七年级上数轴上的动点问题(最新最全版)
- 格式:docx
- 大小:117.86 KB
- 文档页数:7
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。
七年级数学上册动点问题1、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?①4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?5、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数6、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
专题08难点探究专题:数轴上的动点问题压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一数轴上的动点中求运动的时间问题】 (1)【考点二数轴上的动点中求定值问题】 (7)【考点三数轴上的动点中找点的位置问题】 (14)【考点四数轴上的动点中几何意义最值问题】 (18)【考点五数轴上的动点规律探究问题】 (21)【考点六数轴上的动点新定义型问题】 (24)【典型例题】【考点一数轴上的动点中求运动的时间问题】(1)数轴上点A表示的数为,点-+,在数轴上点P表示的数是104t【变式训练】1.(2023春·安徽安庆·七年级统考期末)已知如图,数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运t t>秒.动时间为()0(1)数轴上点B表示的数是___________;当点P运动到AB的中点时,它所表示的数是__________.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?【答案】(1)−4,1;(2)①当点P运动5秒时,点P追上点Q;②当点P运动1或9秒时,点P与点Q 间的距离为8个单位长度.【分析】(1)由已知得OA=6,则OB=AB−OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,所以可得出点P所表示的数为6−4t,当点P运动到AB的中点时,它的运动时间t=5÷4=1.25秒,即可求出点P所表示的数是1;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则4t=10+2t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+2a−4a=8;超过Q,则10+2a+8=4a;由此求解即可.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB−OA=4,∵点B在原点左边,∴数轴上点B所表示的数为−4;点P运动t秒的长度为4t,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6−4t,当点P运动到AB的中点时,它的运动时间为t=5÷4=1.25秒,∴它所表示的数是6−4t=6−4×1.25=1;故答案为:−4,1;(2)①点P运动t秒时追上点Q,根据题意得4t=10+2t,解得t=5,答:当点P运动5秒时,点P追上点Q;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P 不超过Q ,则10+2a −4a =8,解得a =1;当P 超过Q ,则10+2a +8=4a ,解得a =9;答:当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【点睛】此题考查了数轴上的动点问题,根据已知得出各线段之间的关系等量关系是解题关键.2.(2023秋·湖北武汉·七年级统考期末)如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示12-,点B 表示12,点C 表示20,我们称点A 和点C 在数轴上相距32个长度单位,记为32AC L =.动点M 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点N 从点C 出发,沿着“折线数轴”的负方向运动,它们在水平轴AO ,BC 上的速度都是2单位/秒,在O ,B 之间的上行速度为1单位/秒,下行速度为3单位秒.设运动的时间为t 秒.(1)当4t =秒时,M ,N 两点在数轴上相距多少个单位长度?(2)当M ,N 两点相遇时,求运动时间t 的值.(3)若“折线数轴”上定点P 与O ,B 两点相距的长度相等,且存在某一时刻t ,使得两点M ,N 与点P 相距的长度之和等于6,请直接写出t 的值为____________.【答案】(1)M ,N 两点在数轴上相距16个单位长度(2)8.5t =(3)3t =或10t =【分析】(1)先计算出AO ,BC 的长度,再计算出经过4秒,点M 和点N 运动的路程,即可求解;(2)根据相遇时,两点的路程和等于总路程,即可求解;(3)根据题意,进行分类讨论即可.【详解】(1)解:根据题意可得:()01212AO =--=,20128BC =-=,当4t =秒时,点M 的运动路程:2812t =<,点N 的运动路程:28t =,∴经过4秒,点M 在AO 上,点N 和点B 重合,∴点M 表示的数为:1284-+=-,点N 表示的数为:20812-=,∴M 、N 两点距离为:()12416--=.【考点二数轴上的动点中求定值问题】(1)点B在数轴上表示的数是,点C在数轴上表示的数是【变式训练】(1)=a___________,b=___________;(1)填空:线段AB的长度AB=______;=,点D在点A的右侧,又∵OD AC【考点三数轴上的动点中找点的位置问题】(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数(2)操作二:折叠纸面,使表示数6的点与表示数﹣2的点重合,回答下列问题:【答案】(1)-4(2)①-5;②A、B两点表示的数分别是-3,7;③x的值为-4或8.【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是5,即可求出答案;③根据点P在数轴上的位置,分类讨论,当点P在点A的左侧时,当点P在点A、B之间时,当点P在点A的右侧时,根据各种情形求解即可.【详解】(1)解:∵折叠纸面,使数字1表示的点与-1表示的点重合,可确定中心点是表示0的点,∴4表示的点与-4表示的点重合,故答案为∶-4;(2)解:①∵折叠纸面,使表示数6的点与表示数﹣2的点重合,可确定中心点是表示2的点,∴表示数9的点与表示数-5的点重合;故答案为∶-5;②∵折叠后,数轴上的A,B两点也重合,且A,B两点之间的距离为10(点A在点B的左侧),∴A、B两点距离中心点的距离为10÷2=5,∵中心点是表示2的点,∴A、B两点表示的数分别是-3,7;③当点P在点A的左侧时,∵PA+PB=12,∴-3-x+7-x=12,解得x=-4;当点P在点A、B之间时,此时PA+PB=12不成立,故不存在点P在点A、B之间的情形;当点P在点A的右侧时,∵PA+PB=12,∴x-(-3)+x-7=12,解得x=8,综上x的值为-4或8.【点睛】本题考查了数轴的应用,能求出折叠后的中心点的位置是解此题的关键.【变式训练】1.已知在数轴上A,B两点对应数分别为﹣2,6.(2)解:①MP=2t+2-t=t+2.当点P在点N NP=5t-6(1)直接写出线段AB的中点C对应的数;(4)①追及前相距20,设行驶的时间为t s ,由题意得,3012+90+8=20t t -,解得25t =,此时李明所在位置点F 对应的数为90825290--⨯=-;②追及后相距20,设行驶的时间为t s ,由题意得,908301220t t ---+=,解得35t =,此时李明所在位置点F 对应的数为90835370--⨯=-;答:李明所在位置点F 对应的数为290-或370-.【点睛】题目主要考查数轴上两点之间的距离及一元一次方程的应用,理解题意,进行分情况讨论分析是解题关键.【考点四数轴上的动点中几何意义最值问题】填空:因为12x x ++-的几何意义是线段PA 与PB 的长度之和,而当点点P 在线段AB 上,6PA PB +=,当点在3-和1之间时,距离之和为4,不满足题意;【变式训练】图图图图【考点五数轴上的动点规律探究问题】例题:(2022秋·北京朝阳·九年级校考阶段练习)一个动点P 从数轴上的原点O 出发开始移动,第1次向右移动1个单位长度到达点P 1,第2次向右移动2个单位长度到达点P 2,第3次向左移动3个单位长度到达点P 3,第4次向左移动4个单位长度到达点P 4,第5次向右移动5个单位长度到达点P 5…,点P 按此规律移动,则移动第158次后到达的点在数轴上表示的数为()A .159B .-156C .158D .1【答案】A【分析】根据数轴,按题目叙述的移动方法即可得到点前五次移动后在数轴上表示的数;根据移动的规律即可得移动第158次后到达的点在数轴上表示的数.【详解】解:设向右为正,向左为负,则1P 表示的数为+1,2P 表示的数为+33P 表示的数为04P 表示的数为-45P 表示的数为+1……由以上规律可得,每移动四次相当于向左移动4个单位长度.所以当移动156次时,156=39×4相当于向左移动了39次四个单位长度.此时表示的数为()39-4156⨯=-.则第157次向右移动157个单位长度,1571P =;P=.第158次还是向右,移动了158个单位长度,所以1581+158=159P在数轴上表示的数为159.故158故选A.【点睛】本题考查了数轴上点的运动规律,正确理解题意,找出点在数轴上的运动次数与对应点所表示的数的规律是解题的关键.【变式训练】离.【详解】(1)∵A点在数轴上表示的数为﹣17,A、B两点相距54米,﹣17+54=37或-17-54=-71答:B点在数轴上表示的数为37或-71;(2)M点到A点的距离与N点到A点的距离相等.理由如下:根据题意,得前进第一次与点A距离1米,前进第二次与点A距离2米,后退第一次与点A距离1米,后退第二次与点A距离2米,…第六次行进(即前进3次,后退3次)后,点N到A的距离为3米,点M到A的距离为3米,答:M点到A点的距离与N点到A点的距离相等.(3)∵B点在原点的左侧∴B点在点A的左侧经过10次行进后,小乌龟在点A的右侧且与点A的距离是5米,小乌龟到达的点与B点之间的距离是54+5=59(米);答:经过10次行进后,小乌龟到达的点与B点之间的距离是59米.【点睛】此题考查有理数的计算,正确理解点与点间的位置关系是解题的关键,(1)中注意点B可能在两侧的情况;(2)中找到乌龟爬行的规律为(3)做基础.【考点六数轴上的动点新定义型问题】例题:(2022秋·江苏·七年级期末)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B 的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D 就不是【A,B】的美好点,但点D是【B,A】的美好点.(1)点E,F,G表示的数分别是-3,6.5,11,其中是【M,N】美好点的是H所表示的数是.【答案】(1)G;-4或-16(2)1.5,2.25,3,6.75,9,13.5【分析】(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,当MP=2PN时,PN=3,点P对应的数为当2PM=PN时,NP=6,点P对应的数为2-6=-4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2-18=-16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2-27=-25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2-13.5=-11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,第八种情况,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.【点睛】本题考查实数与数轴、点是【M,N】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【变式训练】如图②,M ,N 为数轴上两点,点M 表示数(1)①求(),M N 的美好点表示的数为__________.②求(),N M 的美好点表示的数为_____________.(2)数轴上有一个动点P 从点M 出发,沿数轴以每秒2个单位长度的速度向右运动.设点为t 秒,当点P ,M 和N 中恰有一个点为其余两点的美好点时,求【答案】(1)①-1;②-4;(2)t的值1.5,2.25,3,6.75,9,13.5【分析】(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,须区分各种情况分别确定P点的位置,进而可确定t的值.【详解】解:(1)已知点M表示数-7,点N表示数2,由题意可设N到美好点的距离为x,则(M,N)的美好点为2x+x=2-(-7),3x=9,x=3∴①(M,N)的美好点为-7+2×3=-1;②(N,M)的美好点为-7+3=-4;(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2-3=-1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,当2PM=PN时,NP=6,点P对应的数为2-6=-4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2-18=-16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2-27=-25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2-13.5=-11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,因此t=2.25秒;第七种情况,N为【P,M】的美好点,点P在M左侧,当PN=2MN时,NP=18,因此t=9秒,第八种情况,N为【M,P】的美好点,点P在M右侧,当MN=2PN时,NP=4.5,因此t=2.25秒,综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.【点睛】本题考查了实数与数轴、点是【M,N】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO . (1)写出数轴上点A 、C 表示的数;图图图(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运 动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的 式子表示);②t 32为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程的两根(),91x +=a b <与互为相反数。
2(16)c -20d -(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
完整版)七年级上期末动点问题专题(附答案)1.已知数轴上点A对应的数为a,点B对应的数为b,且满足|2b-6|+(a+1)^2=0,定义AB的长度为|a-b|。
1) 求线段AB的长度。
解:由定义可得,AB的长度为|a-b|。
2) 设点P在数轴上的坐标为x,且满足PA-PB=2,求x的值。
解:由题意得,PA-PB=|a-x|-|b-x|=2,分成两种情况讨论:当a>b时,有a-x-b+x=2,即a-b=2,解得x=a-1.当a<b时,有b-x-a+x=2,即b-a=2,解得x=b-1.综上所述,x的取值为a-1或b-1.3) 设M、N分别为PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM-PN|的值不变。
解:由题意得,M、N的坐标分别为[(a+x)/2,0]和[(b+x)/2,0],则① PM÷PN的值不变时,有|a-x|/|b-x|=|a-x0|/|b-x0|,其中x0是PM÷PN的值不变时的一个定值,化简得(a-x0)(b-x)=(b-x0)(a-x),即ax0-bx0=ax-bx0,解得x=(ax0-bx0+bx0)/2=a/2+b/2-x0/2.② |PM-PN|的值不变时,有[(a-x)/2-(b-x)/2]^2=K,其中K 是|PM-PN|的值不变时的一个定值,化简得(x-a+b)^2=4K,解得x=(a+b±2√K)/2.综上所述,当①成立时,x的取值为a/2+b/2-x0/2;当②成立时,x的取值为(a+b±2√K)/2.2.如图1,已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的动点,其对应的数为x。
1) PA=|x-(-1)|=|x+1|,PB=|x-3|。
2) 若PA+PB=5,则有|x+1|+|x-3|=5,分成四种情况讨论:当x≤-1时,有-(x+1)-(x-3)=5,解得x=-2.当-1<x<3时,有-(x+1)+(x-3)=5,无解。
完整版)七年级上册数学期末动点问题专题七年级上期末动点问题专题1.数轴上的动点问题已知数轴上两点A、B对应的数分别为-1和3,数轴上一动点P对应的数为x。
1) 若点P到点A和点B的距离相等,求点P对应的数。
解:由题意得,PA=PB,即 |x-(-1)|=|x-3|,解得x=1.2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A 和点B的距离相等。
解:设P点向左运动t分钟后到达距离O点x的位置,则A点和B点向左运动5t和20t个单位长度后,分别到达距离O 点-5t和3-20t的位置。
由于PA=PB,因此有:x-(-1+1t)|=|x-3-17t|解得t=2,代入得到x=-1+2t=-3.2.射线上的动点问题如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发。
1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。
解:设Q点向左运动t秒后到达距离O点x的位置,则有:OC-x|=|OP+t|OB-2x|=2|PA-OP-t|AB-3x|=3|PA-OP-t|解得x=10,t=10,因此Q点的运动速度为3cm/s。
2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。
解:设P点向右运动t秒后到达距离O点y的位置,则有:y|=|x+t-20|y|=|60-x-t|解得t=25,因此P、Q两点相距70cm时,P点向右运动了25秒,Q点向左运动了25秒。
3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。
解:设P点向右运动t秒后到达线段AB上的点E,则有:OE|=|20+t/2|由于AE=40,因此有AP=AE-PE=40-(20+t/2)=60-t/2.又因为OF=FB=30,因此有:OB-AP/EF=2OB/AB-AP/AF=2(20+t)-60/(2OF)=t+1.3.相向而行的动点问题甲、乙物体分别从相距70米的两处同时相向运动。
1、 动点三要素:① 起点:最初的位置② 方向:向右就加,向左就减③ 速度:=×速度时间运动距离位置公式:=±×位起点速度置时间例如:点A 在数轴上对应的数为1,沿数轴向右开始运动,速度为每秒2个单位,则t 秒后A 点对应的数为?解答:12t +练1点A 在数轴上对应的数为3,沿数轴向左开始运动,速度为每秒1个单位,则t 秒后A 点对应的数为______练2点A 在数轴上对应的数为2−,沿数轴运动,速度为每秒3个单位,则t 秒后A 点对应的数为______2、距离表示:距离右左①相对位置确定:=−②相对位置不确定:=距离右左左右=−−例1:点A在数轴上对应的数为1,点B在数轴上对应的点为3,则A、B之间的距离为多少?−=解答:312例2:点A在数轴上对应的点为1,点B在数轴上对应的点为x,则A、B之间的距离为多少?x−解答:1练1点A在数轴上对应的数为2−,点B在数轴上对应的点为4,则A、B之间的距离为_____练2点A在数轴上对应的数为a,点B在数轴上对应的点为b,则A、B之间的距离为_____3、 中点公式:已知A 在数轴上对应的数为a ,B 在数轴上对应的数为b ,则A 、B 的中点M 对应的数为2m a b +=中点公式进阶:已知A 在数轴上对应的数为a ,A 、B 的中点M 对应的数为m ,则B 在数轴上对应的数为2b a m =−例1:点A 为3,点B 为7−,则A 、B 的中点是多少?解答:()3227+−=−3、 中点公式:已知A 在数轴上对应的数为a ,B 在数轴上对应的数为b ,则A 、B 的中点M 对应的数为2m a b += 中点公式进阶:已知A 在数轴上对应的数为a ,A 、B 的中点M 对应的数为m ,则B 在数轴上对应的数为2b a m =− 练1点A 为10−,点B 为6,则A 、B 中点对应数为____ 练2点A 为10−,A 、B 中点为2,则点B 对应数为____考法1:相遇问题、相遇时,t是多少?相遇时P对应的数为多少?P Q考法2:距离问题当t为何值时,PQ之间的距离为6?考法3:定值问题若Q点运动方向改为向右,那么在运动过程中,PQ PA−是否为定值?考法4:中点问题若P Q、出发的同时,点M从原点出发,向右运动,速度为3个单位每秒,则t为何值时,P Q M、、中,任意一点是其余两点所连线段的中点?考法1:相遇问题P Q、相遇,t是多少?相遇时P对应的数为多少?分析:相遇表示同一时间到达同一位置,分别表示P、Q 位置,利用位置相等建方程即可解析:t秒后,点P位置为2t+,点Q位置为102t−P、Q相遇,则1202t t=+−解之得:83 t=248313+=,故相遇时,P点对应的数为143练习若P点运动方向改为向左,那么P Q、相遇时,t是多少?相遇时P对应的数为多少?考法2:距离问题当t为何值时,PQ之间的距离为6?分析:分别表示P、Q位置,再表示距离建方程,需注意的是P、Q相对位置不确定,故需加绝对值解析:t秒后,点P位置为2t+,点Q位置为102t−则()810223P ttQ t+=−−=−令386t−=,解之得:21433 t=或故21433t=或时,PQ之间的距离为6练习当t为何值时,PQ之间的距离为2?考法3:定值问题若Q点运动方向改为向右,那么在运动过程中,PQ PA−是否为定值?分析:分别表示PQ、P A的距离,再代入PQ PA−计算,看结果是否为定值即可,本题相对位置确定,故表示位置时,无需加绝对值解析:t秒后,点P为2t+,点Q为102t+,点A为2则()()++t t=−=+,22t10PQ t228=−=tPA+则88PQ PA t t−=+−=故PQ PA−为定值练习Q点运动方向仍为向右,BQ的中点记为M,则PM的长是否为定值?考法4:中点问题P Q 、出发同时,M 从原点出发,向右运动,速度为3个单位每秒,t 为何值时,P Q M 、、中任意一点是其余两点中点?分析:分别表示P 、Q 、M 的位置,再分三类讨论,每一类根据中点公式列方程即可解析:t 秒后,点P 为2t +,点Q 为102t −,点M 为3t①若P 为QM 中点,则310222t t t +=+−,6t = ②若Q 为PM 中点,则221230t t t +−+=,94t = ③若M 为PQ 中点,则232102t t t +=+−,127t = 练习考法4中,点P 方向改为向左,其余条件和问题均不变,则t 为何值?。
七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
2.如图,A 、B 、C 是数轴上的三点,O 是原点,?BO=3,AB=2BO ,5AO=3CO .?(1)写出数轴上点A 、C 表示的数;?(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒?2个单位长度的速度沿数轴向右匀速运动,点Q?以每秒6个单位长度的速度沿数轴向左匀速运?动,M 为线段AP 的中点,点N 在线段CQ 上,且?CN=32CQ .设运动的时间为t (t >0)秒.?①数轴上点M 、N 表示的数分别是?(用含t 的?式子表示);?②t 为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程91x +=的两根(a b <),2(16)c -与20d -互为相反数。
(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
4.数轴上点A 、C 对应的数分别为a 、c ,且a 、c 满足0)1(42014=-++c a ,点B 对应的数为-3. (1)求数a 、c ;(2)点A 、B 沿数轴同时出发向右匀速运动,点A 速度为2单位长度/秒,点B 速度为1单位长度/秒,若运动时间为t 秒,运动过程中,当A 、B 两点到原点O 的距离相等时,求t 的值;(3)在(2)的条件下,若点B 运动到点C 处后立刻以原速返回,到达自己的出发点后停止运动,点A 运动至点C 处后又以原速返回,到达自己的出发点后又折返向点C 运动,当点B 停止运动时,点A 随之停止运动,求在此运动过程中,A 、B 两点同时到达的点在数轴上表示的数.5.数轴上A 对应的数为a ,B 对应的数为b ,且满足1260a b -++=,O 为原点.(1)求a 、b 的值,并在数轴上标出A 、B ;(2)数轴上A 以每秒3个单位,B 以每秒1个单位的速度同时出发向左运动,在C 点出A 追上了B ,求C 点对应的数是多少?(3)若点A 原地不动,点B 仍然以每秒1个单位的速度向左运动,M 为线段OB 的中点,N 为线段AB 的中点,在点B 的运动过程中,线段MN 的长是否变化,若变化说明理由;若不变,求出其长度6.数轴上A 、B 对应的数分别为a 、b ,且21(100)2002ab a ++-=.P 是数轴上的一个动点。
(1)在数轴上标出A 、B 的位置,并求出A 、B 之前的距离;(2)数轴上一点C 距A 点24个单位长度,其对应的数c 满足ac ac =-,当P 点满足PB=2PC 时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,……点P 能移动到与A 或B 重合的位置吗?若能,请探索第几次移动时重合;若不能,请说明理由。
7.已知数轴上两点M 、N 对应的数分别为m 、n ,并且m 、n 满足23(4)0m n ++-=(1) 求MN 的长;(2) 若甲、乙分别从M 、N 两点开始同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲快3个单位/秒,求甲乙相遇点所对应的数;(3) 若点A 对应的数是-1,在数轴上M 点的左侧是否存在一点P ,使PM+PN=3PA ,若存在,求点P 所对应的数;若不存在,请说明理由。
8.如图,点A 、B 为数轴上的两点(A 点在负半轴,用数a 表示;B 点在正半轴,用数b 表示)(1)若|b -a |=|3a |,试求a 、b 的关系式;(2)在(1)的条件下,Q 是线段OB 上一点,且AQ -BQ =OQ ,求OQ:AB 的值;(3)在线段AO 上有一点C ,OC =4,在线段OB 上有一动点D (OD>4),M 、N 分别是OD 、CD的中点,下列结论:①OM -ON 的值不变;②OM+ON 的值不变,其中只有一个结论是正确的,请你找出正确的结论,并求值。
9.数轴上A 点对应的数为-5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动。
(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由。
10.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且AB =14,动点P 从点A 出发,以每秒6个单位长度的速度向左运动,设运动时间为t(t>0)秒。
(1)点B 对应的数为________;在运动过程中点P 所对应的数为_________(用含t 的式子表示);(2)动点Q 也从点A 出发,以每秒1个单位长度的速度沿数轴向左运动,动点R 从点B 出发,以每秒4/3个单位长度的速度沿数轴向左运动。
若P 、Q 、R 三点同时出发,当点P 追上点R 后立即返回向点Q 运动,遇到Q 点则停止运动。
问:当点P 返回遇到点Q 停止运动时,P 点所对应的数是多少?请说明理由。
11.如图,在数轴上,A 点对应的数为-5,B 点对应的数为15,P 点从A 点出发,以每秒1个单位长度的速度向正方向运动。
(1)当PA -PB =12时,求P 点运动的时间和P 点对应的数;(2)设M 为PA 的中点,N 为PB 的中点,请画出图形并回答问题:当P 点在运动时,线段MN 的长度是否发生变化?若不变,请求出线段MN 的长度;若变化,请说明理由。
12.已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x 。
(1)若P 为AB 线段的三等分点,求P 对应的数;O D E N M (2)数轴上是否存在P ,使P 到A 点、B 点距离和为10,若存在,求出x ;若不存在,说明理由;(3)A 点、B 点和P 点(P 在原点)分别以速度比1 :10 :2(长度:单位/分),向右运动几分钟时,P 为AB 的中点。
13.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足|a +2|+(b -1)2=0。
A B(1)求线段AB 的长;(2)点C 在数轴上对应的数为x ,且x 是方程2x -1= 12x +2的根,在数轴上是否存在点P ,使PA +PB =PC ,若存在,求出点P 对应的数;若不存在,说明理由。
(3)若P 是A 左侧的一点,PA 的中点为M ,PB 的中点为N ,当P 点在A 点左侧运动时,有两个结论:①PM +PN 的值不变;②PN -PM 的值不变,其中只有一个结论正确,请判断正确结论并求出其值。
14.如图,在射线OM 上有三点A 、B 、C ,满足OA = 20cm ,AB = 60cm ,BC = 10cm (如图所示),点P 从点O 出发,沿OM 方向以1cm/s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动(点Q 运动到点O 时停止运动),两点同时出发.(1)当PA = 2PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;(2) 若点Q 运动速度为3cm/s ,经过多长时间P 、Q 两点相距70cm ?(3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求EF APOB -的值.15.如图,动点A 从原点出发向负方向运动,同时,动点B 也从原点出发向数轴的正方向运动,3秒后,两点相距15个单位长度。
已知动点A 、B 的速度比是1︰4(速度单位:单位长度∕秒。
)(1)求出两个动点的运动速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(2)若两点A 、B 从(1)中的位置同时按原速度向数轴负方向运动,几秒时,原点恰好处在两个动点A 、B 之间的31处? (3)在(2)中A 、B 两点同时向数轴的负方向运动时,另一动点C 和点B 同时从B 点出发向A 运动,当遇到点A 后立即返回向B 点运动,遇到点B 后又立即向A 点运动,如此往返,直到B 追上A 时,立即停止运动。
若点C 一直以20单位长度∕秒的速度匀速运动,那么从点C 开始运动到停止运动,行驶的路程是多少个单位长度?16. 已知A 、B 两点在数轴上表示的数为a 和b ,M 、N 均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图l 所示,试化简:a -b +b a ++b a -; (2)如图2,若a +b =8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图3,M 为AB 中点,N 为OA 中点,且MN=2AB -15,a=-3,若点P 为数轴上一点,且PA=32AB ,试求点P 所对应的数为多少? 17. 已知多项式223--n m 中,含字母的项的系数为a ,多项式的次数为b ,常数项为c .且a 、b 、c分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出A 、B 、C .15 12 9 6 3 0 -3 -6 -9 -12 B O(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发沿数轴负方向运动,它们的速度分别是12、2、14(单位长度/秒),当乙追上丙时,乙是否追上了甲?为什么? (3)在数轴上是否存在一点P ,使P 到A 、B 、C 的距离和等于10?若存在,请直接指出点P 对应的数;若不存在,请说明理由.18. 如图,数轴上一点A, 点B 从A 出发沿数轴以a 个单位/秒的速度匀速向左运动, 同时另一点C 也从A 出发沿数轴以某一速度匀速向右运动, 取BC 中点M ,AC 中点N ,a 是关于x 的方程4232=+-a x 。