椭圆基本知识点与题型总结
- 格式:pdf
- 大小:191.36 KB
- 文档页数:4
椭圆必记知识点及基本题型标准 方程(焦点在x 轴))0(12222>>=+b a by ax(焦点在y 轴))0(12222>>=+b a bx a y 定 义平面内与两个定点1F ,2F 的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。
{}a MF MF M 221=+()212F F a >范 围 x a ≤ y b ≤x b ≤ y a ≤顶点坐标 )0,(a ± (0,)b ±),0(a ± (,0)b ±对 称 轴 x 轴,y 轴;长轴长为a 2,短轴长为b 2对称中心原点(0,0)O焦点坐标1(,0)F c 2(,0)F c -1(0,)F c 2(0,)F c -焦点在长轴上,22c a b =-; 焦距:122F F c = 离 心 率 ac e = (01e <<) ,ab a ac e 22222-==,e 越大椭圆越扁,e 越小椭圆越圆。
椭圆上到焦点的最大(小)距离最大距离为:a c +最小距离为:a c - 相关应用题:远日距离a c + 近日距离a c -直线和椭圆的位置椭圆12222=+by ax与直线y kx b =+的位置关系:利用22221xyab y kx b ⎧+=⎪⎨⎪=+⎩转化为一元二次方程用判别式确定。
相交弦AB 的弦长2212121()4AB kx x x x =++- 通径:21AB y y =-★椭圆知识梳理★1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PFPF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PFPF ==+时, P 的轨迹为 以21F F 、为端点的线段2.椭圆的方程与几何性质:标准方程 )0(12222>>=+b a by ax)0(12222>>=+b a bx ay性 质参数关系 222c b a +=焦点 )0,(),0,(c c - ),0(),,0(c c -焦距 c 2范围 b y a x ≤≤||,|| b x a y ≤≤||,||顶点),0(),,0(),0,(),0,(b b a a --)0,(),0,(),,0(),,0(b b a a --对称性 关于x 轴、y 轴和原点对称离心率)1,0(∈=ac e3.点),(00y x P 与椭圆)0(12222>>=+b a by ax 的位置关系:M1F 2F xyOM1F2FxyO当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔★重难点突破★重点:掌握椭圆的定义标准方程,会用定义和求椭圆的标准方程,能通过方程研究椭圆的几何性质及其应用难点:椭圆的几何元素与参数c b a ,,的转换重难点:运用数形结合,围绕“焦点三角形”,用代数方法研究椭圆的性质,把握几何元素转换成参数c b a ,,的关系 1.要有用定义的意识 问题1已知21F F 、为椭圆192522=+yx的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =______________。
圆锥曲线与方程--椭圆知识点一•椭圆及其标准方程1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c};这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。
(2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。
2 2 22•标准方程:c= a- b2 2χ+y _ 1①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0)a b2 2y X②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C)a b注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上;2 2②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1m n二•椭圆的简单几何性质:1. 范围2 2(1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤ba2b22 2(2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤aa2b22. 对称性椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3. 顶点(1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b)(2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭圆的长半轴长和短半轴长。
4 .离心率(1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率,2a ae = O 是圆;e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1( e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 •椭圆的的内外部2 2 x 2 y 2 亠—x o + yo W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U21a ba b2 2 x 2 y 2亠XO* y O 彳(2)点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1.a ba b6. 几何性质(1) 点P 在椭圆上, 最大角∙ F 1PF 2max =∕F 1B 2F 2,(2) 最大距离,最小距离 7. 直线与椭圆的位置关系(1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法记作 e ( 0 < e < 1),例题讲解: 一.椭圆定义:1 •方程-2 2 y^ . X 2 2 y 2 =10化简的结果是 __________________________2•若. ABC 的两个顶点A -4,0 ,B 4,0 , ABC 的周长为18 ,则顶点C 的轨迹方程是 ____________2—=1上的一点P 到椭圆一个焦点的距离为9二•利用标准方程确定参数2 21. 若方程 厶 +丄=1 (1)表示圆,则实数k 的取值是5 _k k _3(2) _____________________________________________________ 表示焦点在X 轴上的椭圆,则实数 k 的取值范围是 ______________________________________ . ________ (3) _____________________________________________________ 表示焦点在y 型上的椭圆,则实数k 的取值范围是 _______________________________________ . ________ (4) _______________________________________ 表示椭圆,则实数k 的取值范围是 . 2. 椭圆4X 2 25y 2 =100的长轴长等于 _______________ ,短轴长等于 _____________ ,顶点坐标 是 _______________ , ____________ 焦点的坐标是 __________ , ________ 焦距是 _________ ,离心率等于—, ____2 23•椭圆 — -1的焦距为 2 ,贝U m= ______________ 。
椭圆知识点知识要点小结: 知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3.椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。
其中的定点F1和F2称为焦点,常数2a称为长轴的长度。
椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。
椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。
1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。
其中(h,k)是椭圆的中心坐标。
2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。
而椭圆的半短轴的长度等于b。
3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。
即PF1+PF2=2a。
4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。
离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。
5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。
其中θ的取值范围一般为0≤θ≤2π。
二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。
解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。
2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。
解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。
3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。
椭圆基本知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点12,F F 距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集2121{||||2,2||2}M P PF PF a a F F c =+=>=,这里两个定点12,F F 叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(若1212||||||PF PF F F +=时,P 的轨迹为线段21F F ;若1212||||||PF PF F F +<,则无轨迹)。
2.标准方程: ①焦点在x 轴上:22221(0)x y a b a b+=>>; 焦点12(,0),(,0)F c F c -②焦点在y 轴上:22221(0)y x a b a b+=>>; 焦点12(0,),(0,)F c F c -注意:①在两种标准方程中,总有0a b >>,且222ca b =-;②两种标准方程可用一般形式表示:221x y m n+= 或221mx ny += 二.椭圆的简单几何性质:1.范围:(1)椭圆22221(0)x y a b a b+=>>横坐标a x a -≤≤ ,纵坐标b y b -≤≤(2)椭圆22221(0)y x a b a b+=>> 横坐标b x b -≤≤,纵坐标a y a -≤≤2.对称性:椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.椭圆的顶点:椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率:我们把椭圆的焦距与长轴长的比22c a ,即ac称为椭圆的离心率, 记作e (10<<e ),2221()c b e aa==-0e =是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
椭圆题型概括一、知识总结1.椭圆的定义:把平面内与两个定点F1 , F2的距离之和等于常数(大于F1 F2)的点的轨迹叫做椭圆 .这两个定点叫做焦点,两焦点的距离叫做焦距(设为 2c) .2.椭圆的标准方程:x 2 y 21( a >b>0)y 2 x 21 ( a >b>0)a 2b 2 a 2 b2y yM F 2cc cO c xF 1 O F 2 x MF 1焦点在座标轴上的椭圆标准方程有两种情况,可设方程为 mx2 ny2 1(m 0, n 0) 不用考虑焦点地点,求出方程。
3.范围 . 椭圆位于直线 x=± a 和 y=± b 围成的矩形里. |x|≤a,|y|≤ b.4.椭圆的对称性椭圆是对于 y 轴、 x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.5.极点椭圆有四个极点: A1(-a, 0)、A2(a, 0)、B1(0, -b)、B2(0, b).线段 A1A2、 B1B2分别叫做椭圆的长轴和短轴.。
长轴的长等于 2a. 短轴的长等于 2b.|B 1F 1|=|B 1F 2|= |B 2F 1|= |B 2F 2|=a .在 Rt △OB 2F 2 中, |OF 2|2= |B 2F 2|2-|OB 2|2,即 c 2=a 2-b 2.yB 2A 1ba A 2cF 2xF 1 OB 16.离心率 ec(0 e 1)a7. 椭圆x 2y 2 1 (a > > 0) 的左右焦点分别为 1, F 2 ,点 P 为椭圆上随意一点a 2b 2 bFF 1PF 2,则椭圆的焦点角形的面积为SFPF2b 2 tan .128. 椭圆x 2y 2 1 ( > > )的焦半径公式a 2b 2 a b 0| MF 1 | a ex 0 , | MF 2 | a ex 0 ( F 1( c,0) , F 2 (c,0) M ( x 0 , y 0 ) ).9. AB 是椭圆x 2y 2 1的不平行于对称轴的弦 , Ma 2b 2(x 0 , y 0 ) 为 AB 的中点,则kOMkABb 2 ,即K ABb 2 x 0 。
椭圆及其性质知识点题型总结研究必备精品知识点——椭圆椭圆是平面内与两定点F1,F2的距离的和等于定长2a(2a>F1F2)的动点P的轨迹,即点集M={P| |PF1|+|PF2|=2a},其中两定点F1,F2叫焦点,定点间的距离叫焦距。
另一种定义是平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|PF/e< d},其中e为离心率(e=1为抛物线;e>1为双曲线;e<1为椭圆)。
利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线。
椭圆有两种标准方程:(1)焦点在x轴上,中心在原点:x²/a²+y²/b²=1(a>b>0);焦点F1(-c,0),F2(c,0)。
其中c²=a²-b²(一个直角三角形);(2)焦点在y轴上,中心在原点:x²/b²+y²/a²=1(a>b>0);焦点F1(0,-c),F2(0,c)。
其中c²=a²-b²。
注意:①在两种标准方程中,总有a>b>0,c²=a²-b²并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax²+By²=1(A>0,B>0,A≠B),当A<B时,椭圆的焦点在x轴上,A>B时焦点在y轴上。
椭圆的参数方程是:焦点在x轴,x=acosθ,y=bsinθ。
椭圆的一般方程是:Ax+By=1(A>0,B>0)。
椭圆有以下性质:对于焦点在x轴上,中心在原点,x²/a²+y²/b²=1(a>b>0)有以下性质:①范围:|x|≤a,|y|≤b;②对称性:对称轴方程为x=0,y=0,对称中心为O(0,0);③顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴|A1A2|=2a,短轴|B1B2|=2b(a半长轴长,b半短轴长);④椭圆的准线方程:对于x²/a²+y²/b²=1,左准线过另一个焦点。
《椭圆》知识点归纳和题型归类椭圆的定义和性质- 椭圆是指平面上到两个定点的距离之和等于常数的所有点的轨迹。
- 椭圆有两个焦点和一个长轴和短轴。
- 长轴是通过两个焦点并且垂直于短轴的线段。
- 短轴是通过两个焦点并且垂直于长轴的线段。
- 椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆形。
椭圆的方程和图形特征- 椭圆的标准方程为 (x/a)^2 + (y/b)^2 = 1,其中a和b分别为长轴和短轴的一半。
- 椭圆的图形特征是:中心在原点(0, 0),x轴和y轴为对称轴。
- 椭圆在x轴和y轴上的截距分别为±a和±b。
- 椭圆的焦点坐标为(±c, 0),其中c为焦距,c^2 = a^2 - b^2。
椭圆的常见题型1. 确定椭圆的方程- 已知椭圆的焦点坐标和离心率,求椭圆的方程。
- 已知椭圆的端点坐标和离心率,求椭圆的方程。
- 已知椭圆的顶点坐标和离心率,求椭圆的方程。
2. 求椭圆的参数- 已知椭圆的方程,求椭圆的长轴、短轴、焦点和离心率。
3. 确定点的位置关系- 判断给定点是否在椭圆上。
- 判断给定点是否在椭圆内部或外部。
4. 求椭圆上的点的坐标- 已知椭圆的方程和角度,求椭圆上的点的坐标。
- 已知椭圆的方程和弧长,求椭圆上的点的坐标。
5. 求椭圆的切线和法线- 已知椭圆上的点,求椭圆的切线和法线。
6. 求椭圆的周长和面积- 已知椭圆的长轴和短轴,求椭圆的周长和面积。
以上是关于椭圆的知识点归纳和常见题型归类,希望对您有所帮助。
(一)椭圆的定义:1、椭圆的定义:平面与两个定点F i 、F 2的距离之和等于定长(大于 IRF 2I )的点的轨迹叫做椭圆。
这两个定点 F i 、F 2叫做椭圆的 焦点,两焦点的距离 厅汀2|叫做椭圆的 焦距。
对椭圆定义的几点说明:(1) “在平面”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2) “两个定点”的设定不同于圆的定义中的“一个定点” ,学习时注意区分;(3) 作为到这两个定点的距离的和的 “常数”,必须满足大于| F i F 2|这个条件。
若不然, 当这个“常数”等于| F i F 2|时,我们得到的是线段 F 1F 2;当这个“常数”小于| F i F 2|时,无 轨迹。
这两种特殊情况,同学们必须注意。
(4) 下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个 对称中心,我们把它的两条对称轴与椭圆的交点记为 A i , A 2, B i , B 2,于是我们易得| A i A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F i |、|B i F 2|+|B i F i |也等于那个“常数”。
同学们想一想 其中的道理。
(5)中心在原点、焦点分别在 x 轴上,y 轴上的椭圆标准方程分别为:2 2 2 2i (a b 0),77i (a b 0),a ba b2 2 2相同点是:形状相同、大小相同;都有 a > b > 0, a c b 。
不同点是:两种椭圆相对于坐标系的位置不同, 它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(一c , 0)和(c , 0),第二个椭圆的焦点坐标为(0,— c )和(0, c )。
椭圆的 焦点在x 轴上 标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上标准方程中y 2项的分母较大。
(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标; 一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只2 2要X 2 每 i (a b 0)的有关性质中横坐标x 和纵坐标y 互换,就可以得出 a b2 2^2 —2 i (a b 0)的有关性质。
高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。
椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。
这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。
该性质主要用于求最值、轨迹检验等问题。
椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。
长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。
椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。
当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。
椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。
二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。
1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。
相切,则C的离心率为()A.63 B.33C.23D.13解析:以线段A1A2为直径的圆的方程为x2+y2=a2,由原点到直线bx-ay+2ab=0的距离d=2abb2+a2=a,得a2=3b2,所以C的离心率e=1-b2a2=63.答案:A2.如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A,B,C,D. (1)设e=12,求|BC|与|AD|的比值;(2)若存在直线l,使得BO∥AN,求两椭圆离心率e的取值范围.解析:(1)因为C1,C2的离心率相同,故依题意可设C1:x2a2+y2b2=1,C2:b2y2a4+x2a2=1(a>b>0).设直线l:x=t(|t|<a),分别和C1,C2的方程联立,求得A⎝⎛⎭⎫t,ab a2-t2,B⎝⎛⎭⎫t,ba a2-t2.当e=12时,b=32a,分别用y A,y B表示A,B的纵坐标,可知|BC||AD|=2|y B|2|y A|=b2a2=34.(2)t=0时的l不符合题意,t≠0时,BO∥AN,当且仅当BO的斜率k BO与AN的斜率k AN相等,即ba a2-t2t=ab a2-t2t-a,解得t=-ab2a2-b2=-1-e2e2·a.因为|t|<a,又0<e<1,所以1-e2e2<1,解得22<e<1.所以当22<e<1时,存在直线l,使得BO∥AN,即离心率e的取值范围是⎝⎛⎭⎫22,1.3.若椭圆mx2+ny2=1的离心率为12,则mn=()A.34B.43C.32或233D.34或43答案:D4.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解析:(1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c .当x =c 时,y =±b 2a ,由直线MN 的斜率为34,则M ⎝⎛⎭⎫c ,b 2a ,即tan ∠MF 1F 2=b 2a 2c =b 22ac =34,即b 2=32ac =a 2-c 2,即c 2+32ac -a 2=0,则e 2+32e -1=0,即2e 2+3e -2=0,解得e =12或e =-2(舍去),即e =12.(2)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,设M (c ,y 0)(y 0>0),则c 2a2+y 20b 2=1,即y 20=b 4a 2,解得y 0=b 2a .∵OD 是△MF 1F 2的中位线,∴b 2a=4,即b 2=4a ,由|MN |=5|F 1N |,得|MF 1|=4|F 1N |,解得|DF 1|=2|F 1N |,即DF 1→=2F 1N →.设N (x 1,y 1),由题意知y 1<0,则(-c ,-2)=2(x 1+c ,y 1).即⎩⎪⎨⎪⎧2x 1+c =-c ,2y 1=-2,解得⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1,代入椭圆方程得9c 24a 2+1b 2=1,将b 2=4a 代入得9a 2-4a 4a 2+14a=1,解得a =7,b =27.题型三:直线与椭圆的位置关系1.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,离心率为22,y 轴上一点Q 的坐标为(0,3).解析:(1)由已知得c =1,c a =12,所以a =2,b 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:设M (x 1,y 1),N (x 2,y 2),P (4,n ),根据题意,直线MN 的方程为y =x -1.由⎩⎪⎨⎪⎧y =x -1,x 24+y 23=1,得7x 2-8x-8=0,x 1+x 2=87,x 1x 2=-87.k PM +k PN =y 1-n x 1-4+y 2-n x 2-4=y 1-nx 2-4+y 2-nx 1-4x 1-4x 2-4=8n -n x 1+x 2-4x 1+x 2-2+2x 1x 2-x 1+x 2x 1x 2-4x 1+x 2+16=8n -87n +247-167-87-87-327+16=2n 3.因为k PF =n3,所以2k PF =k PM +k PN ,所以直线PM ,PF ,PN 的斜率成等差数列.题型四:椭圆离心率范围问题1.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1 D .⎝⎛⎦⎤0,13 答案:C2.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1的两个焦点,P 在椭圆上且满足PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是( )A.⎣⎡⎭⎫33,1B .⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤13,12 D .⎝⎛⎦⎤0,22 答案:B求椭圆离心率范围的2种方法方法解读适合题型几 何 法利用椭圆的几何性质,设P (x 0,y 0)为椭圆x 2a 2+y 2b2=1(a >b >0)上一点,则|x 0|≤a ,a -c ≤|PF 1|≤a +c 等,建立不等关系,或者根据几何图形的临界情况建立不等关系题设条件有明显的几何关系直 接根据题目中给出的条件或根据已知条件得出不等关系,直接转化为含有a ,b ,c 的不等关系式题设条件直接有不等关系法对应练习:1.在椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别是其左、右焦点,若|PF 1|=2|PF 2|,则该椭圆离心率的取值范围是( )A.⎝⎛⎭⎫13,1 B .⎣⎡⎭⎫13,1 C.⎝⎛⎭⎫0,13 D .⎝⎛⎦⎤0,13 解析:根据椭圆定义得|PF 1|+|PF 2|=2a ,将|PF 1|=2|PF 2|代入,得|PF 2|=2a3,根据椭圆的几何性质,知|PF 2|≥a -c ,故2a 3≥a -c ,即a ≤3c ,故c a ≥13,即e ≥13,又e <1,故该椭圆离心率的取值范围是⎣⎡⎭⎫13,1,故选B. 答案:B2.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为________. ‘解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1P A 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1. 答案:⎝ ⎛⎭⎪⎫5-12,13.已知椭圆222:1(0)25x y C m m+=>的左、右焦点分别为12,F F ,点P 在C 上,且12△PF F 的周长为16,则m 的值是 A .2 B .3 C .23D .4【解析】设椭圆C 的长轴长为2a ,焦距为2c ,则210a =,2222225c a b a m m =-=-=-,由椭圆定义可知,12△PF F 的周长为2210216a c c +=+=,2253m c ∴-==,0m >Q ,∴解得4m =,故选D.4.“02m <<”是“方程2212x y m m+=-表示椭圆”的(1)求椭圆C 的标准方程. (2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y 23=1.(2)由题意可知A ,B ,M 三点共线,设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意. 则AB 所在直线l 的斜率存在,设为k ,则直线l 的方程为y =k (x -4). 由⎩⎪⎨⎪⎧y =k x -4,x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且⎩⎪⎨⎪⎧x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47,可得k 2=18, 将k 2=18代入方程①,得7x 2-8x -8=0.则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2),AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.11.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________. 答案:x +2y -3=012.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 22+y 20<1,则|PF 1|+|PF 2|的取值范围是________. 解析:由点P (x 0,y 0)满足0<x 22+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a =2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22). 答案:[2,22)13.已知椭圆C :22221x y a b +=,()0a b >>的左、右焦点分别为1F ,2F ,M 为椭圆上异于长轴端点的一点,12MF F ∆的内心为I ,直线MI 交x 轴于点E ,若2MI IE=,则椭圆C 的离心率是( )A .22B .12C .32D .13【答案】B14.以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( )A .32-B .31-C .22D .32 【答案】B解:设椭圆的两个焦点为1F ,2F ,圆与椭圆交于A ,B ,C ,D 四个不同的点,设122F F c =,则1DF c =,23DF c =.椭圆定义,得122||||3a DF DF c c=+=+,所以23131c e a ===-+, 故选:B 15.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13 B .23 C .83 D .32或83【答案】A16.已知1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,则椭圆C 的离心率为_________.【答案】512- 17.已知F 是椭圆()222210x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,直线AF 与椭圆另一交点为B ,且2AF FB =u u u v u u u v ,则椭圆的离心率为______.【答案】33【解析】设()0,A b -,(),0F c ,作BC y ⊥轴,垂足为C ,如下图所示:则:22AF b c a =+=u u u v由2AF FB =u u u v u u u v 得:23AF c AB BC ==u u u v u u u v u u u v 32BC c ∴=u u u v ,即:32B x c = 由椭圆的焦半径公式可知:B BF a ex =-u u u v232B AF a a c c a ex FB a a ∴===--⋅u u u v u u u v ,整理可得:223a c = 213e ∴=,即33e = 本题正确结果:3318.如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.【答案】25519.已知椭圆()2222:10x y E a b a b +=>>与y 轴正半轴交于点()0,3M ,离心率为12.直线l 经过点()(),00P t t a <<和点()0,1Q .且与椭图E 交于A 、B 两点(点A 在第二象限).(1)求椭圆E 的标准方程;(2)若AP PB λ=u u u r u u u r ,当2303t <≤时,求λ的取值范围.。
椭圆知识点归纳总结和经典例题椭圆的基本知识1.椭圆的定义:把平⾯内与两个定点21,F F 的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准⽅程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0)焦点在坐标轴上的椭圆标准⽅程有两种情形,为了计算简便,可设⽅程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出⽅程3.求轨迹⽅程的⽅法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意⼀点半径为标原点已知⼀个圆的圆⼼为坐如图例M P P P P x P ''解: (相关点法)设点M (x , y ), 点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是⼀个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b .椭圆位于直线x =±a 和y =±b 围成的矩形⾥.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中⼼.椭圆的对称中⼼叫做椭圆的中⼼.6.顶点只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点.线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.. a A 1yO F 1F2x B 2B 1A 2c b y O F 1F 2x Mc cxF 2F 1O y M c cy xPO P 'M)的离⼼率为(轴分成三等份,则椭圆若椭圆的连个焦点把长 .1⽆法确定 D. 32 C. 31 B. 61 A..7),0()0,()0,()0(1 .2112222=-->>=+e bAB F b B a A c F b a by a x ,则椭圆的离⼼率的距离为到直线如果是两个顶点,、,的左焦点为椭圆.1612)2,1( .322的标准⽅程有相同的离⼼率的椭圆,且与椭圆求经过点=+y x M越⼩,因此椭圆越扁;,从⽽越接近时,越接近当221)1(c a b a c e -=因此椭圆越接近于圆;,越接近,从⽽越接近时,越接近当a b c e 00)2(. 0)3(222a y x c b a =+==为圆,⽅程成为,两焦点重合,图形变时,当且仅当..21点坐标求求,为左右焦点,,上的点,为椭圆已知P S PF PF F F y x P F PF ?⊥=+yO x椭圆典型例题例1 已知椭圆06322=-+m y mx 的⼀个焦点为(0,2)求m 的值.分析:把椭圆的⽅程化为标准⽅程,由2=c ,根据关系222c b a +=可求出m 的值.解:⽅程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m .⼜2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中⼼在原点,且经过点()03,P ,b a 3=,求椭圆的标准⽅程.分析:因椭圆的中⼼在原点,故其标准⽅程有两种情况.根据题设条件,运⽤待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准⽅程.解:当焦点在x 轴上时,设其⽅程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+ba .⼜b a 3=,代⼊得12=b ,92=a ,故椭圆的⽅程为1922=+y x .当焦点在y 轴上时,设其⽅程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知2=+ba .⼜b a 3=,联⽴解得812=a ,92=b ,故椭圆的⽅程为198122=+x y .例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三⾓形重⼼G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利⽤椭圆定义求解.(2)由G 的轨迹⽅程G 、A 坐标的关系,利⽤代⼊法求A 的轨迹⽅程.解:(1)以BC 所在的直线为x 轴,BC 中点为原点建⽴直⾓坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其⽅程为()013610022≠=+y y x .(2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x .①由题意有='='33y y x x ,代⼊①,得A 的轨迹⽅程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的⼀个焦点,求椭圆⽅程.解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a .从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PFRt ?中,21sin 12∠PF PF F PF ,可求出621π=∠F PF ,3526cos21==πPF c ,从⽽310222=-=c a b .∴所求椭圆⽅程为1103522=+y x 或1510322=+y x .例5 已知椭圆⽅程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上⼀点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的⾯积(⽤a 、b 、α表⽰).分析:求⾯积要结合余弦定理及定义求⾓α的两邻边,从⽽利⽤C ab S sin 21=求⾯积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第⼀象限.由余弦定理知: 2 21F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得α.故αsin 212121PF PF S PF F ?=? ααsin cos 12212+=b 2tan 2αb =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆⼼P 的轨迹⽅程.分析:关键是根据题意,列出点P 满⾜的关系式.解:如图所⽰,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆⼼()03,B 距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的⽅程:171622=+y x .说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准⽅程,求轨迹的⽅程.这是求轨迹⽅程的⼀种重要思想⽅法.例7 已知椭圆1222=+y x (1)求过点??2121,P 且被P 平分的弦所在直线的⽅程;(2)求斜率为2的平⾏弦的中点轨迹⽅程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹⽅程;(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满⾜21-=?OQ OP k k ,求线段PQ 中点M 的轨迹⽅程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的⽅法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()022*******=-+++x x y y y y x x ,将③④代⼊得022121=--+x x y y y x .⑤(1)将21=x ,21=y 代⼊⑤,得212121-=--x x y y ,故所求直线⽅程为: 0342=-+y x .⑥将⑥代⼊椭圆⽅程2222=+y x 得041662 =--y y ,0416436>??-=?符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代⼊⑤得所求轨迹⽅程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代⼊⑤得所求轨迹⽅程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得:()2222212221=+++y y x x ,⑦,将③④平⽅并整理得 212222124x x x x x -=+,⑧, 2122将⑧⑨代⼊⑦得:()224424212212=-+-y y y x x x ,⑩再将212121x x y y -=代⼊⑩式得: 221242212212=??--+-x x y x x x ,即 12122=+y x .此即为所求轨迹⽅程.当然,此题除了设弦端坐标的⽅法,还可⽤其它⽅法解决.例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的⽅程.解:(1)把直线⽅程m x y +=代⼊椭圆⽅程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-??-=?m m m ,解得2525≤m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得:51025145211222=-?-??? ??-?+m m .解得0=m .⽅程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采⽤的⽅法与处理直线和圆的有所区别.这⾥解决直线与椭圆的交点问题,⼀般考虑判别式?;解决弦长问题,⼀般应⽤弦长公式.⽤弦长公式,若能合理运⽤韦达定理(即根与系数的关系),可⼤⼤简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上⼀点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆⽅程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找⼀点,使该点到直线同侧的两已知点(即两焦点)的距离之和最⼩,只须利⽤对称就可解决.解:如图所⽰,椭圆131222=+y x 的焦点为()031,-F ,()032,F .点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的⽅程为032=-+y x .解⽅程组?=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最⼩.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,⼜3=c ,∴()363532222=-=-=c a b .因此,所求椭圆的⽅程为1364522=+y x .例10 已知⽅程13522-=-+-k y k x 表⽰椭圆,求k 的取值范围.解:由??-≠-<-<-,35,03,05k k k k 得53<∴满⾜条件的k 的取值范围是53<说明:本题易出现如下错解:由?<-<-,03,05k k 得53<出错的原因是没有注意椭圆的标准⽅程中0>>b a 这个条件,当b a =时,并不表⽰椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表⽰焦点在y 轴上的椭圆,求α的取值范围.分析:依据已知条件确定α的三⾓函数的⼤⼩关系.再根据三⾓函数的单调性,求出α的取值范围.解:⽅程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα.因此0sin >α且1tan -<α从⽽)43,2(ππα∈.说明:(1)由椭圆的标准⽅程知0sin 1>α,0cos 1>-α,这是容易忽视的地⽅. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题⽬中的条件πα<≤0.例12 求中⼼在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆⽅程分析:由题设条件焦点在哪个轴上不明确,椭圆标准⽅程有两种情形,为了计算简便起见,可设其⽅程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,解:设所求椭圆⽅程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得=?+-?=-?+?,11)32(,1)2()3(2222n m n m 即=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆⽅程为151522=+y x .例13 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利⽤弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利⽤椭圆定义及余弦定理,还可以利⽤焦点半径来求.解:(法1)利⽤直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆⽅程为193622=+y x ,左焦点)0,33(-F ,从⽽直线⽅程为93+=x y .由直线⽅程与椭圆⽅程联⽴得:0836372132=?++x x .设1x ,2x 为⽅程两根,所以1337221-=+x x ,1383621?=x x ,3=k ,从⽽1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利⽤椭圆的定义及余弦定理求解.2=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ?中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22-?+=-m m m ;所以346-=m .同理在21F BF ?中,⽤余弦定理得346+=n ,所以1348=+=n m AB .(法3)利⽤焦半径求解.先根据直线与椭圆联⽴的⽅程0836372132=?++x x 求出⽅程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从⽽求出11BF AF AB +=.例14 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所⽰,设椭圆的另⼀个焦点为2F ,由椭圆第⼀定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,⼜因为ON 为21F MF ?的中位线,所以2==MF ON ,故答案为A .说明:(1)椭圆定义:平⾯内与两定点的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这⼀定义,即a MF MF 221=+,利⽤这个等式可以解决椭圆上的点与焦点的有关距离.例15 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利⽤上述条件建⽴m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的⽅程为n x y +-=41.由⽅程组=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ①。
陈氏优学教学课题椭圆知识点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:假设,那么动点的轨迹为线段;假设,那么动点的轨迹无图形.讲练结合一.椭圆的定义1.假设ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,那么顶点C 的轨迹方程是 知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
讲练结合二.利用标准方程确定参数1.椭圆2214x y m+=的焦距为2,那么m = 。
2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
知识点三:椭圆的简单几何性质椭圆的的简单几何性质〔1〕对称性对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
〔2〕范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。
〔3〕顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆〔a>b>0〕与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1〔―a,0〕,A 2〔a,0〕,B1〔0,―b〕,B2〔0,b〕。
③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。
a和b分别叫做椭圆的长半轴长和短半轴长。
〔4〕离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。
椭圆知识点与题型总结一、椭圆的定义和基本概念1. 椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴的长度。
与椭圆的长轴垂直的轴称为短轴,其长度为常数2b。
2. 椭圆的标准方程:椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为长轴长度的一半,b为短轴长度的一半。
3. 椭圆的离心率:椭圆的离心率e的定义为e=c/a,其中c为焦距的一半,a为长轴长度的一半。
离心率描述了椭圆形状的“圆”的程度,离心率越接近于0,椭圆越接近于圆。
4. 椭圆的几何性质:椭圆有关于焦点、直径、切线等方面的许多重要性质和定理,例如:椭圆的焦点到椭圆上任意一点的距离之和等于常数2a、椭圆的切线与法线的交点、椭圆的对称性等等。
二、椭圆的常见题型及解题方法1. 椭圆的参数方程题型:求椭圆的参数方程,求参数方程表示的椭圆的离心率、焦点、中心等。
解题方法包括利用椭圆的定义,代入标准方程解参数等。
2. 椭圆的焦点、离心率题型:根据给定的椭圆的标准方程或参数方程,求椭圆的焦点坐标、离心率,或者给定椭圆的离心率和一个焦点,求椭圆的方程。
解题方法包括根据离心率的定义求解,利用椭圆的参数方程计算焦点坐标等。
3. 椭圆的性质题型:求椭圆的长轴、短轴长度,椭圆的离心角、焦点、直径,椭圆的法线、切线方程等。
解题方法包括利用椭圆的定义、性质和以直径为坐标系的轴来简化计算等。
4. 椭圆的切线、法线题型:求椭圆在给定的一点上的切线、法线方程,或者求椭圆上一点的切线、法线方向角。
解题方法包括利用椭圆的参数方程求导数,利用椭圆的切线、法线的定义求解等。
5. 椭圆的面积题型:求椭圆的面积,求椭圆内切矩形的最大面积等。
解题方法包括利用椭圆的定义和参数方程求解,利用微积分求解等。
总之,椭圆是重要的数学对象,涉及到许多重要的数学定理和公式,解椭圆相关的数学题目需要运用代数、几何和微积分等多种知识和技巧。
椭圆知识点和常见题型1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁通径过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a焦半径公式题型一:求椭圆的解析式例1已知椭圆两个焦点的坐标分别是( -2, 0 ), (2,0),并且经过点P求它的标准方程.例2 椭圆的一个顶点为A(2,0) ,其长轴长是短轴长的2倍,求椭圆的标准方程.例3.求适合下列条件的椭圆的标准方程:(1)经过点p(-3,0)、Q(0,-2) ;(2)长轴长等于20 ,离心率等于题型二:求轨迹例1、如图,在圆上任取一点P作x轴的垂线段PD,D为垂足。
当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?⎪⎭⎫⎝⎛-2325,35422=+yxoxyPMD例2设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是-4/9,求点M的轨迹方程例3已知B、C是两个定点,6BC=,且△ABC的周长等于16,求顶点A的轨迹方程.题型三:求参数的范围例1知椭圆的离心率求k 的值19822=++ykx21=e221.41.x ky yk+=练习方程的曲线是焦点在轴上的椭圆,求的取值范围直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系:⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到。
①.若=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
椭圆知识点归纳汇总和经典例题————————————————————————————————作者:————————————————————————————————日期:椭圆的基本知识1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M (x , y ),点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是一个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2.7.椭圆的几何性质:a A 1yO F 1F 2x B 2B 1A 2c b yO F 1F 2xMc cxF 2F 1O y Mc cy xPO P 'M椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b+=>>的有关性质。
椭圆知识点总结加例题一、椭圆的定义和性质1.1 椭圆的定义在平面上,椭圆的定义为:对于给定的两个不重合的实点F1和F2,以及一个实数2a (a>0),定义为到点F1和点F2的距离的和等于2a的点的轨迹,这个轨迹就是椭圆。
1.2 椭圆的几何性质(1)焦点性质:椭圆上到焦点的距离之和是一个常数2a。
(2)长短轴性质:椭圆有两个互相垂直的对称轴,其中较长的轴称为长轴,较短的轴称为短轴。
(3)离心率性质:椭圆的离心率e定义为焦距与长轴的比值,介于0和1之间。
(4)焦点到顶点的连线和短轴的交点为端点的线段称为短轴的焦径。
(5)焦点到顶点的连线和长轴的交点为端点的线段称为长轴的焦径。
1.3 椭圆的方程和标准方程椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 其中a、b分别为椭圆长轴和短轴的半轴长。
通过坐标平移和旋转,可以得到椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 椭圆长轴在x轴上,且椭圆的中心为原点。
1.4 椭圆的参数方程和极坐标方程椭圆的参数方程:$\begin{cases}x=a\cos \theta\\ y=b\sin \theta\end{cases}$, $\theta \in [0, 2\pi)$。
椭圆的极坐标方程:$r(\theta)=\frac{ab}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$。
二、椭圆的相关性质2.1 椭圆的离心率和焦距的关系设椭圆的长轴和短轴分别为2a和2b,焦点到几点段为2c,则椭圆的离心率e满足关系:$e=\frac{c}{a}$。
2.2 椭圆的面积和周长椭圆的面积:$S=\pi ab$。
椭圆的周长:$L=4aE(e)$,其中E(e)为第二类完全椭圆积分。
2.3 椭圆的切线和法线对于椭圆上任一点P(x,y),其切线的斜率为$k=-\frac{b^2x}{a^2y}$,切线的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,且斜率为$k$的切线方程为$y-kx+ka^2=0$。
椭圆知识点
知识点一:椭圆的定义
平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ;
若2121F F PF PF <+,则动点P 的轨迹无图形.
知识点二:椭圆的简单几何性质
标准方程
122
22=+b
y a x )0(>>b a 122
22=+b
x a y )
0(>>b a 图形
性质
焦点、焦距)0,(1c F -,)0,(2c F ,c
F F 221=),0(1c F -,),0(2c F c
F F 22
1=范围a x ≤,b y ≤b x ≤,a
y ≤顶点
)0,(a ±,),0(b ±),0(a ±,)
0,(b ±对称性
关于x 轴、y 轴,轴对称,关于原点中心对称
轴长长轴长=a 2,短轴长=b
2离心率
()10122
<<-==e a
b a
c e e 越小,椭圆越圆;e 越大,椭圆越扁
通径
过焦点且垂直于长轴的弦,其长a
b 22(通径为最短的焦点弦)
准线方程
c
a x 2
±
=c
a y 2
±
=
焦半径
01ex a PF +=,02ex a PF -=01ey a PF +=,02ey a PF -=1.椭圆标准方程中的三个量c b a ,,的几何意义2
22c b a +=(见右图)
2.椭圆的一般方程:22Ax By C +=()B A C B A 0ABC ≠≠同号,,,,且
3.椭圆的参数方程:{
cos sin x a y b ϕϕ==(其中ϕ为参数)
4.椭圆焦点三角形问题
(1)焦点三角形周长:c
a 22+(2)在21F PF ∆中,有余弦定理:()θ
cos 2P P 2212
22
12
PF PF F F c -+=经常变形为:()()θ
cos 22-PF 221212
212
PF PF PF PF PF c -+=即:()()θ
cos 22-2221212
2
PF PF PF PF a c -=(3)焦点三角形面积2
tan cos 1sin sin 21S 2221P 2
1θ
θθθb b PF PF y c p F F =+=⋅=⋅=∆,其中2
1PF F ∠=θ5.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。
6.椭圆的第二定义(课本47页例6)
平面内与一个定点(即焦点)和一条定直线(即准线)的距离的比为常数e,(0<e<1)的
点的轨迹为椭圆(即e d
PF =|
|)。
即:到
焦点的距离与到准线的距离的比为离心率的点所构成的图形,也即上图中有
e PM PF PM PF ==2211。
7.焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。
公式:01ex a PF +=,0
2ex a PF -=(p 为椭圆上的一点)(图例如上)
8.椭圆的第三定义(课本41页例3)
平面内一动点P ,与两定点21A A 、斜率乘积等于定值的点的轨迹为椭圆
有:1
221-=⋅e k k p A p A (两定点为椭圆左右两端点,定值为12-e
)
9.点与椭圆的位置关系:
(1)点00(,)P x y 在椭圆外⇔22
00
221x y a b +>;
(2)点00(,)P x y 在椭圆上⇔220
220b
y a x +=1;
)2(21a PF PF =+2(2
21c a PM PM =+
(3)点00(,)P x y 在椭圆内⇔2200
221
x y a b
+<10.直线与椭圆的位置关系(联立,用韦达定理)
设直线方程y =kx +b,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2
+bx +c =0(a ≠0).
(1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切;(3)相离:0∆<⇔直线与椭圆相离;11.弦长公式:(直线与椭圆的交点坐标设而不求)
若直线y kx b =+与圆锥曲线相交于两点A、B,且12,x x 分别为A、B 的横坐标,
则AB 12x -()[]2
12
21
2
41x x x x k -++=,
若12,y y 分别为A、B 的纵坐标,则AB =21211y y k -+
()[]
212
212411y y y y k -+⎪⎭
⎫ ⎝⎛+=(若弦AB 所在直线方程设为b my x +=,则2121AB y y m -+=。
特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将
焦点弦转化为两条焦半径之和后,利用第二定义求解。
)12.点差法(圆锥曲线的中点弦问题):
遇到中点弦问题常用“韦达定理”或“点差法”求解。
在椭圆122
22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0
202y a x b ;
特别提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>!
圆锥曲线主要题型与方法
一、曲线与方程
题型一:求方程的曲线(先使式子有意义,再等价变形,经常用对称性作图)
典例2:(2019全国二)已知点)0,2(-A ,)0,2(B ,动点),(y x M 满足AM 与BM 的斜率之
积为2
1
-,记M 的轨迹为曲线C 。
(1)求C 的方程,并说明C 是什么曲线;2.定义法(利用圆或者圆锥曲线的定义)
典例3:(2016全国一)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E 证明:EB EA +为定值,并写出点E 的轨迹方程。