2021年中考一次函数综合训练
- 格式:doc
- 大小:96.50 KB
- 文档页数:10
2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)1.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3B.x<3C.x>﹣1D.x<﹣12.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣2,2),则关于x的不等式x+a>kx+b 的解集是()A.x<﹣2B.x>﹣2C.x<2D.x>23.如图,已知函数y=kx+b图象如图所示,则不等式kx+b<0的解集为()A.x>5B.x<5C.x>4D.x<44.一次函数y=kx+b(k,b为常数)的图象如图所示,则不等式kx+b<1的解集是()A.x<﹣2B.x<1C.x>﹣2D.x<05.如图,直线l1:y1=ax(a≠0)与直线l2:y2=x+b(b≠0)交于点P,有四个结论:①a<0②a>0③当x>0时,y1>0④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D.②③6.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b<0的解集是()A.x>0B.x<0C.x>2D.x<27.一次函数y1=kx+b与y2=mx+n的图象如图所示,则以下结论:①k>0;②b>0;③m >0;④n>0;⑤当x=3时:y1>y2.正确的个数是()A.1个B.2个C.3个D.4个8.如图,已知一次函数y1=x+b与正比例函数y2=kx的图象交于点P.四个结论:①k>0;②b>0;③当x<0时,y2>0;④当x<﹣2时,kx<x+b.其中正确的是()A.①③B.②③C.③④D.①④9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1B.﹣3C.﹣4D.﹣510.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则()A.x>0B.x>﹣3C.x>﹣6D.x>﹣911.直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是()A.x<1B.x<2C.x>0D.x>212.在平面直角坐标系中,正比例函数y=2x的图象与直线y=kx+b交于A(﹣1,﹣2).直线y=kx+b,还经过点(﹣2,0).则不等式2x<kx+b<0的解集为()A.x<﹣2B.﹣2<x<0C.﹣2<x<﹣1D.﹣1<x<0 13.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是.14.如图,直线y1=x+b与y2=kx﹣1相交于点P,则关于x的不等式x+b>kx﹣1的解集为.15.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为.16.如图,一次函数y=kx+b的图象经过点(4,﹣3),则关于x的不等式kx+b<﹣3的解集为.17.一次函数y=kx+b的图象如图所示,则关于x的不等式kx﹣m+b>0的解集是.18.函数y=2x和y=ax+4的图象相交于点A(m,2),则不等式2x﹣4≤ax的解集.19.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣1)﹣b>0的解集为.20.已知直线y1=2x与直线y2=﹣2x+4相交于A,有以下结论:①A的坐标为(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④y1,y2在平面直角坐标系中的位置关系是平行,其中正确的是.21.如图,直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,则不等式k1x+b>k2x+b的解集为.22.在平面直角坐标系xOy中,一次函数y=ax和y=kx+7的图象如图所示,则关于x的一元一次不等式ax>kx+7的解集是.23.已知一次函数y=kx+b经过点A(3,0),B(0,3).(1)求k,b的值.(2)在平面直角坐标系xOy中,画出函数图象;(3)结合图象直接写出不等式kx+b>0的解集.24.在给出的网格中画出一次函数y=2x﹣3的图象,并结合图象求:(1)方程2x﹣3=0的解;(2)不等式2x﹣3>0的解集;(3)不等式﹣1<2x﹣3<5的解集.25.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=结合上面经历的学习过程,现在来解决下面的问题:在函数y=||(k>0)中,当x=﹣4时,y=1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=x的图象如图所示,结合你所画的函数图象,直接写出不等式||≥x 的解集.26.在平面直角坐标系中,直线y=2x向右平移1个单位长度得到直线y1.(1)直接写出直线y1的解析式;(2)直线y1分别交x轴,y轴于点A,B,交y2=kx于点C,若A为BC的中点.①请画图并求k的值;②当0<y1<y2时,请直接写出x的取值范围.27.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.28.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.29.如图,过点C(0,﹣2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m),且直线l1与x轴交于点B,直线l2与x轴交于点A.(1)直接写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式;(3)若点M在x轴的正半轴上运动,点M运动到何处时△ABP与△BPM面积相等?求出此时△BPM面积.30.如图,函数y1=2x和y2=kx+4(k为常数,且k≠0)的图象都经过点A(m,3).(1)求点A的坐标及k的值;(2)结合图象直接写出)y2≥y1时x的取值范围.31.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.32.设函数f(x)=|x+2|﹣|x﹣1|.(1)画出函数y=f(x)的图象;(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.参考答案1.解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选:D.2.解:因为直线y1=x+a与y2=kx+b相交于点P(﹣2,2),当x>﹣2时,x+a>kx+b,所以不等式x+a>kx+b的解集为x>﹣2.故选:B.3.解:∵从图象可知:一次函数图象和x轴的交点坐标为(4,0),y随x的增大而减小,∴不等式kx+b<0的解集是x>4,故选:C.4.解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(0,1),并且函数值y随x的增大而增大,因而则不等式kx+b<1的解集是x<0.故选:D.5.解:∵直线l1:y1=ax(a≠0)从左往右呈下降趋势,∴a<0,故①正确,②错误;由函数图象可得当x>0时,y1<0,故③错误;∵两函数图象交于P,∴x<﹣2时,y1>y2,故④正确,故选:C.6.解:由图可知:当x>2时,y<0,即kx+b<0;故关于x的不等式kx+b<0的解集为x>2.故选:C.7.解:∵一次函数y1=kx+b的图象经过第一、三象限,∴k>0,所以①正确;∵一次函数y1=kx+b的图象与y轴的交点在y轴的负半轴上,∴b<0,所以②错误;∵一次函数y2=mx+n的图象经过第二、四象限,∴m<0,所以③错误;∵一次函数y2=mx+n的图象与y轴的交点在y轴的正半轴上,∴n>0,所以④正确;∵x>2时,y1>y2,∴当x=3时:y1>y2.所以⑤正确.故选:C.8.解:∵直线y2=kx经过第二、四象限,∴k<0,故①错误;∵y1=x+b与y轴交点在正半轴,∴b>0,故②正确;∵正比例函数y2=kx经过原点,且y随x的增大而减小,∴当x<0时,y2>0;故③正确;当x<﹣2时,正比例函数y2=kx在一次函数y1=x+b图象的上方,即kx>x+b,故④错误.故选:B.9.解:当y=0时,nx+4n=0,解得x=﹣4,所以直线y=nx+4n与x轴的交点坐标为(﹣4,0),当x>﹣4时,nx+4n>0;当x<﹣2时,﹣x+m>nx+4n,所以当﹣4<x<﹣2时,﹣x+m>nx+4n>0,所以不等式组﹣x+m>nx+4n>0的整数解为x=﹣3.故选:B.10.解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>x,即kx﹣x>﹣b的解集为x>﹣9.故选:D.11.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故选:D.12.解:画出函数y=2x与y=kx+b如图,由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(﹣1,﹣2),∴不等式2x<kx+b的解集是x<﹣1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(﹣2,0),∴不等式kx+b<0的解集是x>﹣2,∴不等式2x<kx+b<0的解集是﹣2<x<﹣1,故选:C.13.解:一次函数y=(m﹣1)x﹣m+4中,令x=0,解得:y=﹣m+4,与y轴的交点在x轴的上方,则有﹣m+4>0,解得:m<4.故本题答案为:m<4且m≠1.14.解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为x>﹣1.15.解:从图象可看出当x≥﹣1,直线l2的图象在直线l1的上方,不等式ax+b>kx.故答案为:x≥﹣1.16.解:∵一次函数y=kx+b的图象经过(4,﹣3),∴x=4时,kx+b=﹣3,又y随x的增大而减小,∴关于x的不等式kx+b<﹣3的解集是x>4.故答案是:x>4.17.解:当x<﹣3时,y=kx+b>m,所以关于x的不等式kx﹣m+b>0的解集为x<﹣3.故答案为:x<﹣3.18.解:∵函数y=2x的图象经过点A(m,2),∴2m=2,解得:m=1,∴点A(1,2),当x≤1时,2x≤ax+4,即不等式2x﹣4≤ax的解集为x≤1.故答案为x≤1.19.解:把(3,0)代入y=kx+b得3k﹣b=0,则b=3k,所以k(x﹣1)﹣b>0化为k(x﹣1)﹣3k>0,即kx﹣4k>0,因为k<0,所以x<4,故答案为:x<4.20.解:解方程组得,∴两直线的交点坐标为(1,2),所以①②正确;当y1<y2,即2x<﹣2x+4,解得x<1,即当x<1时,y1<y2;所以③正确;∵直线y1=2x与直线y2=﹣2x+4相交于A,∴y1,y2在平面直角坐标系中不平行,所以④错误.故答案为:①②③.21.解:∵直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,∴交点的横坐标为0∵从图象看,当x>0时,直线y1=k1x+b的图象位于直线y2=k2x+b的上方;当x<0时,直线y1=k1x+b的图象位于直线y2=k2x+b的下方∴当x>0时,k1x+b>k2x+b故答案为:x>0.22.解:因为当x>2时,ax>kx+7,所以关于x的一元一次不等式ax>kx+7的解集为x>2.故答案为x>2.23.解:(1)∵一次函数y=kx+b经过点A(3,0),B(0,3).∴,解得;(2)函数图象如图:;(3)不等式kx+b>0的解集为:x<3.24.解:(1)由图象可知,方程2x﹣3=0的解是x=,(2)由图象可知,不等式2x﹣3>0的解集是x>;(3)由图象可知,不等式﹣1<2x﹣3<5的解集是:1<x<4.25.解:(1)∵在函数y=||(k>0)中,当x=﹣4时,y=1,∴||=1,解得k=4,∴这个函数的表达式是y=||;(2)∵y=||,∴y=,列表:x﹣4﹣2﹣1123y124421…描点、连线,画出该函数的图象如图所示:由图象可知,函数的图象关于y轴对称;(3)由函数图象可得,不等式||≥x的解集是0<x≤2或x<0.26.解:(1)由“左加右减”的原则可知:把直线y=2x向右平移1个单位长度后,其直线解析式为y=2(x﹣1),即y=2x﹣2.故直线y1的为y=2x﹣2;(2)①如图,由直线y1的为y=2x﹣2可知A(1,0),B(0,﹣2),∵A为BC的中点,∴C(2,2),把C(2,2)代入y2=kx得,2=2k,∴k=1;②当0<y1<y2时,x的取值范围是1<x<2.故答案为1<x<2.27.解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B (2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x>1,∵AB=3,∴S△ABC=•y C==.28.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).29.解:(1)当x<2时,y1<y2;(2)把点P(2,m)代入y2=x+1中,得m=2+1=3,∴点P的坐标为(2,3).把点C(0,﹣2)、P(2,3)分别代入y1=kx+b中,得,解得,∴直线l1的解析式为y1=x﹣2;(3)由(2)得点P的坐标为(2,3),∵△ABP与△BPM有相同的高,即h=3.要使△ABP与△BPM面积相等,且点M在x 轴正半轴上.∴在x轴上取点M,当AB=BM时,△ABP与△BPM面积相等.∵在直线中,当y=0时,,即点B的坐标是(,0),∴AB=1+=,BM=OM﹣OB=,∴OM=,则点M运动到(0,)时△ABP与△BPM面积相等.∴S△BPM=.30.解:(1)把A(m,3)代入y1=2x得2m=3,解得m=,∴A(,3),把A(,3)代入y2=kx+4得3=k+4,解得k=﹣;(2)当x≤时,y2≥y1.31.解:(1)联立两函数解析式可得方程组,解得:,∴点A的坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,解得:x=﹣2,∴B(﹣2,0),当y2=0时,x﹣4=0,解得:x=4,∴C(4,0),∴CB=6,∴△ABC的面积为:6×3=9;(3)由图象可得:y1≤y2时x的取值范围是x≥1.32.解:(1)函数f(x)=,所以其图象如图:(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,即(|x+2|﹣|x﹣1|+4)的最大值≥|1﹣2m|,故|x+2|﹣|x﹣1|+4的最大值大于或等于|1﹣2m|,利用绝对值的意义可得|x+2|﹣|x﹣1|+4的最小值为3+4=7,∴|1﹣2m|≤7,解得﹣3≤m≤4。
一次函数的图象和性质专项练习1.将直线y=2x向上平移2个单位,所得的直线是()A. y=2x+2B. y=2x―2C. y=2(x―2)D. y=2(x+2)2.若k≠0,b<0,则y=kx+b的图象可能是()图K11-13.如图K11-2为一次函数y=kx+b(k≠0)的图象,则下列正确的是()图K11-2A. k>0, b>0B. k>0, b<0C. k<0, b>0D. k<0, b<04.如图K11-3,直线y= k x + b交坐标轴于A,B两点,则不等式k x +b>0的解集是()图K11-3A. x>-2B. x>3C. x<-2D. x<35.[2017·温州]已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y16.[2018·枣庄]如图K11-4,直线l是一次函数y=kx+b的图象,如果点A(3,m)在直线l上,则m的值为()图K11-4A.-5B.32C.52D.77.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.8.[2018·连云港]如图K11-5,一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,☉O经过A,B两点,已知AB=2,则kb的值为.图K11-59.如图K11-6,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2).图K11-6(1)求直线AB 的函数表达式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.10.如图K11-7,直线y=23x+4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为 ( )图K11-7A .(-3,0)B .(-6,0)C .-32,0D .-52,011.[2018·温州]如图K11-8,直线y=-√33x+4与x 轴,y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .图K11-812.[2017·台州]如图K11-9,直线l 1:y=2x+1与直线l 2:y=m x+4相交于点P (1,b ). (1)求b ,m 的值;(2)垂直于x 轴的直线x=a 与直线l 1,l 2分别交于点C ,D ,若线段CD 的长为2,求a 的值.图K11-913.如图K11-10,平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC ,将线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y=x 交于点A ,且BD=2AD ,连接CD ,直线CD 与直线y=x 交于点Q ,求点Q 的坐标.图K11-10参考答案1.A2.B3.C4.A5.B [解析] ∵当x=-1时,y 1=-5;当x=4时,y 2=10.∴y 1<0<y 2.6.C [解析] 由图象可得直线l 与坐标轴的两个交点的坐标为(0,1),(-2,0),代入到y=kx+b 求得直线l 的解析式为y=12x+1,再把A (3,m )代入到直线l 的解析式中,求得m 的值为52.故选C . 7.三 8.-√22[解析] ∵OA=OB ,∴∠OBA=45°,在Rt △OAB 中,OA=AB ·sin45°=2 √22 =√2 ,即点A (√2 ,0),同理可得点B (0,√2),∵一次函数y=kx+b 的图象经过点A ,B ,∴{b =√2,√2k +b =0,解得:{k =-1,b =√2.∴k b =-√22.故答案为:-√22.9.解:(1)设直线AB 的函数表达式为y=kx+b. ∵直线AB 过点A (1,0),B (0,-2), ∴{k +b =0,b =-2,解得{k =2,b =-2, ∴直线AB 的函数表达式为y=2x-2. (2)设点C 的坐标为(x ,y ). ∵S △BOC =2,∴12·2·x=2,解得x=2. ∴y=2 2-2=2, ∴点C 的坐标是(2,2).10.C11.2√3 [解析] 延长DE 交x 轴于点H ,则EH ⊥x 轴.因为一次函数y=-√33x+4的图象与x 轴的交点为(4√3,0),与y 轴的交点为(0,4),所以OA=4√3,OB=4,所以tan ∠OAB=OBOA =44√3=√33,所以∠OAB=30°,所以∠OBA=60°.因为C 为OB 的中点,所以OC=BC=2,又因为四边形OEDC 为菱形,所以OC=C D=2,又因为∠OBA=60°,所以△BCD 为等边三角形,所以∠BCD=60°,所以∠OCD=120°,所以∠COE=60°,所以∠EOA=30°,所以EH=12 O E=12 2=1,所以△OAE 的面积=12 4√3 1=2√3,故答案为2√3.12.解:(1)把点P (1,b )的坐标代入y=2x+1,得b=2+1=3,此时P (1,3); 再把P (1,3)的坐标代入y=mx+4,得m+4=3, ∴m=-1.(2)直线x=a 与直线l 1的交点C 为(a ,2a+1),与直线l 2的交点D 为(a ,-a+4). ∵CD=2,∴|2a+1-(-a+4)|=2,即|3a-3|=2, ∴3a-3=2或3a-3=-2, ∴a=53或13.13.解:如图,过点P 作EF ∥x 轴,交y 轴于点E ,交直线AB 于点F ,可证△CEP ≌△PFD ,设AD=a ,则BD=2a ,DF=EP=2a-1,PF=CE=a+1. 由AF=PF ,得a+1=3a-1,解得a=1, 所以C (0,3),D (3,2).设直线CD 的函数表达式为y=kx+b , 则{3k +b =2,b =3,解得{k =-13,b =3,所以直线CD 的函数表达式是y=-13x+3. 由方程x=-13x+3,解得x=94,所以点Q 的坐标为94,94.一次函数的图象专题复习练习题1.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )2.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(千米)和所用的时间x(分钟)之间的函数关系.下列说法错误的是( )A.小强从家到公共汽车站步行了2千米B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30千米/小时D.小强乘公共汽车用了20分钟3.一次函数y=x+2的图象大致是( )4.函数y=x-2的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限5.一次函数y=3x+6的图象与x轴的交点是( )A.(0,6) B.(0,-6) C.(2,0) D.(-2,0)6.下列关于一次函数y=2x-6的说法正确的是( )A.一次函数y=2x-6的图象是一条过点(0,3),(0,-6)的直线B.一次函数y=2x-6的图象是一条过点(3,0),(-6,0)的直线C.一次函数y=2x-6的图象经过点(0,0)D.点(2,-2)在一次函数y=2x-6的图象上7. 正比例函数y=x的大致图象是( )8. 若式子k-1+(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是( )9. 将直线y=2x+3向下平移4个单位长度,得到的直线的函数表达式是( )A.y=2x-1 B.y=2x+1 C.y=-4x+3 D.y=2x+710. 小明放学回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则s与t之间的函数表达式是_________________.11. 如图,OA,BA分别表示甲、乙两名学生匀速跑步运动的函数图象,图中s和t分别表示运动路程和时间,根据图象判断跑步快者比慢者每秒快______m.12. 已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数表达式;(2)画出这个函数的图象,并标出图象与x轴和y轴的交点坐标.13. 某地现有绿地9万公顷,由于植被遭到严重破坏,土地沙化速度竟达到每年0.3万公顷,照此速度发展下去,设t年后该地剩余绿地面积为S万公顷.(1)求剩余绿地面积S与t的函数表达式,并写出自变量的取值范围;(2)画出此函数的图象;(3)若当剩余绿地面积为0.9万公顷时达到红色警戒线,请计算几年后该地的绿地面积达到红色警戒线?1---9 BDABD DCAA 10. s =-80t +1600 11. 1.512. 解:(1)y =2x +3(2)图略,与x 轴交点为(-32,0),与y 轴交点为(0,3)13. 解:(1)S =9-0.3t(0≤t ≤30) (2)图略 (3)27年。
2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)1.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+72.如图,直线l:与y轴交于点A,将直线l绕点A顺时针旋转75°后,所得直线的解析式为()A.y=x+B.y=x﹣C.y=﹣x+D.y=x+3.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10B.y=﹣2x+14C.y=2x+2D.y=﹣x+54.将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣25.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+36.将直线y=﹣2x+1向下平移2个单位,平移后的直线表达式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x﹣1D.y=﹣2x+37.将直线y=x平移,使得它经过点(﹣2,0),则平移后的直线为()A.y=x﹣2B.y=x+1C.y=﹣x﹣2D.y=x+28.将一次函数y=3x向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离()A.4B.6C.6D.129.把直线y=2x﹣1向下平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+210.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3 11.将直线y=3x沿y轴向下平移1个单位长度后得到的直线解析式为()A.y=3x+1B.y=3x﹣1C.y=x+1D.y=x﹣112.在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2B.y=2x﹣5C.y=2x+1D.y=2x﹣113.将直线y=2x+1向上平移3个单位后得到的解析式为.14.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为.16.将直线y=2x﹣5向上平移3个单位长度,所得直线的解析式为.17.把直线y=﹣2x+5向下平移2个单位,得到的直线解析式是.18.在平面直角坐标系xOy中,将函数y=3x+3图象向右平移5个单位长度,则平移后的图象与x轴、y轴分别交于A、B两点,则△AOB的面积为.19.将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.20.将直线y=﹣2x+3向下平移5个单位,得到直线.21.将直线y=2x向上平移2个单位后得到的直线解析式为.22.在平面直角坐标系中,把直线y=x沿y轴向上平移后得到直线AB,如果点P(m,n)是直线AB上的一点,且m﹣n+8=0,那么直线AB的函数表达式为.23.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.24.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x轴交点的坐标;(3)在(2)的条件下,直接写出y>0时,x的取值范围.25.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进行应用的过程.小红对函数y=的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)小红列出了如下表格,请同学们把下列表格补充完整,并在平面直角坐标系中画出该函数的图象:x…﹣10123456…y……(2)根据函数图象,以下判断该函数性质的说法,正确的有(填正确答案的序号).①函数图象关于y轴对称;②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.(3)若直线y=x+b与函数y=的图象只有一个交点,求b的值.26.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A,B两点.(1)在图中画出该一次函数并求其表达式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图形,并直接写出新函数图象对应的表达式.27.有这样一个问题:探究函数y=|x+1|的图象与性质.小明根据学习一次函数的经验,对函数y=|x+1|的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=|x+1|的自变量x的取值范围是;(2)如表是x与y的几组对应值.x…﹣5﹣4﹣3﹣2﹣10123…y…432m01234…m的值为;(3)在如图网格中,建立平面直角坐标系xOy,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)小明根据画出的函数图象,得出了如下几条结论:①函数有最小值为0;②当x>﹣1时,y随x的增大而增大;③图象关于过点(﹣1,0)且垂直于x轴的直线对称.小明得出的结论中正确的是.(只填序号)28.已知正比例函数的图象经过点A(2,3);(1)求出此正比例函数表达式;(2)该直线向上平移3个单位,写出平移后所得直线的表达式,并画出它的图象.29.一次函数y=2x+a的图象与x轴交与点(2,0),(1)求出a的值;(2)将该一次函数的图象向上平移5个单位长度,求平移后的函数解析式.30.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.31.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点.(1)求一次函数的解析式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.32.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x、y轴分别相交于点A、B,此直线向下平移后与y轴相交于点C、与x轴相交于点D,四边形ABCD的面积为18.(1)求直线CD的表达式;(2)如果点E在直线CD上,四边形ABED是等腰梯形,求点E的坐标.参考答案1.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.2.解:由直线l:可知,直线与x轴的夹角为60°,∴与y轴的夹角为30°,∴直线l绕点A顺时针旋转75°后的直线与y轴的夹角为45°,∴旋转后的直线的斜率为1,∵直线l:与y轴交于点A,∴A(0,).∴旋转后的直线解析式为:y=x+,故选:D.3.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.4.解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.5.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+1+2,即y=﹣2x+3故选:D.6.解:由题意得:平移后的解析式为:y=﹣2x+1﹣2=﹣2x﹣1,即.所得直线的表达式是y=﹣2x﹣1.故选:C.7.解:设平移后直线的解析式为y=x+b.把(﹣2,0)代入直线解析式得0=﹣2+b解得b=2所以平移后直线的解析式为y=x+2.故选:D.8.解:设平移的距离为k(k>0),则将一次函数y=3x向左平移后所得直线解析式为:y =3(x+k)=3x+3k.易求得新直线与坐标轴的交点为(﹣k,0)、(0,3k)所以,新直线与坐标轴所围成的三角形的面积为:•3k=24,解得k=4或﹣4(舍去).故选:A.9.解:根据题意,把直线y=2x﹣1向下平移1个单位后得到的直线解析式为:y=2x﹣1﹣1,即y=2x﹣2,故选:A.10.解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.11.解:由“上加下减”的原则可知:将直线y=3x沿y轴向下平移1个单位长度后,其直线解析式为y=3x﹣1.故选:B.12.解:由题意得:平移后的解析式为:y=2x﹣3+2,即y=2x﹣1.故选:D.13.解:由“上加下减”的原则可知,把直线y=2x+1上平移3个单位长度后所得直线的解析式为:y=2x+1+3,即y=2x+4,故答案为:y=2x+4.14.解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.15.解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移3个单位所得函数的解析式为y=2x﹣5+3,即y=2x﹣2.故答案为:y=2x﹣2.17.解:由“上加下减”的原则可知,把直线y=﹣2x+5向下平移2个单位后所得直线的解析式为:y=﹣2x+5﹣2,即y=﹣2x+3.故答案为:y=﹣2x+3.18.解:根据题意知,平移后直线方程为y=3(x﹣5)+3=3x﹣12.所以A(4,0),B(0,﹣12).故OA=4,OB=12.所以S△AOB=OA•OB==24.故答案是:24.19.解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.20.解:原直线的k=﹣2,b=3.向下平移5个单位长度得到了新直线,那么新直线的k=﹣2,b=3﹣5=﹣2.∴新直线的解析式为y=﹣2x﹣2.故答案为:y=﹣2x﹣2.21.解:直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.故答案为y=2x+2.22.解:设直线AB的解析式为y=x+b.将(m,n)代入y=x+b,得m+b=n,则m﹣n+8=0,∴b=8,∴直线AB的解析式为y=x+8.故答案为y=x+8.23.解:(1)点A(2,4),如图所示:(2)∵函数y=mx的图象经过点A,∴4=2m,∴m=2;(3)由(2)可得经过点A的函数为y=2x,∵一次函数y=kx+b的图象由函数y=2x经过平移,且经过点B,∴,解得,∴这个一次函数的表达式为y=2x+7,依题意画出图象如图所示;24.解:(1)当x=2时,y=﹣3,∴﹣3=2k﹣4,则,∴,(2)图象向上平移6个单位长度,∴,当y=0时,x=﹣4,∴平移后的图象与x轴交点的坐标为(﹣4,0),(3)y>0时,x的取值范围为x>﹣4.25.解:(1)补充表格:x…﹣10123456…y…﹣2﹣1012222…画出函数图象如图所示:(2)由图象可知,正确的性质为②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.故答案为②③;(3)直线y=x+b与函数y=的图象只有一个交点,根据图象直线y=+b经过点(3,2),∴2=+b,∴b=.26.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,5),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=3x+2;(2)点(a﹣3,﹣a)在该一次函数y=3x+2的图象上,∴﹣a=3(a﹣3)+2,解得,a=,即a的值是;(3)把y=3x+2向下平移3个单位后可得:y=3x+2﹣3=3x﹣1,图象如图:27.解:(1)在函数y=|x+1|中,自变量x的取值范围是x为任意实数,故答案为:x为任意实数;(2)当x=﹣2时,m=|﹣2+1|=1,故答案为1;(3)画出函数的图象如图:;(4)由函数图象可知,①函数有最小值为0,正确;②当x>﹣1时,y随x的增大而增大,正确;③图象关于过点(﹣1,0)且垂直于x轴的直线对称,正确;.故答案为:①②③.28.解:(1)设正比例函数的解析式为y=kx,把A(2,3),代入得到k=,∴正比例函数的解析式为y=x.(2)将直线y=x向上平移3个单位,得直线y=x+3,如图;29.解:(1)∵一次函数y=2x+a的图象与x轴交与点(2,0),∴4+a=0,解得a=﹣4;(2)将一次函数y=2x﹣4的图象向上平移5个单位长度,得到y=2x﹣4+5,即y=2x+1,故平移后的函数解析式为y=2x+1.30.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或.31.解:(1)∵一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点,∴,解得,即该一次函数的表达式是y=2x﹣1;(2)点(a﹣3,﹣a)在该一次函数y=2x﹣1的图象上,∴﹣a=2(a﹣3)﹣1,解得,a=,即a的值是;(3)把y=2x﹣1向下平移3个单位后可得:y=2x﹣1﹣3=2x﹣4,图象如图:32.解:(1)∵直线y=﹣x+8与x、y轴分别相交于点A、B,∴A(6,0)B(0,8),∴OA=6,OB=8,∴AB===10,∴S△AOB==24,四边形ABCD的面积为18.∴S△COD=24﹣18=6,∵AB∥CD,∴△COD∽△BOA,∴=()2,即=,∴OC=4,∴C(0,4),∴直线CD的解析式为:y=﹣x+4;(2)作DM⊥AB于M,EN⊥AB于N,∵四边形ABED是等腰梯形,∴AD=BE,∠DAB=∠EBA,∵∠DMA=∠ENB=90°,∴△ADM≌△BEN(AAS),∴AM=BN,∵直线CD的解析式为:y=﹣x+4,∴D(3,0),∴OD=3,∴AD=6﹣3=3,∵∠AMD=∠AOB,∠DAM=∠BAO,∴△ADM∽△ABO,∴=,即,∴AM=,∴BN=AM=,∴MN=10﹣2×=,∴ED=MN=,∵OD=3,OC=4,∴CD==5,∴CE=DE﹣CD=﹣5=,作EH⊥x轴于H,则EH∥OC,∴,即=,∴OH=,∴E的横坐标为﹣,把x=﹣代入直线CD:y=﹣x+4得y=,∴点E的坐标为(﹣,).。
2021年中考数学一次函数专题卷(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题1.在平面直角坐标系中,已知直线y=-34x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点,把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是()A.(0,34) B.(0,43) C.(0,3) D.(0,4)2.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<03.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为()A. B. C. D.4.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣25.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处 C.Q处 D.M处6.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<27.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t (小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B .C D .8.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若正比例函数y=3x的图象经过A(m,4m+1),则m的值为().A.1 B.﹣1 C.25 D.﹣2 510.小南骑自行车从A地向B地出发,1小时后小通步行从B地向A地出发.如图,两条线段l1、l2分别表示小南、小通离B地的距离y(单位:km)与所用时间x(单位:h)之间的函数图象,根据图中的信息,则小南、小通的速度分别是()A.12 km/h,3 km/h B.15km/h,3km/h C.12 km/h,6 km/h D.15km/h,6km/h 11.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大 B.小梅的平均速度比小莹的平均速度大D.在起跑后50秒时,小梅在小莹的前面评卷人得分二、填空题与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.13.若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.14.某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图1,每条输出传送带每小时出库的货物流量如图2,而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图3.(1)每条输入传送带每小时进库的货物流量为 吨,每条输出传送带每小时出库的货物流量为 吨.(2)在0时至2时内,求出仓库内货物存量y (吨)与时间x (小时)之间的函数关系式: .(3)在4时至5时,有 条输入传送带和 条输出传送带在工作.15.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1A O 为边做正方形111A OC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 .16.如图,在平面直角坐标系中,已知点A (2 , 3),点B (−2 , 1)。
中考复习专题:一次函数综合(考察坐标、长度、面积等)(四)1.如图1,在平面直角坐标系xOy中,直线y=2x+2分别与x轴、y轴交于A、B两点,直线分别与x轴、y轴交于D、B两点,点C(﹣3,m)是BD上一点.(1)b=,m=.(2)试判断线段CA与线段BA之间的关系,并说明理由;(3)如图2,若点Q(0,﹣1)是y轴上一点,点M是直线AB上一动点,点N是直线BD 上一动点,当△MNQ是以点Q为直角顶点的等腰三角形时,请直接写出相应的点M、N的坐标.2.如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,3),直线1经过点B且与x轴平行.(1)直线AB的函数解析式.(2)在直线l上找到一点P,△PAO为等腰三角形,请直接写出点P的坐标;(3)点C在第一象限内,若∠BAC=90°,AB=AC,直线BC交x轴于点D.①求点C的坐标;②点E(2,t)是线段AB上一点,点F是线段AD上一点,若直线EF将△ABD平分为面积相等的两部分,请直接写出点F的坐标.3.(1)如图1,Rt△ABC中,∠ACD=90°,CD⊥AB于D.①此图中有对相似三角形,(直接写出答案)②求证:=.(2)如图2,直线y=2x+4与x轴交于点B,与y轴交于点A,作OC⊥AB于点C,直接写出点C的坐标.(3)如图2,如图2,直线y=2x+4与x轴交于点B,与y轴交于点A,作点O关于AB 的对称点D,直接写出点D的坐标.(4)如图2,直线y=2x+4与x轴交于点B,与y轴交于点A,△ABO绕点B逆时针旋转得到△A′BO′,旋转角小于180°,当旋转到∠BAO=∠BOO′时,直接写出O′的坐标.4.如图,在平面直角坐标系中,直线l的解析式为y=﹣x+4,与x轴交于点C,直线l上有一点B的横坐标为,点A是OC的中点.(1)求直线AB的函数表达式;(2)在直线BC上有两点P、Q,且PQ=4,使四边形OAPQ的周长最小,求周长的最小值;(3)直线AB与y轴交于点H,将△OBH沿AB翻折得到△HBG,M为直线AB上一动点,N 为平面内一点,是否存在这样的点M、N,使得以H、M、N、G为顶点的四边形是菱形,若存在,直接写出点M的坐标,若不存在,说明理由.5.如图,在平面直角坐标系中,矩形OABC 的三个顶点A ,O ,C 在坐标轴上,矩形的面积为12,对角线AC 所在直线的解析式为y =kx ﹣4k (k ≠0).(1)求A ,C 的坐标;(2)若D 为AC 中点,过D 的直线交y 轴负半轴于E ,交BC 于F ,且OE =1,求直线EF 的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G ,使以C ,D ,F ,G 为顶点的四边形为平行四边形?若存在,请直接写出点G 的坐标;若不存在,请说明理由.6.如图,直线l 1:y =2x +4与x 轴交于点A ,与y 轴交于点B ,将直线l 1关于坐标原点中心对称后得到直线l 2,l 2与x 轴交于点C ,与y 轴交于点D .(1)求直线l 2的表达式;(2)求证:四边形ABCD 为菱形;(3)除菱形ABCD 外,是否在直线l 1上还存在点P ,在直线l 2上还存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为菱形?若存在,求出符合条件的所有点P 坐标,若不存在,说明理由.7.综合与探究如图,在平面直角坐标系中,直线l 1:y =3x ,直线l 2交x 轴于点A ,交y 轴于点B ,点A 的坐标为(4,0),直线l 1与直线l 2交于点C ,点C 的横坐标为1.(1)求直线l 2的解析式;(2)求△OBC 的面积;(3)点M 是直线AB 上的一个动点,在平面内是否存在点N ,使以O 、A 、M 、N 为顶点的四边形是菱形?若存在,直接写出符合条件的点N 的坐标,若不存在,说明理由.8.如图1,在平面直角坐标系中,正方形OABC 的边OA ,OC 分别在x 轴,y 轴的正半轴上,直线y =2x ﹣4经过线段OA 的中点D ,与y 轴交于点G ,E 是射线CG 上一点,作点E 关于直线DG 的对称点F ,连结BE ,BF ,FG .设点E 的坐标为(0,m ).(1)求点B 的坐标是( , ).(2)如图2,当点F 落在线段BA 的延长线上时,求证:四边形BEGF 为菱形.(3)在点E 的整个运动过程中,①当S △BEG =S 正方形OABC 时,求线段CE 的长.②N 为平面内任意一点,当B ,E ,F ,N 四点构成的四边形为矩形时,则m 的值为 .(请直接写出答案)9.如图,在平面直角坐标系xOy中,直线分别交x轴,y轴于A、B两点,点A 关于原点O的对称点为点D,点C在第一象限,且四边形ABCD为平行四边形.(1)在图①中,画出平行四边形ABCD,并直接写出C、D两点的坐标;(2)动点P从点C出发,沿线段CB以每秒1个单位的速度向终点B运动;同时,动点Q 从点A出发,沿线段AD以每秒1个单位的速度向终点D运动,设点P运动的时间为t秒.①若△POQ的面积为3,求t的值;②点O关于B点的对称点为M,点C关于x轴的对称点为N,过点P作PH⊥x轴,问MP+PH+NH是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.10.如图A(﹣10,0),B(﹣8,6),将△ABO沿AB折叠,点O落在点C处.(1)直接写出四边形BOAC是一个什么样的图形..(2)在y轴上找点P使PA+PB的值最小,直接写出点P的坐标.(3)在直线y=x+4上找点D,使点D到CA和CB的距离相等,则点D的坐标为.参考答案1.解:(1)对于y=2x+2,令x=0,则y=2,令y=0,即y=2x+2=0,解得x=﹣1,故点A、B的坐标分别为(﹣1,0)、(0,2),∵直线过点B,将点B坐标代入上式并解得:故b=2,则该直线的表达式为y=x+2,当x=﹣3时,y=x+2=1=m,即点C(﹣3,1);故答案为:2,1;(2)由(1)知,点A、B、C的坐标分别为(﹣1,0)、(0,2)、(﹣3,1),则AB==,同理AC=,BC=,则AB2+AC2=BC2,故∠BAC为直角,且AC=BC,故线段CA与线段BA之间的关系为垂直且相等;(3)当△MNQ是以点Q为直角顶点的等腰三角形时,∠MQN=90°,QM=QN,设点M、N的坐标分别为(s,2s+2)、(t,t+2),过点Q作x轴的平行线交过点M与y轴的平行线于点H,交过点N与y轴的平行线于点G,∵∠NQG+∠MQH=90°,∠NQG+∠QNG=90°,∴∠MQH=∠QNG,∵∠MHQ=∠QGN=90°,MQ=NQ,∴△MHQ≌△QGN(AAS),∴MH=GQ,NG=QH,即2s+2﹣(﹣1)=﹣t(或﹣1﹣2s﹣2=﹣t),s=t+2﹣(﹣1)(或﹣s=t+2+1),解得:或,故点M、N的坐标分别为(﹣,)、(﹣,)或(﹣,﹣)、(﹣,).2.解:(1)设直线AB的表达式为y=kx+b,则,解得,故直线AB的表达式为y=﹣x+3,故答案为y=﹣x+3;(2)设点P(m,3),则PA2=(m﹣4)2+9,PO2=m2+9,AO2=16,当PA=PO时,即(m﹣4)2+9=m2+9,解得m=2;当PA=AO时,同理可得m=4±;当PO=AO时,同理可得m=±;故点P的坐标为(2,3)或(2,4+)或(2,4﹣)或(2,)或(2,﹣);(3)①过点C作CH⊥x轴于点H,∵∠BAO+∠CAH=90°,∠BAO+∠ABO=90°,∴∠CAH=∠ABO,∵∠BOA=∠AHC=90°,AB=AC,∴△BOA≌△AHC(AAS),∴OB=AH=3,CH=OA=4,故点C(7,4);②当x=2时,y=﹣x+3=,故点E(2,),由点B、C的坐标同理可得,直线BC的表达式为y=x+3,当y=0,即y=x+3=0,解得x=﹣21,故点D(﹣21,0),S=×AD×OB=×(4+21)×3=,△ABDS=×AF×y E=×AF×==×,△AEF解得AF=25,故点F(﹣21,0).3.解:(1)①∵∠ACD+∠BCD=90°,∠A+∠ACD=90°,∴∠A=∠BCD,∵∠CDA=∠BDC=90°,∴△CDB∽△ADC,同理可证△ACD∽△ABC,故△ACB∽△ADC∽△CDB,故相似三角形有3对,故答案为3;②由△CDB∽△ADC得:=;(2)对于y=2x+4,令x=0,则y=4,令y=0,则x=﹣2,故点A、B的坐标分别为(0,4)、(﹣2,0),即OA=4,OB=2,则AB===,如图,过点C作CR⊥OB于点R,。
中考数学分类专题提分训练一次函数压轴题专项1.A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离S(km)与时间t(h)的关系,结合图象回答下列问题:(1)表示甲离A地的距离与时间关系的图象是(填l1或l2);甲的速度是km/h;乙的速度是km/h.(2)甲出发后多少时间两人恰好相距15km?2.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?3.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N 的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.4.如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.5.如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.6.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.7.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.8.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;(4)在(3)的条件下,平面直角坐标系中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.9.如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(OA <OB)是方程组的解,点C是直线y=2x与直线AB的交点,点D在线段OC 上,OD=(1)求点C的坐标;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形(邻边相等的平行四边形)?若存在,请写出点Q的坐标;若不存在,请说明理由.10.一架方梯AB长2.5米,如图,斜靠在一面墙上,梯子底端离墙OB为0.7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的底端右滑了0.8米,那么梯子的顶端在竖直向下方向滑动了几米?(3)以O为原点建立直角坐标系,求A'B'所在直线的解析式.答案1.解:(1)∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l1,甲的速度是:90÷2=45km/h,乙的速度是:90÷(3.5﹣0.5)=90÷3=30km/h,故答案为:l1,45,30;(2)设甲对应的函数解析式为y=ax+b,,得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,得,即乙对应的函数解析式为y=30x﹣15,∴|(﹣45x+90)﹣(30x﹣15)|=15,解得,x1=1.2,x2=1.6,答:甲出发后1.2h或1.6h时两人恰好相距15km.2.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.3.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=y N=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).4.解:(1)设直线l2的解析表达式为y=kx+b(k≠0),把A(4,0)、B(3,)代入表达式y=kx+b,,解得:,∴直线l2的解析表达式为y=x﹣6.(2)当y=﹣3x+3=0时,x=1,∴D(1,0).联立y=﹣3x+3和y=x﹣6,解得:x=2,y=﹣3,∴S△ADC=×3×|﹣3|=.(3)∵△ADP与△ADC底边都是AD,△ADP与△ADC的面积相等,∴两三角形高相等.∵C(2,﹣3),∴点P的纵坐标为3.当y=x﹣6=3时,x=6,∴点P的坐标为(6,3).5.解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).6.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).7.解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.8.解:(1)∵A(2,4)、B(﹣3,﹣8),∴AB==13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,∴AB=|4﹣(﹣1)|=5;(3)△DEF为等腰三角形,理由为:∵D(1,6)、E(﹣2,2)、F(4,2),∴DE==5,DF==5,EF==6,即DE=DF,则△DEF为等腰三角形;(4)做出F关于x轴的对称点F′,连接DF′,与x轴交于点P,此时DP+PF最短,设直线DF′解析式为y=kx+b,将D(1,6),F′(4,﹣2)代入得:,解得:,∴直线DF′解析式为y=﹣x+,令y=0,得:x=,即P(,0),∵PF=PF′,∴PD+PF=DP+PF′=DF′==,则PD+PF的长度最短时点P的坐标为(,0),此时PD+PF的最短长度为.9.解:(1),解得,,∵OA<OB,∴OA=6,OB=12,设直线AB的解析式为:y=kx+b,则,解得,,∴直线AB的解析式为:y=﹣2x+12,,解得,,∴点C的坐标为(3,6);(2)设点D的坐标为(a,2a),∵OD=2,∴a2+(2a)2=(2)2,解得,a=±2,∵由题意得,a>0,∴a=2.∴D(2,4),设直线AD的解析式为y=mx+n,把A(6,0),D(2,4)代入,得,解得,,∴直线AD的解析式为:y=﹣x+6;(3)存在,理由如下:∵点D的坐标为(2,4),点A的坐标为(6,0),∴∠OAD=45°,当四边形OAPQ为菱形时,OQ=OA=6,∴点Q的坐标为(﹣3,3),当四边形OAP′Q′为菱形时,OQ′=OA=6,∴点Q′的坐标为(3,﹣3),直线AD与y轴的交点P′′的坐标为(0,6),∴OP′′=OA=6,当四边形OAQ′′P′′为菱形时,点Q′′的坐标为(6,6),当四边形OPAQ是以OA为对角线的菱形时,点Q的坐标为(3,﹣3),综上所述,以O、A、P、Q为顶点的四边形是菱形时,点Q的坐标为(﹣3,3)或(3,﹣3)或(6,6)或(3,﹣3).10.解:(1)由题意可得,AO==2.4(米),即这个梯子的顶端距地面有2.4米;当梯子的底端右滑了0.8米,梯子顶端距地面的距离为:=2(米),2.4﹣2=0.4(米),即梯子的顶端在竖直向下方向滑动了0.4米;(3)由题意可得,点A′(0,2),点B′(1.5,0),设过A′、B′的直线的解析式为y=kx+b,,解得,,即A′B′所在直线的解析式是y=.。
2021年全国各省市数学中考分类汇编一次函数含答案一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A. 23cmB. 24cmC. 25cmD. 26cm2. (2021·辽宁省丹东市)若实数k 、b 是一元二次方程(x +3)(x -1)=0的两个根,且k <b ,则一次函数y =kx +b 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. (2021·湖南省娄底市)如图,直线y =x +b 和y =kx +4与x 轴分别相交于点A (-4,0),点B (2,0),则{x +b >0kx +4>0解集为( )A. −4<x <2B. x <−4C. x >2D. x <−4或x >24. (2021·江苏省扬州市)如图,一次函数y =x +√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A. √6+√2B. 3√2C. 2+√3D. √3+√25. (2021·天津市)已知函数y =kx (k ≠0)的图象经过第二、四象限,(-2,y 1)、(1,y 2)、(2,y 3)是函数y =(k -3)x -1图象上的三个点,则y 1、y 2、y 3的大小关系是( )A. y 2<y 3<y 1B. y 1<y 2<y 3C. y 3<y 1<y 2D. y 3<y 2<y 16.(2021·内蒙古自治区包头市)已知二次函数y=ax2-bx+c(a≠0)的图象经过第一象限的点(1,-b),则一次函数y=bx-ac的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.(2021·福建省)如图,一次函数y=kx+b(k>0)的图象过点(-1,0),则不等式k(x-1)+b>0的解集是()A. x>−2B. x>−1C. x>0D. x>18.(2021·贵州省黔东南苗族侗族自治州)已知直线y=-x+1与x轴、y轴分别交于A、B两点,点P是第一象限内的点,若△PAB为等腰直角三角形,则点P的坐标为()A. (1,1)B. (1,1)或(1,2)C. (1,1)或(1,2)或(2,1)D. (0,0)或(1,1)或(1,2)或(2,1)9.(2021·辽宁省营口市)已知一次函数y=kx-k过点(-1,4),则下列结论正确的是()A. y随x增大而增大B. k=2C. 直线过点(1,0)D. 与坐标轴围成的三角形面积为210.(2021·内蒙古自治区赤峰市)点P(a,b)在函数y=4x+3的图象上,则代数式8a-2b+1的值等于()A. 5B. −5C. 7D. −611.(2021·广东省)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A. 0个B. 1个C. 2个D. 1个或2个12.(2021·广东省)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B. y3<y2<y1C. y2<y1<y3D. y3<y1<y213.(2021·内蒙古自治区赤峰市)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论正确的个数是()①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点12米;③甲、乙两人之间的距离超过32米的时间范围是44<x<89;④乙到达终点时,甲距离终点还有68米.A. 4B. 3C. 2D. 114.(2021·江苏省苏州市)已知点A(√2,m),B(32,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A. m>nB. m=nC. m<nD. 无法确定15.(2021·湖北省武汉市)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.53ℎ B. 32ℎ C. 75ℎ D. 43ℎ二、填空题16. (2021·辽宁省阜新市)育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了23h 第一次返回到自己班级,则七(2)班需要______h 才能追上七(1)班.17. (2021·江苏省南通市)下表中记录了一次试验中时间和温度的数据.时间/分钟 0 5 10 15 20 25 温度/℃ 10 25 40 55 70 85若温度的变化是均匀的,则14分钟时的温度是______ ℃. 18. (2021·广西壮族自治区桂林市)如图,与图中直线y =-x +1关于x 轴对称的直线的函数表达式是______ .19. (2021·广西壮族自治区梧州市)如图,在同一平面直角坐标系中,直线l 1:y =14x +12与直线l 2:y =kx +3相交于点A ,则方程组{y =14x +12y =kx +3的解为______ .20. (2021·贵州省毕节市)将直线y =-3x 向下平移2个单位长度,平移后直线的解析式为______ .21. (2021·湖北省黄石市)将直线y =-x +1向左平移m (m >0)个单位后,经过点(1,-3),则m 的值为______ .22.(2021·江苏省无锡市)请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:______ .23.(2021·四川省眉山市)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是______ .24.(2021·山东省威海市)已知点A为直线y=-2x上一点,过点A作AB∥x轴,交双曲线y=4于点B.若点A与点B关于y轴对称,则点A的坐标为______ .x25.(2021·广西壮族自治区贺州市)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的标为______ .三、解答题26.(2021·湖南省郴州市)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.57.5…y…8.0 6.0 5.0 3.0 1.0…(1)根据表中的数据,在如图中描出实数对(x,y)所对应的点,并画出y关于x 的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元),①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?27.(2021·山东省)在2018春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x 的函数关系式;(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.28.(2021·黑龙江省牡丹江市)在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A地路程s(米)之间的函数图象.(1)a= ______ ,乐乐去A地的速度为______ ;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.29.(2021·贵州省毕节市)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经协商,甲旅行社的优惠条件是:老师、学生都按八折收费;乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费.(1)设参加这次红色旅游的老师学生共有x名,y甲,y乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y甲,y乙关于x的函数解析式;(2)该校选择哪家旅行社支付的旅游费用较少?30.(2021·福建省)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?31.(2021·黑龙江省)A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.32.(2021·四川省雅安市)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.(1)求y与x之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?33.(2021·黑龙江省大庆市)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm)与注水时间x(min)之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC表示______ 槽中水的深度与注入时间之间的关系;线段AB 表示______ 槽中水的深度与注入时间之间的关系;铁块的高度为______ cm.(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)34.(2021·黑龙江省绥化市)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m= ______ ,n= ______ ;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.35.(2021·黑龙江省齐齐哈尔市)在一条笔直的公路上依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车匀速去B地,途经C地时因事停留1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行匀速从B 地至A地.甲、乙两人距A地的距离y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)甲的骑行速度为______ 米/分,点M的坐标为______ ;(2)求甲返回时距A地的距离y(米)与时间x(分)之间的函数解析式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回到A地之前,______ 分钟时两人距C地的距离相等.36.(2021·黑龙江省双鸭山市)一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km.两车相遇后休息一段时间,再同时继续行驶.两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示的折线AB-BC-CD-DE,结合图象回答下列问题:(1)甲、乙两地之间的距离是______ km;(2)求两车的速度分别是多少km/h?(3)求线段CD的函数关系式.直接写出货车出发多长时间,与轿车相距20km?37.(2021·吉林省长春市)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)38.(2021·山东省聊城市)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?量的1339.(2021·江苏省南京市)甲、乙两人沿同一直道从A地去B地.甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.40.(2021·江苏省宿迁市)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为______ km/h,C点的坐标为______ .(2)慢车出发多少小时后,两车相距200km.参考答案1.B2.C3.A4.A5.A6.C7.C8.C9.C10.B11.D12.B13.C14.C15.B16.217.5218.y =x -119.{x =2y =120.y =-3x -221.-322.y =-1x 答案不唯一 23.a <-3224.(√2,-2√2)或(-√2,2√2)25.(-2√2,4-2√2)26.解:(1)(2)根据图象设y =kx +b ,把(4.0,8.0)和(5.0,6.0)代入上式,得{8.0=4.0k +b 6.0=5.0k +b, 解得{k =−2b =16, ∴y =-2x +16,∵y ≥0,∴-2x +16≥0,解得x ≤8,∴y 关于x 的函数表达式为y =-2x +16(x ≤8);(3)①P =(x -2)y=(x -2)(-2x +16)=-2x ²+20x -32,即P 与x 的函数表达式为:P =-2x ²+20x -32(x ≤8); ②∵物价局限定商品的销售单价不得超过进价的200%,∴x ≤2×200%,即x ≤4,由题意得P =10,∴-2x ²+20x -32=10, 解得x 1=3,x 2=7,∵x ≤4,∴此时销售单价为3元.27.解:(1)设乙队每天能完成绿化面积为am 2,则甲队每天能完成绿化面积为2am 2 根据题意得:400a −4002a=5 解得a =40经检验,a =40为原方程的解则甲队每天能完成绿化面积为80m 2答:甲、乙两工程队每天能完成绿化的面积分别为80m 2、40m 2(2)由(1)得80x +40y =1600整理的:y=-2x+40(3)由已知y+x≤25∴-2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(-2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时,W最低=1.5+10=11.528.2 200米/分钟29.解:(1)y甲=0.8×1000x=800x,y乙=2×1000+0.75×1000×(x-2)=750x+500;(2)①y甲<y乙,800x<750x+500,解得x<10,②y甲=y乙,800x=750x+500,解得x=10,③y甲>y乙,800x>750x+500,解得x>10,答:当老师学生数超10人时,选择乙旅行社支付的旅游费用较少;当老师学生数为10人时,两旅行社支付的旅游费用相同;当老师学生数少于10人时,选择甲旅行社支付的旅游费用较少.30.解:(1)设该公司当月零售这种农产品x箱,则批发这种农产品(100-x)箱,依题意得70x+40(100-x)=4600,解得:x=20,100-20=80(箱),答:该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)设该公司当月零售这种农产品m 箱,则批发这种农产品(1000-m )箱,依题意得 m ≤1000×30%,解得m ≤300,设该公司获得利润为y 元,依题意得y =70m +40(1000-m ),即y =30m +40000,∵30>0,y 随着m 的增大而增大,∴当m =300时,y 取最大值,此时y =30×300+40000=49000(元), ∴批发这种农产品的数量为10000-m =700(箱),答:该公司零售、批发这种农产品的箱数分别是300箱,700箱时,获得最大利润为49000元.31.解:(1)当0h 时,甲车和乙车距C 地为180km ,∴两地的路程为:180+180=360km ,设甲车经过180km 用了x h ,则:x +x +x +1=5.5,∴x =1.5,则甲车速度为:180÷1.5=120(km /h ); (2)设乙车从C 地到A 地的过程中y 与x 的函数关系式为:y =kx +b (k ≠0), 将(3,0),(6,180)代入y =kx +b (k ≠0),得:{3k +b =06k +b =180, 解得:{k =60b =−180, ∴乙车从C 地到A 地的过程中y 与x 的函数关系式为:y =60x -180;(3)由图可知,分别在3个时间段可能两车在途中距C 地路程之和为180km , ①甲车从A 地到C 地,乙车从B 到C ,-120x +180+60x +180=180,解得:x =1;②甲车从C 到B ,乙车从C 到A ,-120x -300+60x -180=180,记得:x =113;③甲车从B 到C ,乙车从C 到A ,-120x +660+60x -180=180,解得:x =5.总上所述:分别在1h ,113h ,5h 这三个时间点,两车在途中距C 地的路程之和为180km .32.解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0),将(12,90),(15,75)代入y =kx +b ,{12k +b =9015k +b =75,解得:{k =−5b =150, ∴y 与x 之间的函数关系式为y =-5x +150(10≤x ≤21,且x 为整数).(2)依题意得:w =(x -10)(-5x +150)=-5x 2+200x -1500=-5(x -20)2+500. ∵-5<0,∴当x =20时,w 取得最大值,最大值为500.答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大利润是500元.33.乙 甲 1634.16160335.240 (6,1200) 4或6或836.18037.解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y =kx +b ,则{b =62k +b =18, 解得:{k =6b =6, ∴y =6x +6;结论应用】应用上述发现的规律估算:①x =12时,y =6×12+6=78, ∴供水时间达到12小时时,箭尺的读数为78厘米;②y =90时,6x +6=90,解得:x =14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.38.解:(1)设A 种花卉每盆x 元,B 种花卉每盆(x +0.5)元,根据题意,得:600x =900x+0.5, 解这个方程,得:x =1,经检验,x =1是原方程的解,并符合题意,此时,x +0.5=1+0.5=1.5(元),∴A 种花卉每盆1元,B 种花卉每盆1.5元,答:A 种花卉每盆1元,B 种花卉每盆1.5元;(2)设购买A 种花卉t 盆,购买这批花卉的总费用为w 元,由题意,得:w =t +1.5(6000-t )=-0.5t +9000,∵t≤1(6000-t),3解得:t≤1500,∵w是t的一次函数,k=-0.5<0,∴w随t的增大而减小,∴当t=1500时,w最小,w min=-0.5×1500+9000=8250(元),∴购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.答:购买A种花卉1500盆时购买这批花卉总费用最低,最低费用是8250元.39.解:(1)如图:(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由题意得:2v•t=(t+1+5)v,解得:t=6,6+1+5=12(min),答:甲整个行程所用的时间为12min.40.100 (8,480)。
2021年九年级数学中考复习专题突破训练:一次函数综合(附答案)1.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接P A、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=6;④当P A+PC的值最小时,点P的坐标为(0,1).其中正确的说法是()A.①②③B.①②④C.①③④D.①②③④2.如图,已知直线l:,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)3.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是()A.(4,2)B.(2,4)C.(,3)D.(2+2,2)4.等腰三角形ABC中,AB=AC,记AB=x,周长为y,定义(x,y)为这个三角形的坐标.如图所示,直线y=2x,y=3x,y=4x将第一象限划分为4个区域.下面四个结论中,①对于任意等腰三角形ABC,其坐标不可能位于区域Ⅰ中;②对于任意等腰三角形ABC,其坐标可能位于区域Ⅳ中;③若三角形ABC是等腰直角三角形,其坐标位于区域Ⅲ中;④图中点M所对应等腰三角形的底边比点N所对应等腰三角形的底边长.所有正确结论的序号是()A.①③B.①③④C.②④D.①②③5.如图,直线y=﹣x+6分别与x、y轴交于点A、B,点C在线段OA上,线段OB沿BC翻折,点O落在AB边上的点D处.以下结论:①AB=10;②直线BC的解析式为y=﹣2x+6;③点D(,);④若线段BC上存在一点P,使得以点P、O、C、D为顶点的四边形为菱形,则点P的坐标是(,).正确的结论是()A.①②B.①②③C.①③④D.①②③④6.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x+B.y=x+C.y=x+D.y=x+7.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x8.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A.B.C.D.9.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接P A、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD =3;④当P A+PC的值最小时,点P的坐标为(0,1).其中正确的说法个数有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,直线y=﹣x+4与x轴交于点A,与y轴交于点B,点C 是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y 轴于点F,开始时另一边CD经过点O,点G坐标为(﹣2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为()A.B.C.D.11.如图,直线AB:y=﹣x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转120°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.B.C.2D.512.如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P 作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6﹣D.3﹣113.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC所在直线的函数表达式是y=2x+4,若保持AC的长不变,当点A在y轴的正半轴滑动,点C随之在x 轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是.14.若四条直线x=1,y=﹣1,y=3,y=kx﹣3所围成的凸四边形的面积等于12,则k的值为.15.如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA 上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式.16.如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P在以C(0,1)为圆心,1为半径的圆上一动点,连结P A、PB,则△P AB面积的最大值是.17.已知梯形ABCD的四个顶点的坐标分别为A(﹣1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为.18.如图(1)所示是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图(2)所示.若乙槽底面积为48平方厘米(壁厚不计),则乙槽中铁块的体积为cm3.19.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.20.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E 是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.21.已知直线与y轴交于点A,与x轴交于点B;若点P是直线AB上的一动点,坐标平面中存在点Q,使以O、B、P、Q为顶点的四边形为菱形,则点Q的坐标是.22.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=﹣x上有一动点Q,连结OP,PQ,已知△OPQ的面积为,则点Q的坐标为.23.如图,在平面直角坐标系中,直线y=kx过点A(6,m),过点A作x轴的垂线,垂足为点B,过点A作y轴的垂线,垂足为点C.∠AOB=60°,CD⊥OA于点D.动点P 从点O出发,以每秒2个单位长度的速度向点A运动,动点Q从点A出发.以每秒个单位长度的速度向点B运动.点P,Q同时开始运动,当点P到达点A时,点P,Q同时停止运动,设运动时间为t(s),且t>0.(1)求m与k的值;(2)当点P运动到点D时,求t的值;(3)连接DQ,点E为DQ的中点,连接PE,当PE⊥DQ时,请直接写出点P的坐标.24.如图,直线l的解析式为y=﹣x+b,它与坐标轴分别交于A、B两点,其中点B坐标为(0,4).(1)求出A点的坐标;(2)在第一象限的角平分线上是否存在点Q使得∠QBA=90°?若存在,求点Q的坐标;若不存在,请说明理由.(3)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C 运动所有的时间t,使得△ABC为轴对称图形(直接写答案即可)25.长方形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B′点,求B′点的坐标.(2)求折痕CM所在直线的解析式.(3)在x轴上是否能找到一点P,使△B′CP的面积为13?若存在,直接写出点P的坐标?若不存在,请说明理由.26.如图所示,在平面直角坐标系中,矩形ABCD的边AB位于x轴,A(1,0),B(3,0),矩形的宽AD为1,一条直线y=kx+2(k≠0)与折线ABC交于点E.(1)证明:直线y=kx+2始终经过一个定点,并写出该定点坐标;(2)当直线y=kx+2与矩形ABCD有交点时,求k的取值范围;(3)设△CDE的面积为S,试求S与k的函数解析式.27.【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB 重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为.(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)28.如图,在平面直角坐标系中,直线l与x轴交于点A(﹣1,0),与y轴交于点B(0,﹣2),点C是x轴上一点,且满足CA=CB(1)求直线l的解析式;(2)求点C的坐标和△ABC的面积;(3)过点C作y轴的平行线CH,借助△ABC的一边构造与△ABC面积相等的三角形,第三个顶点P在直线CH上,求出符合条件的点P的坐标.29.已知,如图,点A坐标为(6,0),直线y=﹣x﹣2交y轴于点B.(1)求直线AB的函数解析式;(2)若点C为直线y=﹣x﹣2上第四象限内一点,且满足△ABC的面积为13,求点C的坐标;(3)在(2)中C点坐标的条件下,在x轴上取两点M、N,点M在点N的左侧,使得MN=2,求使得四边形BMNC周长最小时点M、N的坐标.30.在平面直角坐标系中,A(2,0)、B(0,3),过点B作直线∥x轴,点P(a,3)是直线上的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,直线AQ交y轴于点C(1)当a=1时,①求点Q的坐标和直线AQ的解析式;②点m在直线AQ上,点N为平面直角坐标系内,x轴下方一点,当以O、C、M、N为顶点的四边形是菱形时,求所有符合条件的点N的坐标,直接写出答案.(2)当点P在直线l上运动时,点Q也随之运动.①求点Q运动路线对应的解析式;②当AQ+BQ的值最小时求a的值,直接写出答案.31.如图,一次函数y=kx+b的图象与直线交于点A(4,3),与y轴交于点B,且OA=OB.(1)求一次函数的表达式;(2)求两直线与y轴围成的三角形的面积.(3)在x轴上是否存在点C,使△AOC是以OA为腰的等腰三角形?若存在,直接写出C的坐标;若不存在,说明理由.32.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x轴于点A,交y轴于点B,以OA,OB为边作矩形AOBD,矩形AOBD的面积是16.(1)求b的值;(2)点P为BD上一点,连接PO,把PO绕点P逆时针旋转90°得到PQ,设PB的长为t,点Q的纵坐标为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点Q作QM∥PO交BD的延长线于点M,作∠POA的平分线OE交PM于点E,交PQ于点F,若FQ=2EM,求点Q的坐标.参考答案1.解:①∵直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),∴方程组的解为,故①正确,符合题意;②把B(0,4),C(﹣,)代入直线l1:y=kx+b,可得,解得,∴直线l1:y=2x+4,又∵直线l2:y=﹣x+m,∴直线l1与直线l2互相垂直,即∠BCD=90°,∴△BCD为直角三角形,故②正确,符合题意;③把C(﹣,)代入直线l2:y=﹣x+m,可得m=1,y=﹣x+1中,令x=0,则y=1,∴D(0,1),∴BD=4﹣1=3,在直线l1:y=2x+4中,令y=0,则x=﹣2,∴A(﹣2,0),∴AO=2,∴S△ABD=×3×2=3,故③错误,不符合题意;④点A关于y轴对称的点为A'(2,0),由点C、A′的坐标得,直线CA′的表达式为:y=﹣x+1,令x=0,则y=1,∴当P A+PC的值最小时,点P的坐标为(0,1),故④正确,符合题意;故选:B.2.解:∵直线l的解析式为;y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∠BA1O=30°,∴A1O=4,∴A1(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256).故选:B.3.解:在y=﹣x+2中令x=0,解得:y=2;令y=0,解得:x=2.则OA=2,OB=2.∴在直角△ABO中,AB==4,∠BAO=30°,又∵∠BAB′=60°,∴∠OAB′=90°,∴B′的坐标是(2,4).故选:B.4.解:如图,等腰三角形ABC中,AB=AC,记AB=x,周长为y,设BC=z,则y=2x+z,x>0,z>0.①∵BC=z>0,∴y=2x+z>2x,∴对于任意等腰三角形ABC,其坐标位于直线y=2x的上方,不可能位于区域Ⅰ中,故结论①正确;②∵三角形任意两边之和大于第三边,∴2x>z,即z<2x,∴y=2x+z<4x,∴对于任意等腰三角形ABC,其坐标位于直线y=4x的下方,不可能位于区域Ⅳ中,故结论②错误;③若三角形ABC是等腰直角三角形,则z=x,∵1<<2,AB=x>0,∴x<x<2x,∴3x<2x+x<4x,即3x<y<4x,∴若三角形ABC是等腰直角三角形,其坐标位于区域Ⅲ中,故结论③正确;④由图可知,点M位于区域Ⅲ中,此时3x<y<4x,∴3x<2x+z<4x,∴x<z<2x;点N位于区域Ⅱ中,此时2x<y<3x,∴2x<2x+z<3x,∴0<z<x;∴图中点M所对应等腰三角形的底边比点N所对应等腰三角形的底边长,故结论④正确.故选:B.5.解:∵直线y=﹣x+6分别与x、y轴交于点A、B,∴点A(8,0),点B(0,6),∴OA=8,OB=6,∴AB===10,故①正确;∵线段OB沿BC翻折,点O落在AB边上的点D处,∴OB=BD=6,OC=CD,∠BOC=∠BDC=90°,∴AD=AB﹣BD=4,∵AC2=AD2+CD2,∴(8﹣OC)2=16+OC2,∴OC=3,∴点C(3,0),设直线BC解析式为:y=kx+6,∴0=3k+6,∴k=﹣2,∴直线BC解析式为:y=﹣2x+6,故②正确;如图,过点D作DH⊥AC于H,∵CD=OC=3,∴CA=5,∵S△ACD=AC×DH=CD×AD,∴DH==,∴当y=时,=﹣x+6,∴x=,∴点D(,),故③正确;∵线段BC上存在一点P,使得以点P、O、C、D为顶点的四边形为菱形,且OC=CD,∴PD∥OC,∴点P纵坐标为,故④错误,故选:B.6.解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选:A.7.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线方程为y=kx,则3=k,k=,∴直线l解析式为y=x,故选:C.8.解:过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=﹣x,y=x+3,当x=0时,y=3,当y=0时,x=﹣4,∴A(﹣4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°==,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(﹣x)2=,解得:x1=﹣,x2=,∵N在第二象限,∴x只能是﹣,x+3=,即ND=,OD=,tan∠AON==.故选:A.9.解:∵直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),∴方程组的解为,故①正确;把B(0,4),C(﹣,)代入直线l1:y=kx+b,可得,解得,∴直线l1:y=2x+4,又∵直线l2:y=﹣x+m,∴直线l1与直线l2互相垂直,即∠BCD=90°,∴△BCD为直角三角形,故②正确;把C(﹣,)代入直线l2:y=﹣x+m,可得m=1,y=﹣x+1中,令x=0,则y=1,∴D(0,1),∴BD=4﹣1=3,在直线l1:y=2x+4中,令y=0,则x=﹣2,∴A(﹣2,0),∴AO=2,∴S△ABD=×3×2=3,故③正确;点A关于y轴对称的点为A'(2,0),设过点C,A'的直线为y=ax+n,则,解得,∴y=﹣x+1,令x=0,则y=1,∴当P A+PC的值最小时,点P的坐标为(0,1),故④正确.故选:D.10.解:∵直线y=﹣x+4与x轴交于点A,与y轴交于点B,∴B(0,4),A(4,0),∵点C是AB的中点,∴C(2,2),①当一边CD经过点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线CD过点G时,如图取OB的中点N,连接CN,OC,则CN=ON=2,∴OC=2,∵G(﹣2,0),∴直线GC的解析式为:y=x+1,∴直线GC与y轴交点M(0,1),过点M作MH⊥OC,∵∠MOH=45,∴MH=OH=,∴CH=OC﹣OH=,∵∠NCO=∠FCG=45°,∴∠FCN=∠MCH,又∵∠FNC=∠MHC,∴△FNC∽△MHC,∴,即,得FN=,∴OF=2+=.∴F(,0),此时过点F、B、C三点的圆心在BF的垂直平分线上,设圆心坐标为(x,),则,解得x=,当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径为线段,即由BC的中点到点(,),∴所经过的路径长==.故选:A.11.解:如图,设D(0,m).由题意:B(5,0).在BD的下方作等边三角形△BDQ,延长DQ到M,使得QM=DQ,连接BM,DE,DE 交BQ于点N,作MH⊥x轴于H.∵△BDQ是等边三角形,∴∠DQB=∠DBQ=60°,∵QM=BQ,∴∠QMB=∠QBM,∵∠DQB=∠QMB+∠BQM,∴∠QMB=∠QBM=30°,∴∠DBM=90°,∴BM=BD,∵∠DBO+∠ODB=90°,∠DBO+∠MBH=90°,∴∠MBH=∠BDO,∵∠DOB=∠MHB=90°,∴△DOB∽△BHM,∴===,∵OD=m,OB=5,∴BH=m,MH=5,∴M(5﹣m,﹣5),∵MQ=DQ,∴Q(,),∵∠DBE=120°,∴∠DBN=∠EBN=60°,∴DE⊥BQ,DN=NE,QN=BN,∴N(,),E(,),∴CE2=()2+()2=m2﹣6m+91,∴当m=﹣=3时,CE的值最小,此时D(0,3),∴CD==2,方法二:如图,将线段OB绕点B逆时针旋转120°得到线段BP,直线EP交x轴于G,作OM⊥PE于M.易证△BOD≌△BPE,BG=2BP=10,∴点E的运动轨迹是直线PE,当点E与M重合时,OE的值最小,此时PM=OD=3,∴CD===2.故选:C.12.解:∵P在直线y=﹣x+6上,∴设P坐标为(m,6﹣m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2,∴PQ2=m2+(6﹣m)2﹣2=2m2﹣12m+34=2(m﹣3)2+16,则当m=3时,切线长PQ的最小值为4.故选:B.13.解:当x=0时,y=2x+4=4,∴A(0,4);当y=2x+4=0时,x=﹣2,∴C(﹣2,0).∴OA=4,OC=2,∴AC==2.如图所示,过点B作BD⊥x轴于点D.∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°,∴∠CAO=∠BCD.在△AOC和△CDB中,,∴△AOC≌△CDB(AAS),∴CD=AO=4,DB=OC=2,OD=OC+CD=6,∴点B的坐标为(﹣6,2).如图所示.取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=2,∴OE=CE=AC=,∵BC⊥AC,BC=2,∴BE==5,若点O,E,B不在一条直线上,则OB<OE+BE=5+.若点O,E,B在一条直线上,则OB=OE+BE=5+,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为5+,故答案为:5+.14.解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1;故答案为:﹣2或1.15.解:(1)∵由,得,∴C(2,2);(2)如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;(3)令﹣x+3=0,得x=6,由题意:Q(3,0),设直线CQ的解析式是y=kx+b,把C(2,2),Q(3,0)代入得:,解得:k=﹣2,b=6,∴直线CQ对应的函数关系式为:y=﹣2x+6.故答案为:(1)(2,2);(3)y=﹣2x+6.16.解:过点C作CD⊥AB于D,延长DC交⊙C于另一点P′,连接P′A、P′B,此时△P′AB的面积最大,如图所示.当x=0时,y=﹣3,∴点B(0,﹣3);当y=x﹣3=0时,x=4,∴点A(4,0).∵点C(0,1),∴BC=1﹣(﹣3)=4,AO=4,BO=3,AB==5.∵∠ABO=∠CBD,∠AOB=∠CDB=90°,∴△AOB∽△CDB,∴,∴CD==,∴DP′=CD+CP′=+1=.∴S△P′AB=AB•P′D=×5×=.故答案为:.17.解:直线y=kx+2恒过(0,2)即D点,梯形的面积为:=8,直线y=kx+2与x轴的交点为E(﹣,0),如图:∵直线y=kx+2将梯形分成面积相等的两部分,∴S△AED=×AE×OD=×(﹣+1)×2=×8=4,∴k=﹣.故答案为:﹣.18.解:由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为acm2,则每分钟乙水槽中不放铁块的体积为:2.5×48cm3,放了铁块的体积为3×(48﹣a)cm3,∴1×3×(48﹣a)=1×2.5×48,解得a=8,∴铁块的体积为:8×14=112(cm3).故答案为:112.19.解:如图,连接CH,∵直线y=x+4分别交x轴,y轴于A,B两点,∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH∥BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4),又∵点C(0,2),根据勾股定理可得CQ==6,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6+2,即BP+PH+HQ的最小值为6+2;故答案为:6+2.20.解:①如图,作AG⊥EF交EF于点G,连接AE,∵AF平分∠DFE,∴DA=AG=2,在RT△ADF和RT△AGF中,,∴RT△ADF≌RT△AGF(HL),∴DF=FG,∵点E是BC边的中点,∴BE=CE=1,∴AE==,∴GE==1,∴在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2﹣DF)2+1,解得DF=,∴点F(,2),把点F的坐标代入y=kx得:2=k,解得k=3;②当点F与点C重合时,∵四边形ABCD是正方形,∴AF平分∠DFE,∴F(2,2),把点F的坐标代入y=kx得:2=2k,解得k=1.故答案为:1或3.21.解:①如图∵直线与y轴交于点A,与x轴交于点B,∴A(0,2),B(2),∴OA=2,OB=2,过点Q作QC⊥OB于C.∵OB=2∴OC=∴QC=tan30°=1∴点Q的坐标是(②过点Q作QC⊥OB于C.∵OB=2∴∴CQ=∴OC=﹣3∴Q的坐标是(﹣3,)③如图连△OQB是等边三角形∵OB=2∴QC=3∴Q的坐标是(,3)④过点Q作QC⊥OB于C.∵OB=∴∴=∴OC=3∴Q的坐标是(3,﹣)故答案为(,(﹣3,),(,3)(3,﹣)22.解:方法一:∵点Q在直线y=﹣x上,∴设点Q的坐标为(m,﹣m).∵点A的坐标是(0,2),点B的坐标是(2,0),∴△AOB为等腰直角三角形,点O(0,0)到AB的距离h=OA=.设直线AB的解析式为y=kx+b,∵点A(0,2),点B(2,0)在直线AB上,∴有,解得.即直线AB的解析式为y=﹣x+2,∵直线y=﹣x+2与y=﹣x平行,∴点P到底OQ的距离为(平行线间距离处处相等).∵△OPQ的面积S△OPQ=OQ•h=OQ=,∴OQ=2.由两点间的距离公式可知OQ==2,解得:m=±,∴点Q的坐标为(,﹣)或(﹣,).故答案为:(,﹣)或(﹣,).方法二:当P点与A重合时,则△OPQ底OP为2,∵△OPQ的面积为,∴△OPQ的高为,即点Q的横坐标为﹣,∵点Q在直线y=﹣x上,∴点Q的坐标为(﹣,);当P点与B重合时,同理可求出点Q的坐标为(,﹣).综上即可得出点Q的坐标为(,﹣)或(﹣,).23.解:(1)∵AB⊥OB,∴∠ABO=90°,∵∠AOB=60°,∴∠BAO=30°,∵A(6,m),∴OB=6,AB=m,∴OA=2OB=12,AB=6,∴m=6,即A(6,6),∵直线y=kx过点A(6,6),∴6k=6,∴k=;(2)如图1,∵AB∥y轴,∴∠COD=∠BAO=30°,∵CD⊥OA,∴∠CDO=90°,∵OC=AB=6,∴CD=OC=3,OD=CD=9,当点P运动到点D时,OP=OD=9,∴t=;(3)如图2,连接PQ,过点P作PF⊥AB于F,由题意得:OP=2t,AQ=t,Rt△ACD中,∠ACD=30°,AC=6,∴AD=3,∴PD=OA﹣AD﹣OP=12﹣2t﹣3=9﹣2t,∵E是DQ的中点,PE⊥DQ,∴PQ=PD=9﹣2t,Rt△APF中,∠BAO=30°,∴PF=AP==6﹣t,∵AQ=t,BF=t,∴FQ=AB﹣AQ﹣BF=6﹣t﹣t=6﹣2t,Rt△PQF中,由勾股定理得:PQ2=FQ2+PF2,∴(9﹣2t)2=(6﹣2t)2+(6﹣t)2,解得:t1=3(如图3,此时F与Q重合),t2=,如图4,过点P作PM⊥x轴于点M,Rt△OPM中,∠POM=30°,∴OM=OP=t,PM=t;∴P(3,3)或(,).24.解:(1)将点B(0,4)代入直线l的解析式得:b=4,∴直线l的解析式为:y=x+4,令y=0得:x=3,∴A(3,0).(2)存在.∵Q在第一象限的角平分线上,设Q(x,x),根据勾股定理:QB2+BA2=QA2,x2+(x﹣4)2+52=x2+(x﹣3)2,解得x=16,故Q(16,16).(3)能使△ABC为轴对称图形,则得:△ABC为等腰三角形,当AB=BC时,C(0,9)或(0,﹣1),此时C点运动1秒或11秒,当AB=AC时,C(0,﹣4),此时C点运动14秒,当AC=BC时,C(0,),此时C点运动秒.综上所述:当C点运动1秒、秒、11秒、14秒时,能使△ABC为轴对称图形.25.解:(1)∵四边形ABCO为矩形,∴CB=OA=10,AB=OC=6,∵△CBM沿CM翻折后,点B落在x轴上,记作B′点,∴CB′=CB=10,B′M=BM,在Rt△OCB′中,OC=6,CB′=10,∴OB′=8,∴B′点的坐标为(8,0);(2)设AM=t,则BM=B′M=6﹣t,而AB′=OA﹣OB′=2,在Rt△AB′M中,B′M2=B′A2+AM2,即(6﹣t)2=22+t2,解得t=,∴M点的坐标为(10,),设直线CM的解析式为y=kx+b,把C(0,6)和M(10,)代入得,,解得,∴直线CM的解析式为y=﹣x+6;(3)存在,理由:设点P的坐标为(x,0),则△B′CP的面积=PB′×OC=|x﹣8|×6=13,解得x=或,故点P的坐标为(,0)或(,0).26.解:(1)不论k取何值,当x=0时,y=2,则函数一定经过顶点(0,2);(2)当直线经过点A时,把点(1,0)代入y=kx+2得:k+2=0,解得:k=﹣2;当直线经过点C(3,1)时,代入y=kx+2得:3k+2=1,解得:k=﹣,则k的取值范围是:﹣2≤k≤﹣;(3)CD=3﹣1=2,当直线经过点B时,把B的坐标(3,0),代入y=kx+2得:3k+2=0,解得:k=﹣,当﹣2≤k≤﹣时,E在AB上,则S△CDE=×2×1=1;当﹣<k≤﹣时,E在BC上,在y=kx+2中,令x=3,则y=3k+2,则CE=1﹣(3k+2)=﹣3k﹣1则S△CDE=×2×(﹣3k﹣1)=﹣3k﹣1.即S=﹣3k﹣1.27.解:【基础模型】:∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);。
2021年中考数学《一次函数》总复习50题1.游泳池定期换水,某游泳池在一次换水前存水900立方米,换水时打开排水孔,以每小时300立方米的速度将水放出.设放水时间为x小时,游泳池内的存水量为y立方米.(1)直接写出y关于x的函数表达式和自变量x的取值范围;(2)放水2小时20分后,游泳池内还剩水多少立方米?2.请你用学习“一次函数”中积累的经验和方法研究函数y=|x﹣2|的图象和性质,并解决问题.(1)①当x=2时,y=|x﹣2|=;②当x>2时,y=|x﹣2|=;③当x<2时,y=|x﹣2|=;显然,②和③均为某个一次函数的一部分.(2)在平面直角坐标系xOy中,作出函数y=|x﹣2|的图象.(3)结合图象,不等式|x﹣2|<4的解集为.3.已知:一次函数y=kx+b(k≠0)的图象经过A(2,5),B(1,3)两点.(1)求此一次函数的表达式;(2)求此一次函数图象与x轴的交点C的坐标.4.用图象法解二元一次方程组5.如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y 轴交于点B,与l1相交于C(﹣3,3),AO=2BO.(1)求直线l2:y=kx+b的解析式;(2)求△ABC的面积.6.A,B两地相距80km,甲、乙两人骑车同时分别从A,B两地相向而行,假设他们都保持匀速行驶,则他们各自到A地的距离s(km)都是骑车时间t(h)的一次函数,如图所示.(1)求乙的s乙与t之间的解析式;(2)经过多长时间甲乙两人相距10km?7.为了鼓励积极参与“禁毒知识竞赛”的40名参赛选手,学校团委计划在“民本超市”为他们每人购买一本笔记本作为参赛纪念品.据了解,在“民本超市”购买A种笔记本10本和B种笔记本30本共需510元,且A种笔记本比B种笔记本每本贵3元.(1)求A,B两种笔记本的单价分别是多少元;(2)经双方协商,A种笔记本每本可优惠a元(3<a<5),B种笔记本价格不变.求购买两种笔记本的总费用y(元)与购买A种笔记本的数量x(本)之间的函数表达式;(3)在(2)的条件下,请根据函数的性质说明,随着x值的增大,y的值如何变化?8.如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线y=x+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∥y轴交直线y=x+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∠CGF=∠ABC时,求点G的坐标.9.甲乙两人同时登同一座山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙在提速前登山的速度是米/分钟,乙在A地提速时距地面的高度b为米;(2)若乙提速后,乙比甲提前了9分钟到达山顶,请求出乙提速后y和x之间的函数关系式;(3)登山多长时间时,乙追上了甲,此时甲距C地的高度为多少米?10.已知一次函数y=(6+3m)x+n﹣4.(1)m为何值时,y随x的增大而减小?(2)n为何值时,函数图象与y轴的交点在x轴下方?(3)m,n分别是何值时,函数图象经过原点?(4)当m =,n=5时,求这个一次函数的图象与两个坐标轴的交点.11.已知y是x的一次函数,它的图象上有两点分别为点A(1,1),B(5,9).(1)求这个一次函数的表达式;(2)判断点C(3,7)是否在这条直线上;(3)当x取何值时,y>0?12.某地盛产樱桃,一年一度的樱桃节期间,很多果园推出了免费品尝和优惠采摘活动,其中甲、乙两家果园的樱桃品质相同,销售价格也相同,但推出了不同的采摘方案:甲园游客进园需购买20元/人的门票,采摘的樱桃六折优惠乙园游客进园不需购买门票,采摘的樱桃在一定数量以内按原价购买,超过部分打折购买小明和爸爸、妈妈在樱桃节期间也来采摘樱桃,若设他们的樱桃采摘量为x(千克)(出园时将自己采摘的樱桃全部购买),在甲采摘园所需总费用为y1(元)在乙采摘园所需总费用为y2(元),图中的折线OAB表示y2与x之间的函数关系.(1)①甲、乙两果园的樱桃单价为元/千克;②直接写出y1的函数表达式:,并在图中补画出y1的函数图象;(2)求出y2与x之间的函数关系式;(3)若小明一家当天所采摘的樱桃不少于30千克,选择哪个采摘园更划算?请说明理由.13.如图,规格相同的一种纸杯叠放在一起,3个的高度为9.2cm,6个的高度是11cm.(1)设x个这种纸杯叠在一起的高度为ycm,求y与x之间的关系式;(2)求10个这种纸杯叠在一起的高度.14.如图,过点A(0,3),B(3,0)的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点P.(1)求k,b的值;(2)求点P的坐标.15.某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y1(单位:元)与用电量x(单位:度)之间满足的关系如图1所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y2(单位:元)与用电量x(单位:元)之间满足如表1所示的一次函数关系.(1)求y2与x的函数关系式;并直接写出当0≤x≤180和x>180时,y1与x的函数关系式;(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度.…80100140…低谷期用电量x度…202535…低谷期用电电费y2元16.如图,在平面直角坐标系中AD⊥BC,垂足为D,交y轴于点H,直线BC的解析式为y=﹣2x+4.点H(0,2),(1)求证:△AOH≌△COB;(2)求D点的坐标.17.在学习了一次函数后,某校数学兴趣小组根据学习的经验,对函数y=﹣|x|﹣2的图象和性质进行了探究,下面是该兴趣小组的探究过程,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣10123…y…﹣5﹣4﹣3n﹣3﹣4﹣5…①n=;②如图,在所给的平面直角坐标系中,描出以表中各组对应值为坐标的点,根据描出的点画出该函数的图象;(2)当﹣2<x≤5时,y的取值范围是;(3)根据所画的图象,请写出一条关于该函数图象的性质.18.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买A,B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)19.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x轴于点B.过点E(1,0)且垂直于x轴的直线DE交AB于点D,P是直线DE上一动点,且在点D 的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当△ABP的面积为2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C 的坐标.20.如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.(i)若直线l把△BOC分成面积比为1:2的两部分,求直线l的函数表达式;(ⅱ)连接AD,若△ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.21.为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动,自行车队从甲地出发,目的地为乙地,在自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往乙地,到达乙地后立即按原路返回甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的3倍.如图所示的是自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地的时间x(h)的关系图象,请根据图象提供的信息,回答下列问题.(1)自行车队行驶的速度是;邮政车行驶的速度是;a=.(2)邮政车出发多少小时与自行车队相遇?(3)当邮政车与自行车队相距15km时,此时离邮政车出发经过了多少小时?22.一位农民带上若干千克自产的苹果进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的苹果x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图,结合图象解决下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的苹果价格是多少?(3)降价后他按每千克4元将剩余苹果售完,这时他手中50的钱(含备用零钱)是260元,试求出图象中a的值;(4)求出降价前y与x之间的关系式(不要求写x的取值范围).23.如图,在平面直角坐标系xOy中,直线l1:y=kx+b与x轴交于点A(﹣6,0),与y 轴交于点B(0,4),与直线l2:y=x相交于点C.(1)求直线l1的函数表达式;(2)求△COB的面积;(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.24.如图,在平面直角坐标系xOy中,直线l1:y=x+2与x轴交于点A,直线l2:y=3x﹣6与x轴交于点D,与l1相交于点C.(1)求点D的坐标;(2)在y轴上一点E,若S△ACE=S△ACD,求点E的坐标;(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与△APD 全等,求点F的坐标.25.如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C 在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.26.某市为了鼓励居民节约用水,决定水费实行两级收费制度.若每月用水量不超过10吨(含10吨),则每吨按优惠价m元收费;若毎月用水量超过10吨,则超过部分毎吨按市场价n元收费,小明家3月份用水20吨,交水费50元;4月份用水18吨,交水费44元.(1)求每吨水的优惠价和市场价分別是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式.27.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.28.一次函数y=kx+b的图象经过点A(0,9),并与直线y=x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于?请求出点Q的坐标;(3)在y轴上是否存在点P使△P AB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.29.如图①,某商场有可上行和下行的两条自动扶梯,扶梯上行和下行的长度相等,运行速度相同且保持不变,甲、乙两人同时站上了上行和下行端,甲站上上行扶梯的同时又以0.8米/秒的速度往上走,乙站上下行扶梯后则站立不动随扶梯下行,甲到达扶梯顶端后立即乘坐下行扶梯(换乘时间忽略不计)同时以0.8米/秒的速度往下走,乙到达低端后则在原点等候甲,图②中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,高扶梯底端的路程y(米)与所用时间x(秒)的部分函数图象,结合图象解答下列问题:(1)每条扶梯的长度为米(直接填空);(2)求点B的坐标;(3)乙到达扶梯底端后,还需等待秒,甲才到达扶梯底端(直接填空).30.小明和小津去某风景区游览,小明从明桥出发沿景区公路骑自行车去陶公亭,同一时刻小津在霞山乘电动汽车出发沿同一公路去陶公亭,车速为24m/h.他们出发后xh时,离霞山的路程为ykm,y为x的函数图象如图所示:(1)求直线OC和直线AB的函数表达式;(2)回答下列问题,并说明理由;①当小津追上小明时,他们是否已过了夏池?②当小津到达陶公亭时,小明离陶公亭还有多少千米?31.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣1/2x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.点P是y轴上一点.(1)写出下列各点的坐标:点A、点B、点C;(2)若S△COP=S△COA,请求出点P的坐标;(3)当P A+PC最短时,求出直线PC的解析式.32.如图,已知直线y=﹣x+3与x轴,y轴分别交于点A,B,与直线y=x交于点C点P 从点O出发以每秒1个单位的速度向点A运动,运动时间设为t秒.(1)求点C的坐标;(2)求下列情形t的值:①连结BP,BP把△ABO的面积平分;②连结CP,若△OPC为直角三角形.33.【提出问题】课间,一位同学拿着方格本遇人便问:“如图所示,在边长为1的小正方形组成的网格中,点A、B、C都是格点,如何证明点A、B、C在同一直线上呢?”【分析问题】一时间,大家议论开了.同学甲说:“可以利用代数方法,建立平面直角坐标系,利用函数的知识解决”,同学乙说:“也可以利用几何方法…”同学丙说:“我还有其他的几何证法”……【解决问题】请你用两种方法解决问题方法一(用代数方法):方法二(用几何方法):34.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.35.建立模型:如图1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直线ED经过点B,过A作AD⊥ED于D,过C作CE⊥ED于E.则易证△ADB≌△BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角∠ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.模型应用:(1)如图2,点A(0,4),点B(3,0),△ABC是等腰直角三角形.①若∠ABC=90°,且点C在第一象限,求点C的坐标;②若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若△MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.36.如图1,直线y=x+2与x轴交于点A,与y轴交于点B.已知点C(﹣2,0).(1)求出点A,点B的坐标.(2)P是直线AB上一动点,且△BOP和△COP的面积相等,求点P坐标.(3)如图2,平移直线l,分别交x轴,y轴于交于点A1B1,过点C作平行于y轴的直线m,在直线m上是否存在点Q,使得△A1B1Q是等腰直角三角形?若存在,请直接写出所有符合条件的点Q的坐标.37.如图所示,将长方形纸片OABC放入直角坐标系xoy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,.(1)求A、C两点的坐标;(2)求AC两点所在直线的解析式;38.已知一次函数y=x+b,当x=1,y=3.(1)求b的值;(2)当y=4,求x的值.39.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下列问题;(1)分别求出选择这两种卡消费时,y关于x的函数表达式.(2)求出B点坐标.(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?40.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)甲、乙两地的距离为km;(2)慢车的速度为km/h,快车的速度为km/h;(3)求当x为多少时,两车之间的距离为500km,请通过计算求出x的值.41.如图,一次函数y=kx+b的图象与直线交于点A(4,3),与y轴交于点B,且OA=OB.(1)求一次函数的表达式;(2)求两直线与y轴围成的三角形的面积.(3)在x轴上是否存在点C,使△AOC是以OA为腰的等腰三角形?若存在,直接写出C的坐标;若不存在,说明理由.42.如图,一次函数的图象过A(3,0),B(0,3)两点.(1)求直线AB的函数表达式;(2)直线y=﹣3x﹣3交x轴于点C,E为直线AB上一动点.①求CE的最小值;②D是直线y=﹣3x﹣3上任意一点,F为直线AB上另一动点,若△DEF是以2为直角边长的等腰直角三角形,求D点的坐标.43.人在运动时心跳速率通常和人的年龄有关,用x表示一个人的年龄,用y表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,则y=0.8(220﹣x)(1)正常情况下,一个15岁的学生运动时所能承受的每分钟心跳的最高次数是多少?(2)当一个15岁学生长到而立之年时(30岁),他运动时所能承受的每分钟心跳最高次数有何变化?变化次数是多少?(3)一个50岁的人运动时,10秒心跳次数为22次,请问他有危险吗?为什么?44.如图,在平面内,点Q为线段AB上任意一点,对于该平面内任意的点P,若满足PQ 小于等于AB,则称点P为线段AB的“限距点”.(1)在平面直角坐标系xOy中,若点A(﹣1,0),B(1,0).①在的点C(0,2),D(﹣2,﹣2),E(0,﹣)中,是线段AB的“限距点”的是;②点P是直线y=x+上一点,若点P是线段AB的“限距点”,请求出点P横坐标x P的取值范围.(2)在平面直角坐标系xOy中,若点A(t,1),B(t,﹣1).若直线y=x+上存在线段AB的“限距点”,请直接写出t的取值范围45.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a),l1与y 轴交于点C,l2与x轴交于点A.(1)求a的值及直线l1的解析式.(2)求四边形P AOC的面积.(3)在x轴上方有一动直线平行于x轴,分别与l1,l2交于点M,N,且点M在点N的右侧,x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.46.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC 的面积为时.①求k的值;②若m=a+b,求m的取值范围.47.如图,在平面直角坐标系中,函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,与函数y=x+b的图象交于点C(﹣2,m).(1)求m和b的值;(2)函数y=x+b的图象与x轴交于点D,点E从点D出发沿DA方向,以每秒2个单位长度匀速运动到点A(到A停止运动).设点E的运动时间为t秒.①当△ACE的面积为12时,求t的值;②在点E运动过程中,是否存在t的值,使△ACE为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.48.如图1,已知线段AB与点P,若在线段AB上存在点Q,满足PQ≤AB,则称点P为线段AB的“限距点”.(1)如图2,在平面直角坐标系xOy(2)中,若点A(﹣1,0),B(1,0)①在C(0,2)2,D(﹣2,﹣2),中,是线段AB的“限距点”的是;②点P是直线y=x+1上一点,若点P是线段AB的“限距点”,请求出点P横坐标x P的取值范围.(2)在平面直角坐标系xOy中,点A(t,1),B(t,﹣1),直线y=与x轴交于点M,与y轴交于点N.若线段MN上存在线段AB的“限距点”,请求出t的取值范围.49.如图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD交AB于D,交y轴于点E.且△COE≌△BOA.(1)求B点坐标为;线段OA的长为;(2)确定直线CD解析式,求出点D坐标;(3)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.①点M移动过程中,线段OM与ON数量关系是否不变,并证明;②当△OMN面积最小时,求点M的坐标和△OMN面积.50.如图,一次函数y=的图象分别与x轴、y轴交于点A、B,以线段AB 为边在第四象限内作等腰直角△ABC,且∠BAC=90°.(1)试写出点A、B的坐标:A(,),B(,);(2)求点C的坐标;(3)求直线BC的函数表达式.2021年中考数学《一次函数》总复习50题参考答案与试题解析1.游泳池定期换水,某游泳池在一次换水前存水900立方米,换水时打开排水孔,以每小时300立方米的速度将水放出.设放水时间为x小时,游泳池内的存水量为y立方米.(1)直接写出y关于x的函数表达式和自变量x的取值范围;(2)放水2小时20分后,游泳池内还剩水多少立方米?解:(1)由题意得:y=﹣300x+900,∵0≤y≤900,∴0≤﹣300x+900≤900,∴0≤x≤3,∴函数表达式为y=﹣300x+900(0≤x≤3);(2)当x=2时,y=﹣300×+900=﹣700+900=200,答:游泳池内还剩水200立方米.2.请你用学习“一次函数”中积累的经验和方法研究函数y=|x﹣2|的图象和性质,并解决问题.(1)①当x=2时,y=|x﹣2|=0;②当x>2时,y=|x﹣2|=x﹣2;③当x<2时,y=|x﹣2|=2﹣x;显然,②和③均为某个一次函数的一部分.(2)在平面直角坐标系xOy中,作出函数y=|x﹣2|的图象.(3)结合图象,不等式|x﹣2|<4的解集为﹣2<x<6.解:(1)①当x=2时,y=|x﹣2|=0;②当x>2时,y=|x﹣2|=x﹣2;③当x<2时,y=|x﹣2|=2﹣x;故答案为:0,x﹣2,2﹣x;(2)函数y=|x﹣2|的图象,如图所示:(3)结合图象,不等式|x﹣2|<4的解集为:﹣2<x<6.故答案为:﹣2<x<6.3.已知:一次函数y=kx+b(k≠0)的图象经过A(2,5),B(1,3)两点.(1)求此一次函数的表达式;(2)求此一次函数图象与x轴的交点C的坐标.解:(1)把A(2,5),B(1,3)代入y=kx+b得:,解得:,故一次函数解析式为:y=2x+1;(2)当y=0时,0=2x+1,解得:x=﹣,故C(﹣,0).4.用图象法解二元一次方程组解:如图,在同一坐标系中画出直线y=2x﹣3,y=x+2,可得两直线的交点坐标是(2,1),∴二元一次方程组的解为.5.如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y 轴交于点B,与l1相交于C(﹣3,3),AO=2BO.(1)求直线l2:y=kx+b的解析式;(2)求△ABC的面积.解:(1)∵直线l1:y=x+6与y轴交于点A,∴当x=0时,y=0+6=6,∴A(0,6),∵AO=2BO,∴B(0,﹣3),∵C(﹣3,3),代入直线l2:y=kx+b中得,解得.故直线l2的解析式为y=﹣2x﹣3;(2)S△ABC=AB•|x C|=×(6+3)×3=.6.A,B两地相距80km,甲、乙两人骑车同时分别从A,B两地相向而行,假设他们都保持匀速行驶,则他们各自到A地的距离s(km)都是骑车时间t(h)的一次函数,如图所示.(1)求乙的s乙与t之间的解析式;(2)经过多长时间甲乙两人相距10km?解:(1)s乙与t之间的解析式为:y=kt+80,将点(1,60)代入上式并解得:k=﹣20,故s乙与t之间的解析式为:y=﹣20t+80;(2)同理s甲与t之间的解析式为:y=15t,由题意得:s甲﹣s乙=±10,即﹣20t+80﹣15t=±10,解得:t=2或.7.为了鼓励积极参与“禁毒知识竞赛”的40名参赛选手,学校团委计划在“民本超市”为他们每人购买一本笔记本作为参赛纪念品.据了解,在“民本超市”购买A种笔记本10本和B种笔记本30本共需510元,且A种笔记本比B种笔记本每本贵3元.(1)求A,B两种笔记本的单价分别是多少元;(2)经双方协商,A种笔记本每本可优惠a元(3<a<5),B种笔记本价格不变.求购买两种笔记本的总费用y(元)与购买A种笔记本的数量x(本)之间的函数表达式;(3)在(2)的条件下,请根据函数的性质说明,随着x值的增大,y的值如何变化?解:(1)设A种笔记本每本x元,B种笔记本每本y元,根据题意,得:,解得:;答:A种笔记本每本15元,B种笔记本每本12元.(2)由题意得:y=(15﹣a)x+12(40﹣x)=(3﹣a)x+480;(3)当3<a<5时,3﹣a<0,由一次函数的性质得,y的值随着x值的增大而减小.8.如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线y=x+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∥y轴交直线y=x+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∠CGF=∠ABC时,求点G的坐标.解:(1)根据题意可得:,解得:∴点D坐标(2,4)(2)∵直线y=﹣2x+8分别交x轴,y轴于点A,B,∴点B(0,8),点A(4,0),∵直线y=x+3交y轴于点C,∴点C(0,3),∵AE∥y轴交直线y=x+3于点E,∴点E(4,5)∵点B(0,8),点A(4,0),点C(0,3),点E(4,5),∴BC=5,AE=5,AC==5,BE==5,∴BC=AE=AC=BE,∴四边形ACBE是菱形;(3)∵BC=AC,∴∠ABC=∠CAB,∵∠CGF=∠ABC,∠AGF=∠ABC+∠BFG=∠AGC+∠CGF∴∠AGC=∠BFG,且FG=CG,∠ABC=∠CAB,∴△ACG≌△BGF(AAS)∴BG=AC=5,设点G(a,﹣2a+8),∴(﹣2a+8﹣8)2+(a﹣0)2=52,∴a=±,∵点G在线段AB上∴a=,∴点G(,8﹣2)9.甲乙两人同时登同一座山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙在提速前登山的速度是15米/分钟,乙在A地提速时距地面的高度b为30米;(2)若乙提速后,乙比甲提前了9分钟到达山顶,请求出乙提速后y和x之间的函数关系式;(3)登山多长时间时,乙追上了甲,此时甲距C地的高度为多少米?解:(1)由图形可得乙一分钟走了15米,则乙在提速前登山的速度是15米/分钟,2分钟走了30米,∴b=30,故答案为:15,30;(2)由图形可得:t=20﹣9=11分,设AB解析式为:y=kx+b,解得:∴直线AB解析式为:y=30x﹣30(2≤x≤11);(3)∵C(0,100),D(20,300)∴线段CD的解析式:y=10x+100(0≤x≤20),由∴∴经过6.5分钟后,乙追上甲,此时甲距C地的高度=165﹣100=65米.10.已知一次函数y=(6+3m)x+n﹣4.(1)m为何值时,y随x的增大而减小?(2)n为何值时,函数图象与y轴的交点在x轴下方?(3)m,n分别是何值时,函数图象经过原点?(4)当m=,n=5时,求这个一次函数的图象与两个坐标轴的交点.解:(1)当6+3m<0,即m<﹣2时,y随x的增大而减小;(2)当n﹣4<0,即n<4时,函数图象与y轴交点在x轴下方.(3)当n﹣4=0,6+3m≠0,即n=4,m≠﹣2时,函数的图象过原点.(4)当,n=5时,一次函数为:y=7x+1.当x=0时,y=1;当y=0时,.所以图象与x轴交点为(﹣,0),与y轴交点为(0,1).11.已知y是x的一次函数,它的图象上有两点分别为点A(1,1),B(5,9).(1)求这个一次函数的表达式;(2)判断点C(3,7)是否在这条直线上;(3)当x取何值时,y>0?解:(1)设一次函数解析式为y=kx+b,∵图象过两点A(1,1),B(5,9),∴,解得:,∴函数解析式为:y=2x﹣1;(2)当x=3时,y=6﹣1=5≠7,∴点C(3,7)不在这条直线上;(3)∵y>0,。
2021年九年级中考数学一轮复习专题《一次函数:动点综合》1.如图所示,在平面直角坐标系中,直线y=﹣x+3分别与x轴、y轴交于点B,C,且与直线y=x﹣2交于点A,直线y=x﹣2与y轴交于点D.(1)直接写出点A,B,C,D的坐标;(2)若点E是直线AD上的点,且△COE的面积为12,求直线CE的函数表达式;(3)设点P是x轴上的点,使得点P到点A,C的距离和最小,直接写出点P的坐标.2.如图,在平面直角坐标系中,直线y=kx过点A(6,m),过点A作x轴的垂线,垂足为点B,过点A作y轴的垂线,垂足为点C.∠AOB=60°,CD⊥OA于点D.动点P从点O 出发,以每秒2个单位长度的速度向点A运动,动点Q从点A出发.以每秒个单位长度的速度向点B运动.点P,Q同时开始运动,当点P到达点A时,点P,Q同时停止运动,设运动时间为t(s),且t>0.(1)求m与k的值;(2)当点P运动到点D时,求t的值;(3)连接DQ,点E为DQ的中点,连接PE,当PE⊥DQ时,请直接写出点P的坐标.3.八年级数学兴趣小组的同学在一起研究数学问题:已知直线y =2x +2与y 轴、x 轴分别交于A 、B 两点,以B 为直角顶点在第二象限作等腰Rt △ABC ,请你参与解决以下问题:(1)如图1,请求出点C 的坐标;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD =AC ,设△ABC 的面积为S 1,△ADE 的面积为S 2,请判断S 1与S 2的大小关系,并说明理由;(3)如图3,设直线AC 交x 轴于M ,P (﹣2.5,k )是线段BC 上一点,在线段BM 是否存在一点N ,使直线PN 平分△BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由.4.如图,直线y =﹣x ﹣4交x 轴和y 轴于点A 和点C ,点B (0,2)在y 轴上,连接AB ,点P 为直线AB 上一动点.(1)直线AB 的解析式为 ;(2)若S △APC =S △AOC ,求点P 的坐标;(3)当∠BCP =∠BAO 时,求直线CP 的解析式及CP 的长.5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系xOy中,直线y=kx+8与直线y=x﹣1交于点A(3,m).(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣1交于点M,过点P 作垂直于x轴的直线与直线y=kx+8交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.7.点P是平面直角坐标系中的一点且不在坐标轴上,过点P向x轴,y轴作垂线段,若垂线段的长度的和为4,则点P叫做“垂距点”,例如:如图中的P(1,3)是“垂距点”.(1)在点A(2,2),B(,﹣),C(﹣1,5),是“垂距点”的为;(2)若D(m,m)为“垂距点”,求m的值;(3)若过点(2,3)的一次函数y=kx+b(k≠0)的图象上存在“垂距点”,则k的取值范围是.8.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.9.如图,直线l的解析式为y=﹣x+b,它与坐标轴分别交于A、B两点,其中点B坐标为(0,4).(1)求出A点的坐标;(2)在第一象限的角平分线上是否存在点Q使得∠QBA=90°?若存在,求点Q的坐标;若不存在,请说明理由.(3)动点C从y轴上的点(0,10)出发,以每秒1cm的速度向负半轴运动,求出点C 运动所有的时间t,使得△ABC为轴对称图形(直接写答案即可)10.如图,在平面直角坐标系xOy中,直线l:y=kx+b与x轴交于点A(﹣6,0),与y1:y=x相交于点C.轴交于点B(0,4),与直线l2(1)求直线l的函数表达式;1(2)求△COB的面积;(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.参考答案1.解:(1)∵直线y=﹣x+3分别与x轴、y轴交于点B,C,∴令y=0,则﹣x+3=0,解得x=6,令x=0,则y=3,∴B(6,0),C(0,3),∵直线y=x﹣2与y轴交于点D,∴当x=0时,y=﹣2,∴D(0,﹣2),解得,∴A(5,);(2)设点E的坐标为(),∴,即,∴a=±8,∴E(8,2)或E(﹣8,﹣6),设CE的函数表达式为y=kx+3,把E(8,2)或E(﹣8,﹣6)代入上式得或,∴直线CE的函数表达式为或;(3)如图,求得C关于x轴的对称点C′(0,﹣3),连接AC′,交x轴于P,设直线AC′的解析式为y=mx﹣3,代入A(5,)得,=5m﹣3,解得m=,∴直线AC′为y=x﹣3,令y=0,则x﹣3=0,解得x=,∴.2.解:(1)∵AB⊥OB,∴∠ABO=90°,∵∠AOB=60°,∴∠BAO=30°,∵A(6,m),∴OB=6,AB=m,∴OA=2OB=12,AB=6,∴m=6,即A(6,6),∵直线y=kx过点A(6,6),∴6k=6,∴k=;(2)如图1,∵AB∥y轴,∴∠COD=∠BAO=30°,∵CD⊥OA,∴∠CDO=90°,∵OC=AB=6,∴CD=OC=3,OD=CD=9,当点P运动到点D时,OP=OD=9,∴t=;(3)如图2,连接PQ,过点P作PF⊥AB于F,由题意得:OP=2t,AQ=t,Rt△ACD中,∠ACD=30°,AC=6,∴AD=3,∴PD=OA﹣AD﹣OP=12﹣2t﹣3=9﹣2t,∵E是DQ的中点,PE⊥DQ,∴PQ=PD=9﹣2t,Rt△APF中,∠BAO=30°,∴PF=AP==6﹣t,∵AQ=t,BF=t,∴FQ=AB﹣AQ﹣BF=6﹣t﹣t=6﹣2t,Rt△PQF中,由勾股定理得:PQ2=FQ2+PF2,∴(9﹣2t)2=(6﹣2t)2+(6﹣t)2,解得:t1=3(如图3,此时F与Q重合),t2=,如图4,过点P作PM⊥x轴于点M,Rt△OPM中,∠POM=30°,∴OM=OP=t,PM=t;∴P(3,3)或(,).3.解:(1)令x=0,则y=2,令y=0,则x=﹣1,则点A、B的坐标分别为:(0,2)、(﹣1,0),过点C作CH⊥x轴于点H,∵∠HCB +∠CBH =90°,∠CBH +∠ABO =90°,∴∠ABO =∠BCH ,∵∠CHB =∠BOA =90°,BC =BA ,∴△CHB ≌△BOA (AAS ),∴BH =OA =2,CH =OB ,则点C (﹣3,1);(2)将点A 、C 的坐标代入一次函数表达式:y =mx +b 得:,解得,故直线AC 的表达式为:y =x +2;∵AD =AC ,AB ⊥BC ,则BC =BD ,故S △ABC =S △ABD ,由C 、D 的坐标,同理可得直线CD 的表达式为:y =﹣x ﹣…①,则点E (0,﹣), 直线AD 的表达式为:y =﹣3x +2…②,联立①②并解得:x =1,即点D (1,﹣1),点B 、E 、D 的坐标分别为(﹣1,0)、(0,﹣)、(1,﹣1), 故点E 是BD 的中点,∴S 2=S △ABD =S △ABC =S 1,故S 1=2S 2;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x﹣,将点P坐标代入直线BC的表达式得:k=,直线AC的表达式为:y=x+2,则点M(﹣6,0),S△BMC=MB×y C=×5×1=,S△BPN =S△BCM==NB×k=NB,解得:NB=,则ON=,∵BN<BM,故点N在线段MB上,故点N(﹣,0).4.解:(1)∵直线y=﹣x﹣4交x轴和y轴于点A和点C,∴点A(﹣4,0),点C(0,﹣4),设直线AB的解析式为y=kx+b,由题意可得:,解得:,∴直线AB的解析式为y=x+2,故答案为:y=x+2;(2)∵点A(﹣4,0),点C(0,﹣4),点B(0,2),∴OA=OC=4,OB=2,∴BC=6,设点P(m,m+2),当点P在线段AB上时,∵S△APC =S△AOC,∴S△ABC ﹣S△PBC=×4×4,∴×6×4﹣×6×(﹣m)=8,∴m=﹣,∴点P(﹣,);当点P在BA的延长线上时,∵S△APC =S△AOC,∴S△PBC ﹣S△ABC=×4×4,∴×6×(﹣m)﹣×6×4=8,∴m=﹣,∴点P(﹣,﹣),综上所述:点P坐标为(﹣,)或(﹣,﹣);(3)如图,当点P在线段AB上时,设CP与AO交于点H,在△AOB和△COH中,,∴△AOB≌△COH(ASA),∴OH=OB=2,∴点H坐标为(﹣2,0),设直线PC解析式y=ax+c,由题意可得,解得:,∴直线PC解析式为y=﹣2x﹣4,联立方程组得:,解得:,∴点P(﹣,),∴CP==,当点P'在AB延长线上时,设CP'与x轴交于点H',同理可求直线P'C解析式为y=2x﹣4,联立方程组,∴点P(4,4),∴CP==4,综上所述:CP的解析式为:y=﹣2x﹣4或y=2x﹣4;CP的长为或4.5.解:(1)设直线AC的解析式是y=kx+b,根据题意得:,解得:.则直线AC的解析式是:y=﹣x+6;(2)∵C(0,6),A(4,2),∴OC=6,=×6×4=12;∴S△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M到y轴的距离是×4=1,∴点M的横坐标为1或﹣1;当M 的横坐标是:1,在y =x 中,当x =1时,y =,则M 的坐标是(1,);在y =﹣x +6中,x =1则y =5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,)或M 2(1,5).当M 的横坐标是:﹣1,在y =﹣x +6中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7).综上所述:M 的坐标是:M 1(1,)或M 2(1,5)或M 3(﹣1,7). 6.解:(1)把A (3,m )代入y =x ﹣1中,得m =3﹣1=2,∴A (3,2),把A (3,2)代入y =kx +8中,得2=3k +8,解得,k =﹣2;答:k ,m 的值为﹣2、2;(2)由(1)知,直线y =kx +8为y =﹣2x +8,根据题意,如图:∵点P (n ,n ),∴M (n ﹣1,n ),N (n ,﹣2n +8),∴PM =1,PN =|3n ﹣8|,∵PN ≤2PM ,∴|3n ﹣8|≤2×1,∴2≤n≤∵P与N不重合,∴n≠﹣2n+8,∴n≠,综上,2≤n≤,且n≠.7.解:(1)根据题意,对于点A而言,|2|+|2|=4,A是“垂距点”,对于点B而言,||+|﹣|=4,B是“垂距点”,对于点C而言,|﹣1|+|5|=6≠4,所以C不是“垂距点”,故答案为A和B.(2)根据题意得|m|+||=4①当m>0时,则2m=4,解得m=2,②当m<0时,则﹣2m=4,解得m=﹣2,故m的值为±2.(3)如图,取E(0,4),F(4,0),G(﹣4,0).连接EF,EG,在EF上取一点P,作PM⊥OE于M,PN⊥OF于N.则有四边形PMON是矩形,可得PN=OM,∵OE=OF,∴∠OEF=45°∴PM=EM,∴PM+PN=OM+EM=4,∴线段EF或线段EG上的点是“垂距点”,当直线y=kx+b与线段EF或线段EG有交点时,直线y=kx+b上存在“垂距点”,∵直线y=kx+b,经过A(2,3),∴3=2k+b,∴b=3﹣2k,∴直线y=kx+3﹣2k,当直线经过E(0,4)时,k=﹣,当直线经过F(4,0)时,k=﹣,观察图象可知满足条件的k的值为k≤﹣或k≥﹣且k≠0.故答案为:k≤﹣或k≥﹣且k≠0.8.解:(1)∵点A的坐标为(0,6),∴设直线AB的解析式为y=kx+6,∵点C(2,4)在直线AB上,∴2k+6=4,∴k=﹣1,∴直线AB的解析式为y=﹣x+6;(2)由(1)知,直线AB的解析式为y=﹣x+6,令y=0,∴﹣x+6=0,∴x=6,∴B(6,0),∴S=OB•y C=12,△OBC∵△OPB的面积是△OBC的面积的,∴S=×12=3,△OPB设P的纵坐标为m,=OB•m=3m=3,∴S△OPB∴m=1,∵C(2,4),∴直线OC的解析式为y=2x,当点P在OC上时,x=,∴P(,1),当点P在BC上时,x=6﹣1=5,∴P(5,1),即:点P(,1)或(5,1);(3)∵△OBP是直角三角形,∴∠OPB=90°,①当点P在OC上时,如图,过点C作CH⊥x轴于H,∵C(2,4),∴CH=4,OC=2=OB•CH=OC•BP,∴S△OBC∴BP===,由(2)知,直线OC的解析式为y=2x①,设点P的坐标为(m,2m),∵B(6,0),∴BP2=(m﹣6)2+4m2=,∴m=∴P(,),②当点P在BC上时,同①的方法,∴P(3,3),即:点P的坐标为(,)或(3,3).9.解:(1)将点B(0,4)代入直线l的解析式得:b=4,∴直线l的解析式为:y=x+4,令y=0得:x=3,∴A(3,0).(2)存在.∵Q在第一象限的角平分线上,设Q(x,x),根据勾股定理:QB2+BA2=QA2,x2+(x﹣4)2+52=x2+(x﹣3)2,解得x=16,故Q(16,16).(3)能使△ABC为轴对称图形,则得:△ABC为等腰三角形,当AB=BC时,C(0,9)或(0,﹣1),此时C点运动1秒或11秒,当AB=AC时,C(0,﹣4),此时C点运动14秒,当AC=BC时,C(0,),此时C点运动秒.综上所述:当C点运动1秒、秒、11秒、14秒时,能使△ABC为轴对称图形.10.解:(1)将点A(﹣6,0),B(0,4)代入y=kx+b中,得,∴,∴直线l的函数表达式为y=x+4;1的函数表达式为y=x+4①,(2)由(1)知,直线l1:y=x,∵直线l2联立①②解得,,∴C(6,8),∵B(0,4),∴OB=4,=OB•|x C|=×4×6=12;∴S△COB(3)设P(m,0),∵O(0,0),C(6,8),∴OP=|m|.OC=10,CP=,∵△POC是等腰三角形,①当OP=OC时,∴|m|=10,∴m=±10,∴P(﹣10,0)或(10,0),②当OP=CP时,∴|m|=,∴m=,∴P(,0),③当OC=CP时,∴10=,∴m=0(舍)或m=12,∴P(12,0),即:满足条件的点P的坐标为(﹣10,0)或(10,0)或(12,0)或(,0).21。
2021年中考九年级数学第二轮专题复习:一次函数的综合题强化训练练习题1、已知:如图1:点A(5,0)B(0,2),AB=AC,∠BAC=90°.(1)求点C的坐标.(2)以AB为斜边作等腰直角△ABD,请直接写出点D的坐标;(3)如图2,若E、F分别在BC、AB上,∠AEC=75°,FE⊥BC.求证:BF=AE.2、如图1,在平面直角坐标系中,已知A(﹣5,0),C(0,﹣4),点B在y轴=20,点P(m,0),(﹣4<m<0),线段PB绕点P顺时针旋正半轴上,满足S△ABC转90°至PD.(1)求证:OB=OC;(2)求点D的坐标;(用含m的式子表示)(3)如图2,连接CD并延长交x轴于点E,求证:∠PDC=45°+∠PBO.3、已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点.(1)如图1,若点C的横坐标为﹣4,求点B的坐标;(2)如图2,BC交x轴于D,若点C的纵坐标为3,A(5,0),求点D的坐标.(3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求 S△BEM :S△ABO.4、在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c 满足++(2﹣d)2=0,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE 交x轴于点F.(1)求点A、B、D的坐标;(2)求点E、F的坐标;(3)如图,过P(0,﹣1)作x轴的平行线,在该平行线上有一点Q(点Q在P 的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求的值.5、如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.(1)当t=4秒时,判断四边形COEB是什么样的四边形?(2)当t为何值时,四边形COEF是直角梯形?(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值6、(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为;②线段AE,CD之间的数量关系为.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.7、如图,将直角梯形ABCD置于直角坐标系中,点A和点C分别在x轴和y轴的正半轴上,点D和坐标原点O重合.已知:BC∥AD,BC=2,AD=AB=5,M(7,1),点P从点M出发,以每秒2个单位长度的速度水平向左平移,同时点Q从点A 沿AB以每秒1个单位长度的速度向点B移动,设移动时间为t秒.(1)直接写出点Q和点P的坐标(用t的代数式表示).(2)以点P为圆心,t个单位长度为半径画圆.①当⊙P与直线AB第一次相切时,求出点P坐标,并判断此时⊙P与x轴的位置关系,并说明理由.②设⊙P与直线MP交于E、F(E左F右)两点,当△QEF为直角三角形时,求t 的值.8、课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化.当△AOB旋转90°时,得到∠A1OB1.已知A(4,2),B(3,0).(1)△A1OB1的面积是;A1点的坐标为();B1点的坐标为();(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C (2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交x 轴于E.此时A′,O′和B′的坐标分别为(1,3),(3,﹣1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD 的面积)最小,求四边形CEBD的面积;(3)在(2)的条件下,△AOB外接圆的半径等于.9、如图,在平面直角坐标系中,四边形OABC是矩形,点O(0,0),点A(3,0),点C(0,4);D为AB边上的动点.(Ⅰ)如图1,将△ABC对折,使得点B的对应点B落在对角线AC上,折痕为CD,求此刻点D的坐标:(Ⅱ)如图2,将△ABC对折,使得点A与点C重合,折痕交AB于点D,交AC于点E,求直线CD的解析式;(Ⅲ)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.10、已知矩形OABC的顶点O(0,0)、A(4,0)、B(4,3).动点P从O出发,以每秒1个单位的速度,沿射线OB方向运动.设运动时间为t秒.(1)求P点的坐标(用含t的代数式表示);(2)如图,以P为一顶点的正方形PQMN的边长为2,且边PQ⊥y轴.设正方形PQMN与矩形OABC的公共部分面积为S,当正方形PQMN与矩形OABC无公共部分时,运动停止.①当t<4时,求S与t之间的函数关系式;②当t>4时,设直线MQ、MN分别交矩形OABC的边BC、AB于D、E,问:是否存在这样的t,使得△PDE为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.12、如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B 两点,将△AOB绕点O逆时针旋转90°,得到△COD,(1)若l:y=﹣3x+3,E为AD的中点①在CD上有一动点F,求当△DEF与△COD相似时点F的坐标;②如图②,过E作x轴的垂线a,在直线a上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点坐标;若不存在,请说明理由(2)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH 中点,连接OM.若OM=,直接写出l的函数解析式.13、如图1,在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,),点B在x轴的正半轴上,点E为线段AD 的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.(1)求∠DCB的度数;(2)当点F的坐标为(﹣4,0)时,求点G的坐标;(3)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF′,记直线EF′与射线DC的交点为H.①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;②若△EHG的面积为,请直接写出点F的坐标.。
一次函数要点一:函数的概念及自变量取值范围确实定 一、选择题1、〔2021·包头中考〕函数y =x 的取值范围是〔 〕A .2x >-B .2x -≥C .2x ≠-D .2x -≤2、(2021·成都中考)在函数131y x =-中,自变量x 的取值范围是〔 〕 A .13x < B . 13x ≠- C . 13x ≠ D . 13x >3、〔2021·广州中考〕以下函数中,自变量x 的取值范围是x ≥3的是〔 〕A .31-=x y B .31-=x y C .3-=x y D .3-=x y4、〔2021·兰州中考〕函数312-+-=x x y 中,自变量x 的取值范围是〔 〕 A .x ≤2 B .x =3 C .x <2且x ≠3 D .x ≤2且x ≠3 5、〔2021·孝感中考〕以下曲线中,表示y 不是x 的函数是〔 〕6、〔2021·潍坊中考〕某蓄水池的横断面示意图如以下图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是〔 〕二、填空题7、〔2021·威海中考〕在函数x y -=3中,自变量x 的取值范围是 . 8.〔2021·哈尔滨中考〕函数y =22x x -+的自变量x 的取值范围是 .9、〔2021·桂林中考〕在函数y =x 的取值范围是 . 10、〔2021·牡丹江中考〕函数y =中,自变量x 的取值范围是 . A .B .D .11、〔2021·大兴安岭中考〕函数1-=x xy 中,自变量x 的取值范围是 . 12、(2021·上海中考)函数1()1f x x=-,那么(3)f = . 13、〔2021·广安中考〕如图,当输入5x =时,输出的y = . 三、解答题14、〔2021·杭州中考〕如图,水以恒速〔即单位时间内注入水的体积相同〕注入下面四种底面积相同的容器中。
2021年初中学业水平考试一次函数专题(附答案)一、单选题(共4题;共8分)1.一次函数y =kx+3(k≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A. 第一 B. 第二 C. 第三 D. 第四2.已知正比例函数 y =k 1x 和反比例函数 y =k 2x,在同一直角坐标系下的图象如图所示,其中符合 k 1⋅k 2>0 的是( )A. ①②B. ①④C. ②③D. ③④ 3.已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( ) A. m>- 12 B. m<3 C. - 12 <m<3 D. - 12 <m≤34.如图,正比例函数y 1=mx ,一次函数y 2=ax+b 和反比例函数y 3= kx 的图象在同一直角坐标系中,若y 3>y 1>y 2 , 则自变量x 的取值范围是( )A. x <﹣1B. ﹣0.5<x <0或x >1C. 0<x <1D. x <﹣1或0<x <1二、填空题5.一次函数 y =−2x +b ,且 b >0 ,则它的图象不经过第________象限.6.如图所示的网格由边长为 1 个单位长度的小正方形组成,点 A 、 B 、 C 、在直角坐标系中的坐标分别为 (3,6) , (−3,3) , (7,−2) ,则 △ABC 内心的坐标为________.7.已知一次函数y=kx+b 的图象经过A (1,﹣1),B (﹣1,3)两点,则k________0(填“>”或“<”)8.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=−1,在直线上取一点,记为A1,x过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,······,依次进行下去,记点A n的横坐标为a n,若a1=2,则a2020=________.三、综合题9.某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.10.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)12 14 16每周的销售量y(本) 500 400 300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12⩽x⩽15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?11.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?12.如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=k(k<0)的图象在第二象限交x于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.13.已知一次函数y=kx+b与反比例函数y=m的图象交于A(−3,2)、B(1,n)两点.x(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)点P在x轴上,当△PAO为等腰三角形时,直接写出点P的坐标.14.如图,在直角坐标系中,直线y1=ax+b与双曲线y2=k(k≠0)分别相交于第二、四象限内的A(m,x4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=2.3(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>k的解集.x15.如图,平行于y轴的直尺(部分)与反比例函数y=m(x>0)的图象交于A、C两点,与x轴交于B、xD两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.(1)请结合图象,直接写出:①点A的坐标是________;②不等式kx+b>m的解集是________;x(2)求直线AC的解析式.x−1与直线y=−2x+2相交于点P,并分别与x轴相交16.如图,在平面直角坐标系中,直线y=−12于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;x−1上方的部分描黑加粗,并写出此时自变量x的(3)请把图象中直线y=−2x+2在直线y=−12取值范围.答案一、单选题1. D2. B3. D4. D二、填空题5. 三6. (2,3)7. <8. 2三、综合题9. (1)解:甲商店:y=4x乙商店:y={5x,(x≤6)5×6+0.7×5(x−6),(x>6)(2)解:当x<6时,此时甲商店比较省钱,当x≥6时,令4x=30+3.5(x-6),解得:x=18,此时甲乙商店的费用一样,当x<18时,此时甲商店比较省钱,当x>18时,此时乙商店比较省钱.10. (1)解:设y与x之间的函数关系式是y=kx+b(k≠0),把x=12,y=500和x=14,y=400代入,得{12k+b=50014k+b=400,解得:{k=−50b=1100,∴y=−50x+1100;(2)解:根据题意,得w=(x−10)y=(x−10)(−50x+1100)=−50x2+1600x−11000=−50(x−16)2+1800;∵a=−50<0,∴w有最大值,且当x<16时,w随x的增大而增大,∵12⩽x⩽15,x为整数,∴x=15时,w有最大值,且w最大=−50(15−16)2+1800=1750(元). 答:销售单价为15元时,每周所获利润最大,最大利润是1750元.11. (1)解:甲书店:y=0.8x,乙书店:当x⩽100时,y=x,当x>100时,y=100+0.6(x-100)=0.6x+40,乙书店:y={x(x⩽100)0.6x+40(x>100).(2)解:令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.12. (1)解:当m=1时,点A(−3,1),∵点A在反比例函数y=kx的图象上,∴k =−3×1=−3 ,∴ 反比例函数的解析式为 y =−3x ;∵ 点 B(n,2) 在反比例函数 y =−3x 图象上, ∴2n =−3 ,∴n =−32 ,设直线 AB 的解析式为 y =ax +b ,则 {−3a +b =1−32a +b =2 ,∴ {a =23b =3,∴ 直线 AB 的解析式为 y =23x +3 ; (2)解:如图,过点 A 作 AM ⊥x 轴于 M ,过点 B 作 BN ⊥x 轴于 N ,过点 A 作 AF ⊥BN 于 F ,交 BE 于 G , 则四边形 AMNF 是矩形, ∴FN =AM , AF =MN ,∵A(−3,m) , B(n,2) ,∴BF =2−m , ∵AE =2−m ,∴BF =AE ,在 ΔAEG 和 ΔBFG 中, {∠AGE =∠BGF(对顶角相等)∠AEG =∠BFG =90°AE =BF,∴ΔAEG ≅Rt ΔBFG (AAS ) , ∴AG =BG , EG =FG ,∴BE =BG +EG =AG +FG =AF ,∵ 点 A(−3,m) , B(n,2) 在反比例函数 y =kx 的图象上, ∴k =−3m =2n ,∴m =−23n ,∴BF =BN −FN =BN −AM =2−m =2+23n , MN =n −(−3)=n +3 , ∴BE =AF =n +3 ,∵∠AEM +∠MAE =90° , ∠AEM +∠BEN =90° , ∴∠MAE =∠NEB , ∵∠AME =∠ENB =90° , ∴ΔAME ∽ΔENB , ∴ ME BN=AE BE=2−m n+3=2+23n n+3=23, ∴ME =23BN =43 ,在 Rt ΔAME 中, AM =m , AE =2−m ,根据勾股定理得, AM 2+ME 2=AE 2 , ∴m 2+(43)2=(2−m)2 ,∴m =59 ,∴k =−3m =−53 ,∴ 反比例函数的解析式为 y =−53x .13. (1)解:将 A(−3,2) 代入 y =mx 中,得 m =−6 , ∴ 反比例函数的表达式为 y =−6x∵B(1,n) 在 y =−6x 的图象上, ∴n =−6 ,即 B(1,−6) 将 A 、 B 坐标代入 y =kx +b 得{−3k +b =2k +b =−6 ,解得: {k =−2b =−4 . ∴ 一次函数表达式为: y =−2x −4(2)解:设直线 AB 与 y 轴交于点C ,则点 C 为 (0,−4) , ∴S ΔAOB =S ΔAOC +S ΔBOC =12×4×3+12×4×1=8 . (3)解: ∵A(−3,2) , ∴OA =√(−3)2+22=√13 设P (x ,0).当AO=OP= √13 时,点 P 在 x 轴上, ∴ 点 P 为 (√13,0) 或 (−√13,0) 当AO=AP= √13 时,∴ (x +3)2+22=13 , ∴ x=-6或0(舍去) ∴ 点 P 为 (−6,0) , 当OP=AP 时,∴ (x +3)2+22=x 2 , ∴ x =−136 ; ∴ 点 P 为 (−136,0)综上所述,符合条件的点P 的坐标是 (√13,0) , (−√13,0) , (−6,0) , (−136,0) .14. (1)解:设直线y 1=ax+b 与y 轴交于点D , 在Rt △OCD 中,OC =3,tan ∠ACO = 23 . ∴OD =2,即点D (0,2),把点D (0,2),C (0,3)代入直线y 1=ax+b 得, b =2,3a+b =0,解得,a =﹣ 23 , ∴直线的关系式为y 1=﹣ 23 x+2;把A (m ,4),B (6,n )代入y 1=﹣ 23 x+2得,m =﹣3,n =﹣2, ∴A (﹣3,4),B (6,﹣2),∴k =﹣3×4=﹣12, ∴反比例函数的关系式为y 2=﹣12x,因此y 1=﹣ 23 x+2,y 2=﹣ 12x;(2)解:由S △AOB =S △AOC +S △B OC = 12 ×3×4+ 12 ×3×2=9(3)解:由图象可知,当x <0时,不等式ax+b > kx 的解集为x <﹣3. 15. (1)(2,3);2<x <4(2)解:∵A 在反比例函数 y =mx 图象上, ∴m =2×3=6,∴反比例解析式为 y =6x , ∵C 点在反比例函数 y =6x 图象上, ∴y c = 32 ,∴C (4, 32 ),将A 、C 代入y =kx+b 有 {3=2k +b 32=4k +b 解得 {k =−34b =92 ,∴直线AC 解析式: y =−34x +92 .16. (1)解: 根据题意,交点 P 的横、纵坐标是方程组 {y =−12x −1y =−2x +2的解 解这个方程组,得 {x =2y =−2 ∴ 交点 P 的坐标为 (2,−2)(2)解: 直线 y =−12x −1 与 x 轴的交点 A 的坐标为 (−2,0) 直线 y =−2x +2 与 x 轴交点 B 的坐标为 (1,0), ∴ΔPAB 的面积为 12×[1−(−2)]×2=12×3×2=3(3)解: 在图象中把直线 y =−2x +2 在直线 y =−12x −1 上方的部分 描黑加粗,图示如下:此时自变量 x 的取值范围为 x <2.。
2021 初三数学中考复习一次函数专项复习训练题1.一次函数y=kx+b满足kb>0,且y随x的增大而减小,那么此函数的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 函数y=(m-4)x+2m-3的图象经过第一、二、四象限,那么m的取值范围是( )A.m<4 B.1.5<m<4 C.-1.5<m<4 D.m>43. 点(x1,y1)和(x2,y2)都在函数y=-2x+4 的图象上,那么以下结论正确的选项是( )A.假设y1<y2,那么x1<x2B.假设y1-y2=2,那么x1-x2=-1C.可由直线y=2x向上平移4个单位得到D.与坐标轴围成的三角形面积为84. 对于函数y=2x-1,以下说法正确的选项是( )A.它的图象过点(1,0) B.y值随着x值增大而减小C.它的图象经过第二象限 D.当x>1时,y>05. 在一次函数y=kx+3中,当x=2时,y的值为5,那么k的值为( ) A.1 B.-1 C.5 D.-56. 一次函数y=kx+b,当x=1时,y=1;当x=2时,y=-4,那么k与b的值分别为( )A.k=3,b=-2 B.k=-3,b=2C.k=-5,b=6 D.k=6,b=-57. 以下函数中,y随x的增大而减小的是( )A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x 8. 假设一次函数y=(m-3)x+5的函数值y随x的增大而增大,那么( ) A.m>0 B.m<0 C.m>3 D.m<39. 如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),那么关于x的不等式-2x>ax+3的解集是(D)A.x>2 B.x<2 C.x>-1 D.x<-110. 关于直线 l:y=kx+k(k≠0),以下说法不正确的选项是( )A.点(0,k)在l上 B.l 经过定点(-1,0)C.当k>0时,y随x的增大而增大 D.l 经过第一、二、三象限11. 正比例函数y=kx,当x=-3时,y=5,那么该函数的表达式是___________. 12.y是x的一次函数,当x=3时,y=6;当x=-1时,y=-2,那么该函数的表达式是__________.13. 某一次函数的图象经过点(-1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数表达式_______________________.14. 对于函数y=-2x,当2≤y≤3时,x的取值范围是______________.15. 直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n-2的解集.16. 直线y1=kx+b经过第一、二、四象限,那么直线y2=bx+k不经过第几象限?17. y是关于x的一次函数,且当x=3时,y=-2;当x=2时,y=-3.(1)求这个一次函数的表达式;(2)求当x=-3时,函数y的值;(3)求当y =2时,自变量x 的值;(4)求当y >1时,自变量x 的取值范围.18. 一次函数y =(2m +4)x +(3-n).(1)当m ,n 取何值时,y 随x 的增大而增大?(2)当m ,n 取何值时,函数图象经过原点?(3)假设图象经过第一、二、四象限,求m ,n 的取值范围.参考答案1---10 ABBDA CCCDD11. y =-53x 12. y =2x13. y =-x +2(答案不唯一)14. -32≤x≤-1 15. 解:(1) 把P (1,2)代入y =x +n -2得1+n -2=2,解得n =3;把P (1,2)代入y =mx +3得m +3=2,解得m =-1;(2) 不等式mx +n >x +n -2的解集为x <1.16. 解:由题意知k <0,b >0,∴直线y 2=bx +k 经过第一、三、四象限,即直线y 2=bx +k 不经过第二象限17. 解:(1)y =x -5(2)y =-8(3)x =7(4)x >618. 解:(1)当2m +4>0,即m >-2,n 为任何实数时,y 随x 的增大而增大(2)当m ,n 满足⎩⎪⎨⎪⎧2m +4≠0,3-n =0,即⎩⎪⎨⎪⎧m≠-2,n =3时,函数图象经过原点 (3)假设图象经过第一、二、四象限,那么⎩⎪⎨⎪⎧2m +4<0,3-n >0,解得⎩⎪⎨⎪⎧m <-2n <3。
2021年九年级数学中考复习分类真题训练:一次函数综合一.选择题1.(2020•济南)若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.2.(2020•西藏)如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.6 3.(2020•桂林)直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2 B.﹣1 C.1 D.24.(2020•鞍山)如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B 1,B2,B3,…在直线y=x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为()A.22021B.22020C.22019D.22018 5.(2020•沈阳)一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2020•鄂尔多斯)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆.离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A.第一班车离入口处的路程y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x ≤38)B.第一班车从入口处到达花鸟馆所需的时间为10分钟C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)7.(2020•永州)已知点P(x0,y)和直线y=kx+b,求点P到直线y=kx+b的距离d可用公式d=计算.根据以上材料解决下面问题:如图,⊙C的圆心C的坐标为(1,1),半径为1,直线l的表达式为y=﹣2x+6,P是直线l上的动点,Q是⊙C 上的动点,则PQ的最小值是()A.B.﹣1 C.﹣1 D.2 8.(2020•宿迁)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q 绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.9.(2020•镇江)一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是()A.第一B.第二C.第三D.第四10.(2020•恩施州)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h二.填空题11.(2020•阜新)甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B 地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为km(结果精确到1km).12.(2020•锦州)如图,过直线l:y=上的点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴.交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3;…按照此方法继续作下去,若OB1=1,则线段A n A n﹣1的长度为.(结果用含正整数n的代数式表示)13.(2020•绵阳)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)14.(2020•宿迁)已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x 1x2(填“>”“<”或“=”).15.(2020•宁夏)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.三.解答题16.(2020•济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G 手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A3000 3400B3500 4000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?17.(2020•大连)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.18.(2020•眉山)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的2倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?19.(2020•长春)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为千米/时,a的值为.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.20.(2020•南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.参考答案一.选择题 1.解:∵m <﹣2, ∴m +1<0,1﹣m >0,所以一次函数y =(m ﹣1)x +1﹣m 的图象经过一,二,四象限, 故选:D .2.解:设y 与x 的函数关系式为y =kx +b , 将点(0,6),(9,10.5)代入上式得,,解得,,即y 与x 的函数关系式是y =0.5x +6, 当y =7.5时,7.5=0.5x +6,得x =3, 即a 的值为3, 故选:A .3.解:∵直线y =kx +2过点(﹣1,4), ∴4=﹣k +2, ∴k =﹣2. 故选:A .4.解:设△B n A n A n +1的边长为a n , ∵点B 1,B 2,B 3,…是直线y =x 上的第一象限内的点,∴∠A n OB n =30°,又∵△B n A n A n +1为等边三角形, ∴∠B n A n A n +1=60°,∴∠OB n A n =30°,∠OB n A n +1=90°, ∴B n B n +1=OB n =a n ,∵点A 1的坐标为(1,0),∴a 1=1,a 2=1+1=2,a 3=1+a 1+a 2=4,a 4=1+a 1+a 2+a 3=8,…,∴a n=2n﹣1.∴B2019B2020=a2019=×22018=22018,故选:D.5.解:(方法一)将A(﹣3,0),B(0,2)代入y=kx+b,得:,解得:,∴一次函数解析式为y=x+2.∵k=>0,b=2>0,∴一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D.(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y=kx+b(k≠0)的图象不经过第四象限.故选:D.6.解:由题意得,可设第一班车离入口处的路程y(米)与时间x(分)的解析式为:y=kx+b(k≠0),把(20,0),(38,3600)代入y=kx+b,得,解得,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=200x﹣4000(20≤x ≤38);故选项A不合题意;把y=2000代入y=200x﹣4000,解得x=30,30﹣20=10(分),∴第一班车从入口处到达花鸟馆所需时间10分钟;故选项B不合题意;设小聪坐上了第n班车,则30﹣25+10(n﹣1)≥40,解得n≥4.5,∴小聪坐上了第5班车,故选项C符合题意;等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),步行所需时间:1600÷(2000÷25)=20(分),20﹣(8+5)=7(分),∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.故选项D不合题意.故选:C.7.解:过点C作CP⊥直线l,交圆C于Q点,此时PQ的值最小,根据点到直线的距离公式可知:点C(1,1)到直线l的距离d==,∵⊙Q的半径为1,∴PQ=﹣1,故选:B.8.解:作QM⊥x轴于点M,Q′N⊥x轴于N,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N在△PQM和△Q′PN中,∴△PQM≌△Q′PN(AAS),∴PN=QM,Q′N=PM,设Q(m,﹣),∴PM=|m﹣1|,QM=|﹣m+2|,∴ON=|3﹣m|,∴Q′(3﹣m,1﹣m),∴OQ′2=(3﹣m)2+(1﹣m)2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,当m=2时,OQ′2有最小值为5,故选:B.9.解:∵一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,∴k>0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限,故选:D.10.解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.二.填空题(共5小题)11.解:由题意可知,甲行驶的速度为:(km/h),A、B两地之间的距离为:25+50×2=125(km),乙的速度为:50﹣35=15(km/h),2+(125﹣15×2)÷(50+15)=,即乙出发小时后与甲相遇,所以B,C两地的距离为:(km).故答案为:73.12.解:∵直线l:y=x,∴直线l与x轴夹角为60°,∵B1为l上一点,且OB1=1,∴OA1=cos60°•OB1=OB1=,OB1=cos60°•OA2,∴OA2=2OB1=2,∴A2A1=2﹣=∵OA2=2,∴OB2=2OA2=4,∴OA3=2OB2=8,∴A3A2=8﹣2=6,…A n An﹣1=3×22n﹣5故答案为3×22n﹣5.13.解:设甲种火龙果种植x亩,乙种火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.14.解:(解法一)∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.(解法二)当y=1时,2x1﹣1=1,解得:x1=1;当y=3时,2x2﹣1=3,解得:x2=2.又∵1<2,∴x1<x2.故答案为:<.15.解:在中,令x=0得,y=4,令y=0,得,解得x=,∴A(,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,∴∠OBO1=90°,∴O1B∥x轴,∴点A1的纵坐标为OB﹣OA的长,即为4=;横坐标为O1B=OB=4,故点A1的坐标是(4,),故答案为:(4,).三.解答题(共5小题)16.解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,,答:营业厅购进A、B两种型号手机分别为6部、4部;(2)设购进A种型号的手机x部,则购进B种型号的手机(30﹣x)部,获得的利润为w 元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.17.解:(1)设甲气球的函数解析式为:y=kx+b,乙气球的函数解析式为:y=mx+n,分别将(0,5),(20,25)和(0,15),(20,25)代入,,,解得:,,∴甲气球的函数解析式为:y=x+5,乙气球的函数解析式为:y=x+15;(2)由初始位置可得:当x大于20时,两个气球的海拔高度可能相差15m,且此时甲气球海拔更高,∴x+5﹣(x+15)=15,解得:x=50,∴当这两个气球的海拔高度相差15m时,上升的时间为50min.18.解:(1)设柏树的单价为x元/棵,杉树的单价是y元/棵,根据题意得:,答:柏树的单价为200元/棵,杉树的单价是150元/棵;(2)设购买柏树a棵,则杉树为(80﹣a)棵,购树总费用为w元,根据题意:a≥2(80﹣a),解得,w=200a+150(80﹣a)=50a+12000,∵50>0,∴w随a的增大而增大,又∵a为整数,∴当a=54时,w=14700,最小此时,80﹣a=26,即购买柏树54棵,杉树26棵时,总费用最小为14700元.19.解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴y与x之间的函数关系式为y=100x﹣120;(3)两车相遇前:80+100(x﹣2)=240﹣100,解得x=;两车相遇后:80+100(x﹣2)=240+100,解得x=,答:当甲、乙两车相距100千米时,甲车行驶的时间是小时或小时.20.解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l的解析式为y=kx+b,2∴,解得,的解析式为y=﹣2x+6;∴直线l2(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).。
一次函数(二)一、选择题1.函数1yx1=+中,自变量x的取值范围是A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠02.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是A.①②③ B.①②④ C.①③④ D.①②③④3.如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示是A.B.C.D.4.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是【】A. B. C.D.5.已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是【】A.B.C.D.6.小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是【】A.B. C.D.7.函数y5x1=-x的取值范围是【】A.x>1 B.x<1 C.1x5≥ D.1x5≥-8.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是【】A.x<0 B.x>0 C.x<2 D.x>29.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为【】A.B.C.8 D.10.函数2y3x=-中自变量x的取值范围是【】A.x>3 B.x<3 C.x≠3 D.x≠﹣311.如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是A.B.C.D.12.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是A .B .C .D .13.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是进球数 0 1 2 3 4 5人数 1 5 x y 3 2A .y=x+9与y x 22233=+B .y=﹣x+9与y x 22233=+ C .y=﹣x+9与y x 22233=-+ D .y=x+9与y x 22233=-+ 14.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y 2x 1=-图象上的两点,下列判断中,正确的是A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1<y 2D .当x 1<x 2时,y 1>y 215.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为A .3x 2<B .x 3<C .3x 2> D .x 3> 16.直线y=﹣2x+m 与直线y=2x ﹣1的交点在第四象限,则m 的取值范围是A .m >﹣1B .m <1C .﹣1<m <1D .﹣1≤m≤117.(2013年四川资阳3分)在函数1y x 1=-中,自变量x 的取值范围是【 】 A .x≤1 B .x≥1 C.x <1 D .x >118. (2013年四川南充3分) 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。
中考一次函数综合训练
一.选择题(共5小题)
1.函数y=+中自变量x的取值范围是()
A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1
2.若函数,则当函数值y=8时,自变量x的值是()
A.± B.4 C.±或4 D.4或﹣
3.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()
A.﹣3≤y≤3 B.0≤y≤2 C.1≤y≤3 D.0≤y≤3
4.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()
A.B.C.D.
5.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()
A.B.C.D.
二.填空题(共5小题)
6.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标
为.
7.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.
8.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA1=1,则OA2015的长为.
9.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.
10.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.
三.解答题(共5小题)
11.已知一次函数y=kx+3的图象经过点(1,4).
(1)求这个一次函数的解析式;
(2)求关于x的不等式kx+3≤6的解集.
12.某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:
设每天生产A种品牌白酒x瓶,每天获利y元.
(1)请写出y关于x的函数关系式;
(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?
A B
成本(元/瓶)50 35
利润(元/瓶)20 15
13.小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
14.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是千米/时,t=小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.
15.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?
参考答案与试题解析
一.选择题(共5小题)
1.B.
2.D.
3.D.
4.B.
5.B.
6.(﹣1,2).
7.7≤a≤9.
8.22014.
9.5.
10.20.
11.解:(1)∵一次函数y=kx+3的图象经过点(1,4),
∴4=k+3,
∴k=1,
∴这个一次函数的解析式是:y=x+3.
(2)∵k=1,
∴x+3≤6,
∴x≤3,
即关于x的不等式kx+3≤6的解集是:x≤3.
12.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;
(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得
50x+35(600﹣x)=26400,解得x=360,
∴每天至少获利y=5x+9000=10800.
13.解:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,
根据题意得:
,
解得:65≤x≤75,
∴甲种服装最多购进75件;
(2)设总利润为W元,
W=(120﹣80﹣a)x+(90﹣60)(100﹣x)
即w=(10﹣a)x+3000.
①当0<a<10时,10﹣a>0,W随x增大而增大,
∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
②当a=10时,所以按哪种方案进货都可以;
③当10<a<20时,10﹣a<0,W随x增大而减小.
当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.
14.解:(1)根据图示,可得
乙车的速度是60千米/时,
甲车的速度是:
(360×2)÷(480÷60﹣1﹣1)
=720÷6
=120(千米/小时)
∴t=360÷120=3(小时).
(2)①当0≤x≤3时,设y=k1x,
把(3,360)代入,可得
3k1=360,
解得k1=120,
∴y=120x(0≤x≤3).
②当3<x≤4时,y=360.
③4<x≤7时,设y=k2x+b,
把(4,360)和(7,0)代入,可得
解得
∴y=﹣120x+840(4<x≤7).
(3)①(480﹣60﹣120)÷(120+60)+1
=300÷180+1
=
=(小时)
②当甲车停留在C地时,
(480﹣360+120)÷60
=240÷6
=4(小时)
③两车都朝A地行驶时,
设乙车出发x小时后两车相距120千米,
则60x﹣[120(x﹣1)﹣360]=120,
所以480﹣60x=120,
所以60x=360,
解得x=6.
综上,可得
乙车出发后两车相距120千米.
故答案为:60、3.
15.解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:
2x+3x=200,
解得:x=40,
则2x=80,3x=120,
答:A种礼盒单价为80元,B种礼盒单价为120元;
(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:
,
解得:30≤a≤36,
∵a,b的值均为整数,
∴a的值为:30、33、36,
∴共有三种方案;
(3)设店主获利为w元,则
w=10a+(18﹣m)b,
由80a+120b=9600,
得:a=120﹣b,
则w=(3﹣m)b+1200,
∵要使(2)中方案获利都相同,
∴3﹣m=0,
∴m=3,
此时店主获利1200元.。