 5你能准确快速地写出a b 4
的原始展开式的 16 项吗?经合并后,又只能有哪几
项?
此时,学生能说出其中的一两项,并不能全部回答出来所有的项,思维觉察到麻烦,困难,
易出错——借此“愤悱”之境,有效的实现思维的烘热)
启发类比:4 个袋中有红球 a ,白球b 各一个,每次从 4 个袋子中各取一个球,有什么样的取法?各种取法有多少种?
在 4 个括号(袋子)中
问题 6其个数,为何恰好应为该项的系数?
问题 7
n
在合并后的展开式中,a n r b r的系数应该是多少?有理由吗?
a b
问题 8那么,该如何将 a
n
b 轻松、清晰地展开?请同学们归纳猜想
学生们快速地说出
a b n
C n1a n 1b n C n2 a n 2b2C n k a n k b k C n n b n n N *
C n0a n
我们数学讲究逻辑地严密性和知识的严谨性,大家猜想地很正确,那么我们怎么来证明呢?思路:证明中主要运用了计数原理!
①展开式中为什么会有那几种类型的项?
a b n
b 相乘,展开式中的每一项都是从这n 个a b 中各任取一个字母相是 n 个a
乘得到的,每一项都是n 次的。
故每一项都是a n k b k的形式, k0,1,2, , n
② 展开式中各项的系数是怎么来的?
a n k
b k是从 n 个a b 中取 k 个 b ,和余下 n k 个a相乘得到的,有C n k种情况可以得到a n k b k,因此,该项的系数为C n k
定义:一般地,对于任意正整数n ,上面的关系式也成立,即有
a b n
C n1a n 1b n C n2 a n 2b2C n k a n k b k C n n b n n N *
C n0a n
n
注:( 1)公式左边叫做二项式,右边叫做 a b的二项展开式
(2)定理中的a, b仅仅是一种符号,它可以是任意的数或式子什么的,只要是两项相加的 n 次幂,就能用二项式定理展开
例:把 b 换成 b ,则
a b n
C n1a n 1b n C n2 a n 2 b2
k n
C n0a n 1 C n k a n k b k 1 C n n b n n N*
练习:令 a 1,b x ,则
1 x n
C n2 x2C n k x k C n n x n n N *
C n0 C n1 x1
问题 9二项式定理展开式中项数、指数、系数特点是什么?哪一项最有代表性
公式特征:
(1)项数:共有n 1项
(2)指数规律:
①各项的次数都等于二项式的系数n (关于 a 与b的齐次多项式)
②字母a按降幂排列,次数由n 递减到0;字母b按升幂排列,次数由0 递增到n (3)二项式展开式的通项:T k 1C nk a n k b k,k0,1,2,, n
(4)二项式系数:依次为C n0, C1n , C n2 ,C nk, C nn。
这里C nk( k0,1,2,, n)称为二
项式系数
现在同学们能告诉老师 8100天后星期几吗?
思考了一会儿,马上有同学大声喊:把8 写成 7+1 ,再进行展开,余数是多少,就是星期几
老师故意问:为什么要写成7+1,这时,所有学生都明白了,因为一个星期7 天,所以8100100 1 ,故
7 1 展开式中除了最后一项外,其余的项都是7的倍数,因此余数为C n n
应为星期四。
例 1求 2 x 1
x
6
的展开式
方法一:直接展开
11
6
技巧:将根式先化成幂的形式,再进行计算,要简单很多。
即原式变成2x2x
方法二:先合并化简,再展开
建议用第二种方法简单些。
变式一:展开式中的常数项是多少?
变式二:展开式中的第3项是多少?
变式三:展开式中的第3项的系数是多少?
变式四:展开式中的第3项二项式系数是多少?
注意:二项式系数和系数是两个不同的概念,二项式系数就是一个组合数,与a, b 数与 a, b 有关。
例 2(1)求(12x) 7的展开式的第 4 项的系数和第 4 项的二项式系数2
无关;系
(2)x
1
x 9
的展开式中x3的系数和中间项
例 3求( x a)12的展开式中的倒数第 4 项
小结:(1)注意二项式定理中二项展开式的特征
(2)区别二项式系数、项的系数
(3)掌握用通项公式求二项式系数、项的系数及项。
作业:P37 4,5
教学反思:本节课先用今天星期几的问题创设问题情境,一下子把全班学生的学习积极性都
调动起来了,当大家不知道老师葫芦里卖的什么药时,老师由浅入深的提问,最后问到8100
天后星期几,从而引出今天的课题:二项式定理。
给大家设置这个悬念后,紧接着又进行一系列
的问题教学,让学生自己去探究去回答,最后学生之间合作交流归纳猜想出二项式定理的展开式,整个过程顺理成章地完成。
1.知识与技能:
(1)理解二项式定理是代数乘法公式的推广 .
(2)理解并掌握二项式定理,能利用计数原理证明二项式定理.
2.过程与方法:
通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式.
3.情感、态度与价值观:
培养学生的自主探究意识,合作精神,体验二项式定理的发现和创造历程,
体会数学语言的简洁和严谨.
二、教学重点、难点
重点:用计数原理分析的展开式,得到二项式定理.
难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律 .
一、说教材
1、地位及作用:
二项式定理安排在高中数学选修 2-3 第三节 ,是排列组合内容后的一部分内容,其形成过程
是组合知识的应用,同时也为随后学习的概率知识及概率与统计,作知识上的铺垫。
二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高
的层次来审视初中学习的关于多项式变形的知识。
运用二项式定理可以解决一些比较典型
的数学问题,例如近似计算、整除问题、不等式的证明等。
2、重点难点分析:
重点:
(1)使学生参与并深刻体会二项式定理形成过程,掌握二项式系数的规律。
(2)能够应用二项式定理、对二项式进行展开。
难点:
运用多项式乘法以及组合知识推导二项式定理的过程。
A.知识与技能
(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、
展开式项数的规律。
( 2)能够应用二项式定理对所给出的二项式进行正确的展开。
B.过程与方法
通过二项式定理的推导过程,培养学生观察,猜想,归纳的能力。
C.情感态度与价值观
(1)通过学生自主参与和探讨二项式定理的形成过程,培养学生解决数学问题的兴
趣和信心。
(2)通过学生自主参与和探讨二项式定理的形成过程,使学生体会到数学内在的和谐
对称美。
三﹑说教法和学法
1、教法
为了完成本节课的教学目标,让学生主动探索展开式的由来是关键。
本节课的教法贯
穿启发式教学原则,采用多媒体辅助教学方法,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;同
时,考虑到学生的个体差异,在教学的各个环节进行分层施教,实现“有差异”的发展。
2、学法
根据学生思维的特点,遵循“教必须以学为主”的教学理念,让每一个学生自主参与整
堂课的知识构建。
在教学的各个环节中引导学生进行类比迁移,对照学习。
3、教学手段
利用电脑,投影仪等多媒体教学展现二项式定理的推导过程,激发学生的的兴趣。