应用数理统计试题
- 格式:doc
- 大小:258.50 KB
- 文档页数:7
应⽤数理统计作业题及参考答案(第⼀章)第⼀章数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的⼦样,求最⼤顺序统计量()n X 与最⼩顺序统计量()1X 的分布函数与密度函数。
解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤= ,,,.()()()()1n n n f x F x n F x f x -'=??=.(){}{}1121i n F x P X x P X x X x X x =≤=->>> ,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-?-≤??-≤??-≤()11nF x =-?-()()()()1111n f x F x n F x f x -'=??=?-.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的⼦样1X ,2X ,…,5X ,试问:(i )⼦样的平均值X ⼤于13的概率为多少?(ii )⼦样的极⼩值(最⼩顺序统计量)⼩于10的概率为多少?(iii )⼦样的极⼤值(最⼤顺序统计量)⼤于15的概率为多少?解:()~124X N ,,5n =,4~125X N ??∴ ??,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>> ,,,{}{}{}5551111011101110i i i i P X P X P X ===->=-?-()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---∴<=<=<-=<-{}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-? {}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成⽴。
一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 1/3 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X F(1,n) ,~12X F(n,1) 。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。
5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为ˆλ= 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n S n S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫ ⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。
8.某试验的极差分析结果如下表(设指标越大越好):表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。
(2)方差分析中总离差平方和的自由度为 7 。
(3)上表中的第三列表示 A B ⨯交互作用 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
则y 关于x 的线性回归模型为 ()ˆ 2.356 1.813~0,1.611yx N εε=++ 10设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 12x - ,极大似然估计量为 max{X 1,X 2,…,X n } 。
应用数理统计复习题一、填空题1.设总体212~(,),,,...,n X N X X X μσ为样本,样本均值及样本方差分别为,221111,()n n i i i i X X S X X n n ====-∑∑,设112,,...n n X X X X +与独立同分布,则统计量~Y =。
2.设21~(),~T t n T 则。
3.设总体X 的均值为μ,12,,...,n X X X 为样本,当a = 时,E 21()nii Xa =-∑达到最小值。
4. 设总体212~(,),,,...,n X N X X X μσ为样本,1||,()nii D XE D μ==-=∑则5.设总体X 的均值和方差分别为a , b , 样本均值及样本方差分别为221111,()n n i i i i X X S X X n n ====-∑∑,则 E (S 2 )= 。
6.在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则均值 X 落在4与6之间的概率 =6. 设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 。
7. 设总体212~(,),,,...,n X N X X X μσ为样本,12211ˆ()n i i i c XX σ-+==-∑,若2ˆσ为2σ的无偏估计,则 c = 。
8. 设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
9. 设总体212~(,),,,...,n X N X X X μσ为样本,μ未知,σ2已知,为使μ的置信度为1-α的置信区间长度不超过L ,则需抽取的样本的容量n 至少为 。
10. 设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2未知,则σ2的置信度为1-α的置信区间为 。
11设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫ ⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 (要求写出分布的参数) 12. 设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。
应 用 数 理 统 计 复 习 题1. 设总体X ~ N(20,3),有容量分别为10, 15的两个独立样本,求它们的样本均值之差的绝对值小于 的概率._ _ _ _ 1解:设两样本均值分别为 X,Y ,则X Y 〜N(0,—) 22. 设总体X 具有分布律其中 (01)为未知参数,已知取得了样本值X 1 1,X 2 2,X 3 1,求的矩估计和最大似然估计.解:(1) 矩估计:EX22 2 (1 ) 3(1)2 23令EX X ,得 ?-.6(2) 最大似然估计:得? 5 63.设某厂产品的重量服从正态分布,但它的数学期望和方差2均未知,抽查 10件,测得重量为 X斤i 1,2, ,10。
算岀给定检验水平0.05 ,能否认为该厂产品的平均重量为斤?附:(9)=(10)= (9)= (10)=解:检验统计量为T =|将已知数据代入,得所以接受H 。
4.在单因素方差分析中,因素A 有3个水平,每个水平各做 4次重复实验,完成下列方差分析表,在X - m 0 |s/、n 15.4 - 5.0t 二. __________ 10=2J3.6/ 9F O.95(2,9) 4.26 , F 7.5 4.26,认为因素A是显着的5.现收集了16组合金钢中的碳含量x及强度y的数据,求得x 0.125, y 45.7886丄拓0.3024, L xy25.5218,L yy2432.4566 .(1)建立y关于x的一元线性回归方程??,?x ;(2)对回归系数1做显着性检验(0.05).解:(1)? % 25.5218 84.3975l xx0.3024所以,? 35.2389 84.3975X(2)Q |yy ?|xy 2432.4566 84.3975 25.5218 278.4805拒绝原假设,故回归效果显着.(1)找岀对结果影响最大的因素;(2)找出“算一算”的较优生产条件;(指标越大越好)(3)写出第4号实验的数据结构模型。
应用数理统计期末试卷题目一一位医生想要调查 COVID-19 病例在抵达医院时的体温情况,他随机抽查了50 名确诊患者,记录了他们入院时的体温(单位:摄氏度),得到以下数据:37.1 37.2 38.5 37.8 38.138.2 38.4 37.9 38.3 37.638.0 38.2 37.4 38.5 38.637.3 37.9 38.9 37.8 37.538.6 37.7 38.4 37.1 38.137.4 38.3 37.9 37.7 37.638.0 38.2 38.8 37.5 38.338.1 38.5 37.8 37.9 38.737.6 37.7 37.9 38.3 38.0请根据这份数据回答以下问题:1.请计算这 50 名患者的平均体温并进行解释。
2.请建立适当的直方图并解释。
3.请计算这批数据的标准差并解释。
题目二一项关于发动机寿命的研究显示,在正常使用情况下,某型号航空发动机寿命服从均值为 1200 小时、标准差为 100 小时的正态分布。
为了确保安全,该型号发动机的安全寿命必须在 1000 小时以上。
在一架飞机上,该型号的 5 台发动机已经工作了 895、1020、1140、1260 和1375 小时。
请回答以下问题:1.五台发动机的寿命各是多少,哪台发动机应该先更换?2.如果该型号发动机的标准差为 80 小时,五台发动机的寿命各是多少,哪台发动机应该先更换?题目三在某公司的管理培训课程中,有 120 名学员参加了一次考试,总分为 100 分。
以下是这 120 名学员的成绩:49 59 63 86 71 62 75 71 82 7259 51 58 64 57 27 68 76 80 4671 67 48 64 65 45 57 69 90 5261 51 29 41 77 57 65 58 72 4150 63 73 51 55 61 83 84 92 6491 69 60 72 70 88 89 86 77 5980 80 34 52 59 73 60 69 37 4634 66 67 86 56 41 65 93 73 8958 62 54 47 83 64 44 53 40 8571 67 35 45 73 73 59 81 56 7368 55 49 65 79 69 96 47 60 34请回答以下问题:1.请计算这批成绩的平均分、中位数、众数、极差、四分位数并进行解释。
数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
应用数理统计复习题一、填空题1.设总体212~(,),,,...,n X N X X X μσ为样本,样本均值及样本方差分别为,221111,()n n i i i i X X S X X n n ====-∑∑,设112,,...n n X X X X +与独立同分布,则统计量~Y =。
2.设21~(),~T t n T 则。
3.设总体X 的均值为μ,12,,...,n X X X 为样本,当a = 时,E 21()nii Xa =-∑达到最小值。
4. 设总体212~(,),,,...,n X N X X X μσ为样本,1||,()nii D XE D μ==-=∑则5.设总体X 的均值和方差分别为a , b , 样本均值及样本方差分别为221111,()n n i i i i X X S X X n n ====-∑∑,则 E (S 2 )= 。
6.在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则均值 X 落在4与6之间的概率 =6. 设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 。
7. 设总体212~(,),,,...,n X N X X X μσ为样本,12211ˆ()n i i i c XX σ-+==-∑,若2ˆσ为2σ的无偏估计,则 c = 。
8. 设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
9. 设总体212~(,),,,...,n X N X X X μσ为样本,μ未知,σ2已知,为使μ的置信度为1-α的置信区间长度不超过L ,则需抽取的样本的容量n 至少为 。
10. 设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2未知,则σ2的置信度为1-α的置信区间为 。
11设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫ ⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 (要求写出分布的参数) 12. 设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。
专业学位研究⽣应⽤数理统计期末试题航天学院2019-2020学年第⼀学期专业学位研究⽣《应⽤数理统计》课程考试卷(A卷)考核形式:开卷部门:班级:姓名:说明:下列试题均可⽤SPSS软件计算,所有问题均要求提供纸质答案及电⼦答案。
最后⼀题要求提供数据⽂件.sav和输出⽂件.spv.⽤两种软件提供答案的试卷可适当加分。
2章参数估计⼀、随机地从A批导线中抽取4根,并从B批导线中抽取5根,测得其电阻(单位:)设测试数据分别服从正态分布,在下列两种情况下讨论两总体均值差的区间估计。
(1)两总体⽅差相等;(2)两总体⽅差不等。
3章假设检验⼆、为研究长跑运动对增强普通⾼校学⽣⼼脏功能的效果,对某⾼校15名男⽣进⾏测试,经过5个⽉的长跑训练后看其晨脉是否减少。
锻炼前后的晨脉数据如下表所⽰。
试问锻炼前后的晨脉在显著性⽔平0.05下有⽆显著性差别。
4章⽅差分析三、为了研究⽕箭燃料和推进器对⽕箭射程的影响,选⽤了4种不同燃料和3种不同推进器,将他们相互搭配并在每⼀种搭配下做了两次试验,得到⽕箭射程(海⾥)数据如下表。
在显著性⽔平0.05下,试分析燃料、推进器以及燃料和推进器这两种因素的交互作⽤对⽕箭射程的影响是否显著?6章回归分析四、国家需要⼤⼒发展国际旅游⾏业以增加国家的外汇收⼊,外汇收⼊Y 与接待的旅游⼈数X 之间构成什么样的统计关系呢?根据2004年的中国统计年鉴,得到1985—2002年间的统计数据如下表:(1)试根据上述数据建⽴外汇收⼊Y 与接待的旅游⼈数X 之间的回归模型,并进⾏回归分析,对2003年和2004年的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。
(2)试查找2005-2016年间连续6年的国家的外汇收⼊与接待的旅游⼈数的相关统计数据,分析其是否符合(1)中的模型,如不符合,试建⽴新的回归模型。
(3)利⽤(2)中的回归模型对我国2017年(可验证)和2019年(预测)的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。
应用数理统计(2000年)一、填空1 、设X1,X2,…X10 来自总体N(0,1) 的样本,若2 2 2y=k i(x i+2x2+3x3)+k2(x4+x5+…+X10) ~x (2),贝U k i= _________ k2= __________2、设x i,X2,…X2m来自总体N(4,9)的样本,若y=W(x2i-4)2,且Z= c(xi 二4),服z J y从t 分布,贝U c= ___ ,z~t( __ )3、设X i,X2,…X2m 来自总体N( p, 2)的样本,已知y=(X2-X i)2+(X4-X3)2+…+(X2m-X2m-i)2,且Z=cy为2的无偏估计,则c= ____4、上题中,Dz= __5、由总体F(x)与G(x)中依次抽得容量为i2和ii的样本,已计算的游程总个数U=i2,试在水平a =0.05下检验假设H。
:F(x)= G(x),其结论为 ___________ (U°.05(12, 11)=8)61 °X2 1二、设X i,X2,…X61 来自总体N(0,1)的样本,令y=^ x2,试求P{互兰丄}y y 15(t0.975(60)=2)三、设总体X的密度函数为(1+a)x: 0<x<1Lf(x)= F0, 其它而(X i,X2,…X n )为来自X的样本,试求〉的极大似然估计量。
2 2四、设x~N( p, 2),y~ N( p, 2)今抽取X的样本X i,X2,…X8;y的样本y i,y2, (8)计算得x =54.03,y =57.11,s;=3.25, £=2.751 .试在水平a =0.0下检验假设H0:p i=p,H i: p i> p22. 试求a =0.0时,p- p 的估计区间(t0.99(14)=2.6245)五、欲考察因子A,B,C,D及交互作用AXC,且知B也可能与其它因子存在交互作用,试在L8(27)上完成下列表头设计。
应用数理统计复习题
1.设总体,有容量分别为10,15的两个独立样本,求它们的样本均值之差的绝对值小于0.3的概率.
解:设两样本均值分别为,则
2. 设总体具有分布律
1 2 3
其中为未知参数,已知取得了样本值,求的矩估计和最大似然估计.
解:(1)矩估计:
令,得.
(2)最大似然估计:
得
3. 设某厂产品的重量服从正态分布,但它的数学期望和方差均未知,抽查10件,测得重量为斤。
算出
给定检验水平,能否认为该厂产品的平均重量为5.0斤?
附:t1-0.025(9)=2.2622 t1-0.025(10)=2.2281 t1-
0.05(9)=1.8331 t1-0.05(10)=1.8125
解: 检验统计量为
将已知数据代入,得
所以接受。
4. 在单因素方差分析中,因素有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平下对因素是否显著做检验。
来源平方和自由度均方和F比
因素 4.2
误差 2.5
总和 6.7
解:
来源平方和自由度均方和F比
因素 4.2 2 2.1 7.5
误差 2.5 9 0.28
总和 6.7 11
,,认为因素是显著的.
5. 现收集了16组合金钢中的碳含量及强度的数据,求得
,.
(1)建立关于的一元线性回归方程;
(2)对回归系数做显著性检验().
解:(1)
所以,
(2)
拒绝原假设,故回归效果显著.
6.某正交试验结果如下
列号
试验号A B C
1 2 3
结果
1
2
3
4 1 1 1
1 2 2
2 1 2
2 2 1
13.25
16.54
12.11
18.75
(1)找出对结果影响最大的因素;
(2)找出“算一算”的较优生产条件;(指标越大越好)
(3)写出第4号实验的数据结构模型。
解:
列号
试验号A B C
1 2 3
结果
1
2
3
4 1 1 1
1 2 2
2 1 2
2 2 1
13.25
16.54
12.11
18.75
ⅠⅡR
29.79 25.36 32.0
30.86 35.29 28.65 1.07 9.9 3.35
(1)对结果影响最大的因素是B;
(2)“算一算”的较优生产条件为
(3) 4号实验的数据结构模型为
,
7.设总体,样品为.已知
,,,
(1)求线性判别函数;
(2)对样品的归属做判别.
解:(1)
;
(2)
所以,.
8.掷一枚硬币100次,观察到正面出现58次,能否认为该枚硬币是均匀的?
解:设正面出现的概率为,则
,故接受,可以认为该枚硬币是均匀的.
9.设总体的密度函数,为已知参数,为未知参数.当样本容量为时,求的下界.
解:
.
所以,的下界为.
10.假设回归直线过原点,即一元线性回归模型为,
且相互独立,求的最小二乘估计.
解:令
解得.
11.设是来自的样本,,
,试求常数,使得服从分布,并指出分布的自由度.
解:,
故,.
12.总体,其中是未知参数,是取自该总体的样本,
为样本均值,证明:是参数的无偏估计和相合估计.
证明:=
所以是的无偏估计.
所以是的相合估计.
13.总体,已知,问样本容量取多大时才能保证的置信水平为95%的置信区间的长度不大于.
解:的置信水平为的置信区间为
14.设是来自的样本,考虑如下假设检验问题
若拒绝域为,样本容量时,求该检验犯两类错误的概率.
解:
;
15.为了检验事件发生的概率是否为,对进行了次观察,结果发生了次,若检验水平为,试写出检验统计量和拒绝域.
解:设即要检验的分辨率是否为
根据卡方检验法,检验统计量
拒绝域:。