一次函数中考综合习题练习
- 格式:doc
- 大小:226.50 KB
- 文档页数:7
一次函数与反比例函数综合基础题1. (2022怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =a -1x (a >1)的图象于A ,B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( ) A. 8 B. 9 C. 10 D. 11第1题图2. (2022内江)如图,已知一次函数y =kx +b 的图象经过点P (2,3),与反比例函数y =2x 的图象在第一象限交于点Q (m ,n ).若一次函数y 的值随x 值的增大而增大,则m 的取值范围是________.第2题图3. (2022随州)如图,在平面直角坐标系中,直线y =x +1与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx的图象在第一象限交于点C ,若AB =BC ,则k 的值为___________________________________.第3题图4. (2022济宁改编)如图,直线AB 与反比例函数y =8x (x >0)交于A ,B 两点,过点B 作y 轴的垂线,垂足为D ,交线段OA 于点C ,若点C 是OA 的中点,则△ABD 的面积是________.第4题图5. (2022无锡改编)一次函数y =mx +n 的图象与反比例函数y =mx 的图象交于点A ,B ,其中点A ,B 的坐标为A (-1m,-2m ),B (m ,1),则△OAB 的面积是________.6. (2022江西)如图,点A (m ,4)在反比例函数y =kx (x >0)的图象上,点B 在y 轴上,OB =2,将线段AB 向右下方平移,得到线段CD ,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且OD =1. (1)点B 的坐标为________,点D 的坐标为________,点C 的坐标为________(用含m 的式子表示); (2)求k 的值和直线AC 的表达式.第6题图7. (2022自贡)如图,在平面直角坐标系中,一次函数 y =kx +b 的图象与反比例函数y =nx的图象相交于A (-1,2),B (m ,-1)两点.(1)求反比例函数和一次函数的解析式;(2)过点 B 作直线 l ∥y 轴,过点 A 作 AD ⊥l 于点 D ,点 C 是直线l 上一动点,若 DC =2DA ,求点 C 的坐标.第7题图拔高题8. (2022南充)如图,直线AB 与双曲线交于A (1,6),B (m ,-2)两点,直线BO 与双曲线在第一象限交于点C ,连接AC .(1)求直线AB 与双曲线的解析式; (2)求△ABC 的面积.第8题图9.(万唯原创)如图,在平面直角坐标系xOy 中,正比例函数y =12 x 的图象与反比例函数y =kx的图象交于A(a,-2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)若P是第一象限内反比例函数图象上一点(不与点B重合),当△ABP是以点B为直角顶点的直角三角形时,求直线AP的函数表达式.第9题图。
(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD =AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B 出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段P A绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC =OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC =S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP=°时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.9.(2023•沈阳一模)如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线过点A,与x轴交于点C,点P 是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在线段AB上,且S△APC =S△AOB,求点P的坐标;(3)当S△PBC =S△AOB时,动点M从点B出发,先运动到点P,再从点P运动到点C后停止运动.点M的运动速度始终为每秒1个单位长度,运动的总时间为t(秒),请直接写出t的最小值.10.(2023春•鼓楼区期中)如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.11.(2023春•顺德区校级期中)一次函数y=kx+b的图象经过点A(﹣2,0)、B(﹣1,1),且和一次函数y=﹣2x+a的图象交于点C,如图所示.(1)填空:不等式kx+b<0的解集是;(2)若不等式kx+b>﹣2x+a的解集是x>1,求点C的坐标;(3)在(2)的条件下,点P是直线y=﹣2x+a上一动点.且在点C上方,当∠P AC=15°时,求点P的坐标.12.(2023春•重庆期中)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.13.(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=﹣x﹣4与y轴交于A点.将直线l1绕着A 点逆时针旋转45°至l2,如图2,求l2的函数解析式.14.(2023春•崇川区校级月考)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴,y轴交于点B,C.直线l2:y=x.(1)直接写出点B,C的坐标:B,C.(2)若D是直线l2上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,且当点D在第一象限时,设P是射线CD上的点,在平面内存在点Q.使以O,C,P,Q为顶点的四边形是菱形,请直接求点Q的坐标.15.(2023•城固县模拟)如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水时间为t(min),水箱A 的水位高度为y A(dm),水箱B中的水位高度为y B(dm).(抽水水管的体积忽略不计)(1)分别求出y A,y B与t之间的函数表达式;(2)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.16.(2022秋•常州期末)在平面直角坐标系中,一次函数的图象l1与x轴交于点A,一次函数y=x+6的图象l2与x轴交于点B,与l1交于点P.直线l3过点A且与x轴垂直,C是l3上的一个动点.(1)分别求出点A、P的坐标;(2)设直线PC对应的函数表达式为y=kx+b,且满足函数值y随x的增大而增大.若△PCA的面积为15,分别求出k、b的值;(3)是否存在点C,使得2∠PCA+∠P AB=90°?若存在,直接写出点C的坐标;若不存在,请说明理由.17.(2023春•靖江市期中)如图,平面直角坐标系中,已知点A(0,a)在y 轴正半轴上,点B(0,b)(a>b),点C(c,0)在x轴正半轴上,且a2﹣2ab+b2(1)如图1,求证:AB=OC;(2)如图2,当a=3,b=1时,过点B的直线与AC成45°夹角,试求该直线与AC交点的横坐标;(3)如图3,当b<0时,点D在OC的延长线上,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠AEB的度数是否为定值?如果是,请求出∠AEB的度数;如果不是,请说明理由.18.(2023春•沙坪坝区校级期中)如图,在平面直角坐标系xOy中,直线AB:与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A,(1)求直线CD的解析表达式;(2)如图,点P是直线CD上的一个动点,当△PBM的面积为20时,求点P的坐标;(3)直线AB上有一点F,在平面直角坐标系内找一点N,使得以BF为一边,以点B,D,F,N为顶点的四边形是菱形,请直接写出符合条件的点N的坐标.19.(2023春•揭西县校级月考)在平面直角坐标系中,直线y1=kx+b经过点P (2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,请直接写出符合条件的所有点B的坐标.20.(2023春•溧阳市校级月考)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是2和4;(1)求直线BD的表达式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(2023春•江都区月考)如图,在平面直角坐标系中,直线y=﹣x+3与x 轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.22.(2023春•新城区校级月考)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,求出点P的坐标;(2)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M 在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.23.(2022秋•宿豫区期末)如图,直线l分别与x轴、y轴交于点A(4,0)、B (0,5),把直线l沿y轴向下平移3个单位长度,得到直线m,且直线m分别与x轴、y轴交于点C、D.(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.24.(2022秋•临淄区期末)如图,在直角坐标系中,四边形ABCD的顶点坐标分别为A(﹣1,0),B(0,2),C(2,3),D(4,0).(1)求直线BC的表达式;(2)线段AB与BC相等吗?请说明理由;(3)求四边形ABCD的面积;(4)已知点M在x轴上,且△MBC是等腰三角形,求点M的坐标.25.(2022秋•金牛区期末)如图1,在平面直角坐标系xOy中,直线AB:y=2x+b 与x轴交于点A(﹣2,0),与y轴交于点B.(1)求直线AB的解析式;(2)若直线CD:y=﹣x+与x轴、y轴、直线AB分别交于点C、D、E,求△BDE面积;(3)如图2,在(2)的条件下,点F为线段AC上一动点,将△EFC沿直线EF翻折得到△EFN,EN交x轴于点M.当△MNF为直角三角形时,求点N 的坐标.26.(2022秋•婺城区期末)如图,直线y=x+4与x轴、y轴分别交于点A、点B,点P是射线BO上的动点,过点B作直线AP的垂线交x轴于点Q,垂足为点C,连结OC.(1)当点P在线段BO上时,①求证:△AOP≌△BOQ;②若点P为BO的中点,求△OCQ的面积.(2)在点P的运动过程中,是否存在某一位置,使得△OCQ成为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.27.(2022秋•郫都区期末)在直角坐标系xOy中,直线l1:y=﹣x+4与x轴、y 轴分别交于点A,点B.直线l2:y=mx+m(m>0)与x轴,y轴分别交于点C,点D,直线l1与l2交于点E.(1)若点E坐标为(,n).ⅰ)求m的值;ⅱ)点P在直线l2上,若S△AEP=3S△BDE,求点P的坐标;(2)点F是线段CE的中点,点G为y轴上一动点,是否存在点F使△CFG 为以FC为直角边的等腰直角三角形.若存在,求出m的值,若不存在,请说明理由.28.(2022秋•市中区期末)如图,直线y=kx+b经过点,点B(0,25),与直线交于点C,点D为直线AB上一动点,过D点作x轴的垂线交直线OC于点E.(1)求直线AB的表达式和点C的坐标;(2)当时,求△CDE的面积;(3)连接OD,当△OAD沿着OD折叠,使得点A的对应点A'落在直线OC 上,直接写出此时点D的坐标.29.(2022秋•新都区期末)如图1,在平面直角坐标系中,点A的坐标为(4,4),点B的坐标为(﹣4,0).(1)求直线AB的表达式;(2)点M是坐标轴上的一点,若以AB为直角边构造Rt△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作∠CAD=90°,射线AC交x轴的正半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,求OC﹣OD 的值.30.(2022秋•皇姑区期末)如图,在平面直角坐标系中,直线AD:y=﹣x+4交y轴于点A,交x轴于点D.直线AB交x轴于点B(﹣3,0),点P为直线AB上的动点.(1)求直线AB的关系式;(2)连接PD,当线段PD⊥AB时,直线AD上有一点动M,x轴上有一动点N,直接写出△PMN周长的最小值;(3)若∠POA=∠BAO,直接写出点P的纵坐标.31.(2022秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.32.(2022秋•鸡西期末)如图,直角三角形ABC在平面直角坐标系中,直角边BC在y轴上,AB,BC的长分别是一元二次方程x2﹣14x+48=0的两个根,AB<BC,且BC=2OB,P为BC上一点,且∠BAP=∠C.(1)求点A的坐标;(2)求直线AP的解析式;(3)M为x轴上一点,在平面内是否存在点N,使以A,C,M,N为顶点的四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.33.(2022秋•锦江区校级期末)如图,直线y=kx+b与x轴、y轴分别交于点A 和点B,点C在线段AO上,将△ABC沿BC所在直线折叠后,点A恰好落在y轴上点D处,若OA=4,OD=2.(1)求直线AB的解析式.(2)求S△ABC :S△OCD的值.(3)直线CD上是否存在点P使得∠PBC=45°,若存在,请直接写出P的坐标.34.(2022秋•福田区校级期末)已知:如图,一次函数的图象分别与x 轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D.点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为:;(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,请直接写出点Q的坐标;若不存在,请说明理由.35.(2022秋•抚州期末)如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A(0,a),且a,p满足=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边,点Q为直角顶点的等腰直角三角形,若存在,请直接写出点Q坐标;若不存在,请说明理由.36.(2022秋•天桥区期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C(2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE交x轴于点F,若△DEF为直角三角形,求点D坐标.37.(2023•桐乡市校级开学)如图,一次函数y=x+6的图象与x轴交于点A,与y轴交于点B,OC⊥AB于点C,点P在直线AB上运动,点Q在y轴的正半轴上运动.(1)求点A,B的坐标;(2)求OC的长;(3)若以O,P,Q为顶点的三角形与△OCP全等,求点Q的坐标.38.(2022秋•秦都区期末)如图,平面直角坐标系中,直线AB与x轴交于点A (﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标;(2)已知点P是直线CD上的动点,①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请求出所有满足条件的点P的坐标.39.(2022秋•南海区期末)如图,在平面直角坐标系中,直线y=x+1分别交x 轴,y轴于点A、B.另一条直线CD与直线AB交于点C(a,6),与x轴交于点D(3,0),点P是直线CD上一点(不与点C重合).(1)求a的值.(2)当△APC的面积为18时,求点P的坐标.(3)若直线MN在平面直角坐标系内运动,且MN始终与AB平行,直线MN 交直线CD于点M,交y轴于点N,当∠BMN=90°时,求△BMN的面积.40.(2023•丰顺县校级开学)问题提出:如图,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.41.(2022秋•碑林区校级期末)(1)模型建立:如图1,在等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,请直接写出图中相等的线段(除CA=CB);模型应用:(2)如图2,在平面直角坐标系xOy中,直线与x,y轴分别交于A、B两点,C为第一象限内的点,若△ABC是以AB为直角边的等腰直角三角形,请求出点C的坐标和直线BC的表达式;探究提升:(3)如图3,在平面直角坐标系xOy中,A(3,0),点B在y轴上运动,将AB绕点A顺时针旋转90°至AC,连接OC,求CA+OC的最小值,及此时点B坐标.42.(2023•南岸区校级开学)如图,已知直线l1:y=﹣x+b与直线l2:y=kx+3相交于y轴的B点,且分别交x轴于点A、C,已知OC=OA.(1)如图,求点C的坐标及k的值;(2)如图,若E为直线l1上一点,且E点的横坐标为,点P为y轴上一个动点,求当|PC﹣PE|最大时,点P的坐标;(3)若M为x轴上一点,当△ABM是等腰三角形时,直接写出点M的坐标.43.(2022秋•驿城区校级期末)(1)操作思考:如图1,在平面直角坐标系中,等腰直角△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则:①OA的长为;②点B的坐标为.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角△ACB如图放置,直角顶点C(﹣1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA⊥y 轴,垂足为点A,作BC⊥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x﹣8上一动点,存在以点P为直角顶点的等腰直角△APQ,请直接写出点P的坐标.。
一次函数一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.型号A B单个盒子容量(升)23单价(元)566.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?一次函数参考答案与试题解析一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面【考点】一次函数的应用.【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【解答】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,再利用函数图象横坐标,得出甲先到达终点.【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.【点评】本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【考点】一次函数的应用.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.【点评】本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】一次函数的应用.【专题】压轴题.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为29元.型号A B单个盒子容量(升)23单价(元)56【考点】一次函数的应用.【分析】设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.【解答】解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.6.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.【考点】一次函数的应用.【分析】一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.【解答】解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.【点评】此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【点评】本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB 的函数解析式.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式的应用.【分析】(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(2)设A文具为x只,则B文具为(100﹣x)只,根据题意列出函数解答即可.【解答】解:(1)设A文具为x只,则B文具为(100﹣x)只,可得:10x+15(100﹣x)=1300,解得:x=40.答:A文具为40只,则B文具为100﹣40=60只;(2)设A文具为x只,则B文具为(100﹣x)只,可得(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.【点评】此题考查一次函数的应用,关键是根据题意列出方程和不等式,根据函数是减函数进行解答.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【考点】一次函数的应用.【分析】(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即可得出结论.【解答】解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.【点评】本题考查了分段函数,一次函数的解析式,由一次函数的解析式求自变量和函数值,解答时求出函数的解析式是关键10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【考点】一次函数的应用.【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.【点评】本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.【解答】解:(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品由题意得:,解得:30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大.【点评】本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.。
中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)1.(2023•攀枝花模拟)如图,已知直线y=mx与双曲线的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是()A.(1,3)B.(3,1)C.(1,﹣3)D.(﹣1,3)【分析】反比例函数的图像是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(﹣1,3),另一个交点的坐标为(1,﹣3).故选:C.2.(2023•滨湖区一模)在平面直角坐标系xOy中,反比例函数与一次函数y =ax+b(a>0)的图像相交于A(﹣8,m)、B(﹣2,n)两点,若△AOB面积为15,则k的值为()A.﹣8B.﹣7.5C.﹣6D.﹣4【分析】过点A、B分别作y轴的垂线,垂足分别为C、D,根据点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,推出n=4m,根据S梯形ACDB=S△OAB=15,求得n﹣m=3,进一步计算即可求解.【解答】解:∵反比例函数与一次函数y=ax+b(a>0)的图像相交于A (﹣8,m)、B(﹣2,n)两点,∴A(﹣8,m)、B(﹣2,n)两点在第二象限,过点A、B分别作y轴的垂线,垂足分别为C、D,则AC=8,BD=2,OC=m,OD=n,∴CD=n﹣m,∵点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,∴S△AOC=S△BOD,﹣8m=﹣2n,即n=4m,∵S△AOC+S梯形ACDB=S△BOD+S△OAB,∴S梯形ACDB=S△OAB=15,即,∴n﹣m=3,∴4m﹣m=3,解得m=1,∴A(﹣8,1),∴k=﹣8×1=﹣8.故选:A.3.(2023•宁波模拟)如图,一次函数y1=x﹣1的图像与反比例函数的图像交于点A (2,m),B(n,﹣2),当y1>y2时,x的取值范围是()A.x<﹣1或x>2B.x<﹣1或0<x<2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2【分析】先把B(n,﹣2)代入y1=x﹣1,求出n值,再根据图像直接求解即可.【解答】解:把B(n,﹣2)代入y1=x﹣1,得﹣2=n﹣1,解得:n=﹣1,∴B(﹣1,﹣2),∵图像交于A(2,m)、B(﹣1,﹣2)两点,∴当y1>y2时,﹣1<x<0或x>2.故选:D.4.(2023•宁德模拟)如图,已知直线l与x,y轴分别交于A,B两点,与反比例函数的图像交于C,D两点,连接OC,OD.若△AOC和△COD的面积都为3,则k的值是()A.﹣2B.﹣3C.﹣4D.﹣6【分析】由S△AOC=S△COD得,AC=CD,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),代入解析式得到n=m,过点作CH⊥y轴于H,利用S△AOC=3,可求出k.【解答】解:如图,∵S△AOC=S△COD,以AC,CD作底,高相同∴AC=CD,即C为AD的中点,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),∵D(,2m﹣n)在反比例函数y=的图像上,∴,∴n=m过点作CH⊥y轴于H,则CH=﹣,OA=n=m,∵S△AOC=3,∴OA•CH=3,∴×m×(﹣)=3,∴k=﹣4.故选:C.5.(2023•宿迁模拟)如图,在平面直角坐标系中,直线l与函数的图像交于A、B两点,与x轴交于C点,若OA=AB,且∠OAB=90°,则tan∠AOC的值为()A.B.C.D.【分析】作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,通过证得△AOE≌△BAD(AAS),求得B(),代入,即可得到(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解得y=,即可求得tan∠AOC ====.【解答】解:作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,∵∠OAB=90°,∴∠OAE+∠DAB=90°,∵∠OAE+∠AOE=90°,∴∠DAB=∠AOE,∵OA=AB,∠AEO=∠ADB=90°,∴△AOE≌△BAD(AAS),∴AD=OE=m,BD=AE=,∴B(),∵函数的图像过B点,∴(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除以k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解这个方程得y=,∴k>0,∴>0,∴=,∴tan∠AOC====.故选:A.6.(2023•呼和浩特一模)如图,在平面直角坐标系中,直线y=﹣3x+3交x轴于A点,交y轴于B点,以AB为边在第一象限作正方形ABCD,其中顶点D恰好落在双曲线上,现将正方形ABCD沿y轴向下平移a个单位,可以使得顶点C落在双曲线上,则a的值为()A.B.C.2D.【分析】作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G,由函数解析式确定B的坐标是(0,3),A的坐标是(1,0),根据全等三角形的判定和性质得出△OAB≌△FDA≌△BEC,AF=OB=EC=3,DF=OA=BE=1,结合图形求解即可.【解答】解:作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3),令y=0,解得:x=1,即A的坐标是(1,0),则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△EBC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4),代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把x=3代入y=得:y=.即G的坐标是,∴CG=4﹣=,∴a=,故选:A.7.(2023•徐州模拟)如图,一次函数的图像与反比例函数的图像交于点A,与y轴交于点C,AD⊥x轴于点D,点D坐标为(4,0),则△ADC的面积为()A.3B.6C.8D.12【分析】根据AD⊥x轴,D(4,0)求出点A的横坐标,代入一次函数表达式中求出点A纵坐标,再利用三角形面积公式计算.【解答】解:∵AD⊥x轴,D(4,0),∴x A=4,代入中,∴,即A(4,3),∴△ADC的面积为,故选:B.8.(2023•茅箭区一模)如图已知反比例函数C1:的图像如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是由曲线C2上一点,点M在直线y=﹣x 上,连接MN、ON,若MN=ON,△MON的面积为,则k的值为()A.B.C.﹣2D.﹣1【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:∵将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P⊥x轴于点P,连接ON',M'N',∵MN=ON,∴M'N'=ON',M'P=OP,∴S△MON=2S△PN'O=2×=|k|=,∵k<0,∴k=﹣.故选:B.9.(2023•西安二模)如图,在平面直角坐标系中,直线y=﹣x+1与x轴,y轴分别交于点A,B,与反比例函数的图像在第二象限交于点C,若AB=BC,则k的值为﹣2.【分析】过点C作CH⊥x轴于点H.求出点C的坐标,可得结论.【解答】解:过点C作CH⊥x轴于点H.∵直线y=﹣x+1与x轴,y轴分别交于点A,B,∴A(1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴△AOB∽△AHC,∴,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(﹣1,2),∵点C在y=的图像上,∴k=﹣2,故答案为:﹣2.10.(2023•双流区模拟)如图,已知一次函数的图像与反比例函数图像交于A,B两点.若AC∥x轴,且AC=BC,则△ABC面积的最小值为4.【分析】由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),即可推出m+n=﹣,mn=﹣3,利用勾股定理求得AB2=4b2+16,进而推出S△ABC =AB•CT=AB2=b2+4,利用二次函数的性质即可求得△ABC的面积有最小值为4.【解答】解:由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),联立,得x2+3bx﹣9=0,∴m+n=﹣,mn=﹣3,∴AB2=(m﹣n)2+(m+b﹣n﹣b)2=(m﹣n)2=[(m+n)2﹣4mn]=4b2+16,如图,过点C作CT⊥AB于点T,∵AC=BC,∴AT=BT=AB,由一次函数可知,∠CAB=30°,∴CT=AT=AB,∴S△ABC=AB•CT=AB2=b2+4,∴当b=0时,△ABC的面积有最小值为4,故答案为:4.11.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y=3x与反比例函数的图像交于A,B两点,C是反比例函数位于第一象限内的图像上的一点,作射线CA交y轴于点D,连接BC,BD,若,△BCD的面积为30,则k=6.【分析】作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C (a,),可证明tan∠CAE=tan∠CBF=,则∠CAE=∠CBF,即可推导出∠CDM =∠CMD,则CD=CM,所以===,则CI=4FI,所以a=4m,C(4m,),由=tan∠CMD=tan∠CBF=,得DI=MI=3m,则DM=6m,于是得×6m ×m+×6m×4m=30,则m2=2,所以k=3m2=6.【解答】解:作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,∵直线y=3x经过原点,且与双曲线y=交于A,B两点,∴点A与点B关于原点对称,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C(a,),F(﹣m,),∵tan∠CAE===,tan∠CBF===,∴tan∠CAE=tan∠CBF,∴∠CAE=∠CBF,∵AE∥BF∥DM,∠CAE=∠CDM,∠CBF=∠CMD,∴∠CDM=∠CMD,∴CD=CM,∵===,∴CI=4FI,∴a=4m,∴C(4m,),∵=tan∠CMD=tan∠CBF===,∴DI=MI=CI=×4m=3m,∴DM=DI+MI=6m,∵DM•FI+DM•CI=S△BCD=30,∴×6m×m+×6m×4m=30,∴m2=2,∴k=3m2=3×2=6,故答案为:6.12.(2023•余姚市校级模拟)如图,点A在y=(x>0)的图像上,点B,C在y=(x <0)的图像上(C在B左边),直线AB经过原点O,直线AC交y轴于点M,直线BC 交x轴于点N.则=;=m,=n,则=.【分析】作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x轴于F,CG⊥y 轴交y轴于G,再设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),从而可以表示出AD=a,OE=﹣bCG=﹣c,CF=﹣,BE=﹣,再根据三角形相似的判定定理得出△BEO∽△ODA,△CGM∽△ADM,△NCF∽△NBE,可分别表示出OA:OB,MC:MA,NB:NC,再由直线AB经过原点O,可以表示出及的值,最后代入即可得到答案.【解答】解:如图所示,作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x 轴于F,CG⊥y轴交y轴于G,设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),则AD=a,OE=﹣b,CG=﹣c,CF=﹣,BE=﹣,∵BE⊥x轴,∴BE∥y轴,∴∠EBO=∠BOG,∵∠BOG=∠DOA,∴∠EBO=∠DOA,∵AD⊥y轴,∴∠BEO=∠ODA=90°,∴△BEO∽△ODA,∴OA:OB=AD:OE=﹣,∵AD⊥y轴,CG⊥y轴,∴△CGM∽△ADM,∴==﹣=m,∵BE⊥x,CF⊥x轴,∴△NCF∽△NBE,∴====n,∴==﹣,∵直线AB经过原点O,∴=,=,∴=,=,由图像可知,a>0,c<b<0,∴=﹣,=﹣,∴=﹣=,=﹣=,故答案为:;.13.(2023•岳阳一模)如图,已知正比例函数y1=x的图像与反比例函数y2=的图像相交于点A(3,n)和点B.(1)求n和k的值;(2)请结合函数图像,直接写出不等式x﹣<0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求△AOE的面积.【分析】(1)先把点A(3,n)代入正比例函数解析式求出n的值,再把求出的点A坐标代入反比例函数解析式即可求出k值;(2)根据正比例函数和反比例函数都是关于原点成中心对称的,可得出点B的坐标,然后根据图像即可写出解集;(3)根据题意作出辅助线,然后求出OA的长,根据菱形的性质求出OC的长,可推出,然后求出菱形的面积即可求出△AOE的面积.【解答】解:(1)把点A(3,n)代入正比例函数可得:n=4,∴点A(3,4),把点A(3,4)代入反比例函数,可得:k=12;(2)∵点A与点B是关于原点对称的,∴点B(﹣3,﹣4),∴根据图像可得,不等式x﹣<0的解集为:x<﹣3或0<x<3;(3)如图所示,过点A作AG⊥x轴,垂足为G,∵A(3,4),∴OG=3,AG=4在Rt△AOG中,AO==5∵四边形AOCD是菱形,∴OC=OA=5,,∴.14.(2023•锦江区模拟)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像与x 轴交于点A(﹣2,0),与反比例函数交于点B(1,m).(1)求反比例函数的表达式;(2)点M为反比例函数在第一象限图像上的一点,过点M作x轴垂线,交一次函数y =2x+b图像于点N,连接BM,若△BMN是以MN为底边的等腰三角形,求△BMN的面积;(3)点P为反比例函数图像上一点,连接PB,若∠PBA=∠BAO,求点P的坐标.【分析】(1)用待定系数法即可求解;(2)若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,进而求解;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,进而求解.【解答】解:(1)将点A的坐标代入一次函数表达式得:0=﹣4+b,解得:b=4,即一次函数的表达式为:y=2x+4,当x=1时,y=2x+4=6,则点B(1,6),将点B的坐标代入反比例函数表达式得:k=1×6=6,即反比例函数表达式为:y=;(2)设点N的坐标为(t,2t+4),则点M(t,),若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,则(2t+4+)=6,解得:t=1(舍去)或3,则点M、N的坐标分别为:(3,10)、(3,2),则△BMN的面积=MN•(x M﹣x B)=(10﹣2)×(3﹣1)=8;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,∵点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,由中点坐标公式得,点M(﹣,3),在Rt△AMH中,由AB的表达式知,tan∠BAO=2,则tan∠MHA=,则直线MH表达式中的k值为﹣,则直线MH的表达式为:y=﹣(x+)+3,令y=﹣(x+)+3=0,则x=,即点H(,0),由点B、H的坐标得,直线BH的表达式为:y=﹣x+,联立y=﹣x+和y=并解得:x=1(舍去)或,则点P的坐标为:(,).。
第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。
初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、计算题(共100题)1、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?2、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?3、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.4、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?5、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.6、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.7、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.8、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.9、在中,当时,,当时,,求和的值.10、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.11、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.12、在中,当时,,当时,,求和的值.13、已知,当时,;当时,. 求出k,b 的值;14、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.15、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.16、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.17、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.18、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.19、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.21、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.22、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.23、已知y=(k-3)x+k2-9是关于x的正比例函数,求当x=-4时,y的值.24、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?25、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.28、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?29、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.30、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.31、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.32、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.33、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.34、在中,当时,,当时,,求和的值.35、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.36、已知,当时,;当时,. 求出k,b 的值;37、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.38、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.39、在中,当时,,当时,,求和的值.40、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.41、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.42、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.43、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.44、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.45、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.46、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.47、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.48、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.49、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.50、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?51、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.52、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.53、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。
《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。
中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。
一次函数中考题综合练习
1、在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....
分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.
(1)填空:A 、C 两港口间的距离为 km , a ;
(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.
y 140
120(2)当销售单价为多少时,销售利润最大?最大利润是多少?
5. (2016·新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y (km )与汽车行驶时间x (h )之间的函数图象如图所示.
(1)从小刚家到该景区乘车一共用了多少时间? (2)求线段AB 对应的函数解析式; (3)小刚一家出发2.5小时时离目的地多远?
6. (2016江苏淮安)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;
(2)求y1、y2与x的函数表达式;
(3时,
7. (2016
x(时),y与x
(1
(2的取值范围;
(3
8.(~5000kg (含
方案A
方案B
(1
达式;
(2
(3
9. (2016年浙江省丽水市)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:
(1)求图中a的值;
(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.
①求AB所在直线的函数解析式;
②该运动员跑完赛程用时多少分钟?
10.(2016.山东省临沂市)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按
(1)请数关系式;
(2
11.(
个,若购买20元.
(1
(2)
12.(
过了1
运量y A
列问题:
(1)求y
(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?
专题训练:一次函数与几何图形综合
1、直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB
(1)求AC的解析式;
(2)在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的数量关系,并证明你
的结论。
(3)在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①(MQ+AC)/PM的值不变;②
(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。
A 、
B (2)在(1)的条件下,如图②所示,设AM ⊥OQ 于M ,BN ⊥OQ
(3)当m 取不同的值时,点一、二象限内作等腰直角△问:当点B 在 y 若不是,说明理由。
3.如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足.
(1)求直线AB 的解析式;
(2)若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值;
x
第2题图①
第2题图② 第2题图③
(3)过A 点的直线
交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直线
交
AP 于点M ,试证明的值为定值.
4、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关
于x
(1(2)过作CF ⊥l (3)△y 5.轴于C (1(2于D ,(3△
6.如图l OBC
=S △AOB .
(1)求直线BC 的解析式;
(2)直线EF :y =kx-k 交AB 于E 点,与x 轴交于D 点,交BC 的延长线于点F ,且S △BED =S △FBD ,求k 的值;
B
y
(3)如图2,M(2,4),点P为x轴上一动点,AH⊥PM,垂足为H
予证明.
7.在平面直角坐标系中,一次函数y=ax+b的图像过点B(-1,),
与x轴交于点A(4,0),与y轴交于点C,与直线y=kx交于点P,
且PO=PA
(
(
(
8.
旋转90
(1)
(2)
(3)(,
在点N
9
B(
(1
(2)
求证∠
(3)
于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,
求线段OQ的取值范围.
=OE.。