2019年贵州成人高考高起点数学(理)真题及答案
- 格式:doc
- 大小:144.51 KB
- 文档页数:8
学习攻略—收藏助考锦囊系统复习资料汇编考试复习重点推荐资料百炼成金模拟考试汇编阶段复习重点难点梳理适应性全真模拟考试卷考前高效率过关手册集高效率刷题好资料分享学霸上岸重点笔记总结注:下载前请仔细阅读资料,以实际预览内容为准助:逢考必胜高分稳过2019年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题)一、选择题(1-10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→O时,x+x2+x3+x4为x的()。
A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小2.limx→∞�1+2x�x=()。
A.-e2B.-eC.eD.e23.设函数y=cos2x,则y′=()。
A.2sin2xB.-2sin2xC.sin2xD.-sin2x4.设函数f(x)在[a,b]上连续,在(a.b)可导,f′(x)>0,f(a)f(b)<0,则在(a.b)内零点的个数为()。
A.3B.2C.1D.05.设2x为f(x)的一个原函数,则f(x)=()。
A.0B.2C.x2D.x2+C6.设函数f(x)=arctan x,则∫f′(x)dx=()。
A.−arctan x+CB.−11+x2+CC.arctan x+CD.11+x2+C7.设I1=∫x2dx10,I2=∫x3dx110,I3=∫x4dx10,则()。
A.I1>I2>I3B.I2>I3>I1C.I3>I2>I1D. I1>I3>I28.设函数z=x2e y,则∂z∂x�(1,0)=()。
A.0B.12第 1 页,共 6 页2/25C.1D.29.平面x +2y −3z +4=0的一个法向量为( )。
A.{1,−3,4}B.{1,2,4}C.{1,2,−3}D.{2,−3,4}10.微分方程y ′′+(y ′)3+y 4=x 的阶数为( )。
A.1 B.2C.3D.4第Ⅱ卷(非选择题)二、填空题(11-22小题,每小题4分,共40分)11.lim x→0tan 2x x = 。
贵州省2019年高考数学试卷(理科)以及答案解析绝密★启用前贵州省2019年高考理科数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={-1,1,2},B={x|x²≤1},则A∩B=()A。
{-1,1} B。
{0,1} C。
{-1,1} D。
{0,1,2}2.(5分)若z(1+i)=2i,则z=()A。
-1-i B。
-1+i C。
1-i D。
1+i3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著。
某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A。
0.5 B。
0.6 C。
0.7 D。
0.84.(5分)(1+2x²)(1+x)⁴的展开式中x³的系数为()A。
12 B。
16 C。
20 D。
245.(5分)已知各项均为正数的等比数列{an}的前4项和为15,且a₅=3a₃+4a₁,则a₃=()A。
16 B。
8 C。
4 D。
26.(5分)已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A。
a=e,b=-1 B。
a=e,b=1 C。
a=e¹,b=1- D。
a=e¹,b=-1-7.(5分)函数y=在[-6,6]的图象大致为()A。
成人高考成考数学(理科)(高起专)模拟试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数(f(x)=x3−3x2+4)的导数(f′(x))等于0,则(f(x))的极值点为:A、(x=0)B、(x=1)C、(x=2)D、(x=−1)2、已知函数f(x)=x 2−4x−2,则函数的定义域为()A.x≠2B.x≠0C.x≠2且x≠0D.x≠0且x≠−23、若函数(f(x)=1x−2+√x+1)在区间([−1,2))上有定义,则函数(f(x))的定义域为:A.([−1,2))B.([−1,2])C.((−1,2))D.((−1,2])4、在下列各数中,正实数 a、b、c 的大小关系是:a = 2^(3/2),b = 3^(2/3),c = 5^(1/4)。
A、a < b < cB、b < a < cC、c < b < aD、a = b = c5、已知函数f(x)=2x3−9x2+12x+1,若函数的图像在(−∞,+∞)上恒过点(a,b),则a和b的值分别为:A.a=2,b=9B.a=3,b=10C.a=1,b=2D.a=0,b=1+2x)在(x=1)处有极值,则此极值点处的导数值为:6、若函数(f(x)=3xA. 1B. -1C. 0D. 3在点x=1处的导数等于多少?7、若函数f(x)=2x−3x+1A、2B、−1C、1D、08、已知函数f(x)=x 3−3x2+4xx2−2x+1,则f(x)的奇偶性为:A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定9、在下列数列中,属于等差数列的是()A、1, 2, 3, 4, 5B、1, 3, 6, 10, 15C、2, 4, 8, 16, 32D、1, 3, 6, 9, 1210、已知函数(f(x)=1x+x2)在区间((−∞,+∞))上的定义域为(D),且函数的值域为(R),则(D)和(R)分别是:A.(D=(−∞,0)∪(0,+∞),R=(−∞,0)∪(0,+∞))B.(D=(−∞,0)∪(0,+∞),R=[0,+∞))C.(D=(−∞,+∞),R=(−∞,+∞))D.(D=(−∞,+∞),R=[0,+∞))11、若函数f(x)=x3−3x2+4x,则函数的对称中心为:A.(1,2)B.(1,1)C.(0,0)D.(−1,−1)12、若函数(f(x)=√x2−4)的定义域为(D f),则(D f)为:A.(x≥2)B.(x≤−2)或(x≥2)C.(x≤−2)或(x≥2)D.(x≥2)或(x≤−2)二、填空题(本大题有3小题,每小题7分,共21分)1、在△ABC中,若sinA=√55,cosB=−√1010,则sinC=____.2、已知直线(l)的方程为(3x−4y+10=0),求直线(l)在 y 轴上的截距。
2019年成人高等学校招生全国统一考试高起点数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4}集合M={3,4},则M C U =【】A.{2,3}B.{2,4}C.{1,2}D.{1,4}2.函数y=cos4x 的最小正周期为【】A.2π B.4π C.π D.π2 3.设甲:b=0;乙:函数y=kx+b 的图像经过坐标原点,则【】A.甲是乙的充分条件但不是必要条件B.甲是乙的充要条件C.甲是乙的必要条件但不是充分条件D.甲既不是乙的充分条件也不是乙的必要条件4.已知21tan =α.则=+)4tan(πα【】A.-3B.31-C.3D.315.函数21x y -=的定义域是【】A.{}1-≥x xB.{}1≤x xC.{}11≤≤-x x D.{}1-≤x x 6.设0<x<1,则【】A.0log 2>xB.120<<x C.0log 21<x D.221<<x 7.不等式2121>+x 的解集为【】A.{}10-<>x x x 或B.{}01<<-x xC.{}1->x x D.{}0<x x 8.甲、乙、丙、丁4人排成一行,其中甲、乙必须排在两端,则不同的排法共有【】A.4种 B.2种 C.8种 D.24种9.若向量a =(1,1),b =(1,一1),则=-b a 2321【】A.(1.2) B.(-1.2) C.(1,-2)D.(-1,-2)10.=-++0213)2(161log 【】A.2B.4C.3D.511.函数542--=x x y 的图像与x 轴交于A,B 两点,则|AB|=A.3 B.4 C.6 D.512.下列函数中,为奇函数的是【】A.xy 2-= B.y=-2x+3 C.32-=x y D.y=3cosx 13.双曲线116922=-y x 的焦点坐标是【】A.(0,-7),(0,7)B.(-7,0),(7,0)C.(0,-5),(0,5)D.(-5,0),(5,0)14.若直线01=-+y mx 与直线0124=++y x 平行,则m=【】A.-1B .0C.2D.115.在等比数列{}n a 中,若,654=a a 则=7632a a a a 【】A.12B.36C.24D.7216.已知函数()x f 的定义域为R ,且,14)2(+=x x f 则=)1(f 【】A.9B.5C.7D.317.甲、乙各自独立地射击一次,已知甲射中10环的概率为0.9,乙射中10环的概率为0.5,则甲、乙都射中10环的概率为【】A.0.2 B.0.45 C.0.25 D.0.75第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.椭圆1422=+y x 的离心率为_______。
2019年贵州省高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A={−1, 0, 1, 2},B={x|x2≤1},则A∩B=()A.{−1, 0, 1}B.{0, 1}C.{−1, 1}D.{0, 1, 2}2. 若z(1+i)=2i,则z=()A.−1−iB.−1+iC.1−iD.1+i3. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.84. (1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.245. 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.26. 已知曲线y=ae x+x ln x在点(1, ae)处的切线方程为y=2x+b,则()A.a=e,b=−1B.a=e,b=1C.a=e−1,b=1D.a=e−1,b=−17. 函数y=2x32x+2−x在[−6, 6]的图象大致为( )A. B.C. D.8. 如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9. 执行如图的程序框图,如果输入ε的为0.01,则输出s的值等于()A.2−124B.2−125C.2−126D.2−12710. 双曲线C:x 24−y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO|=|PF|,则△PFO 的面积为( ) A.3√24B.3√22C.2√2D.3√211. 设f(x)是定义域为R 的偶函数,且在(0, +∞)单调递减,则( ) A.f(log 314)>f(2−32)>f(2−23) B.f(log 314)>f(2−23)>f(2−32) C.f(2−32)>f(2−23)>f(log 314) D.f(2−23)>f(2−32)>f(log 314)12. 设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0, 2π]有且仅有5个零点.下述四个结论: ①f(x)在(0, 2π)有且仅有3个极大值点 ②f(x)在(0, 2π)有且仅有2个极小值点 ③f(x)在(0, π10)单调递增 ④ω的取值范围是[125, 2910)其中所有正确结论的编号是( ) A.①④ B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年成人高等学校招生全国统一考试(高起点)数学试题(理工农医类)第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集={1,2,3,4}U ,集合={3,4}M ,则U M =( )A . {2,3}B .{2,4}C .{1,2}D .{1,4}2.函数cos 4y x =的最小正周期为( )A . 2πB . 4π C . π D .2π 3.设甲:0b =;乙:函数y kx b =+的图像经过坐标原点,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的充要条件C .甲是乙的必要条件但不是充分条件D .甲既不是乙的充分条件也不是乙的必要条件4.已知1tan 2α=,则tan()4πα+=( ) A . 3- B .13- C . 3 D .135.函数()f x = )A . {1}x x ≥-B .{1}x x ≤C . {11}x x -≤≤D .{1}x x ≤- 6.设01x <<,则( )A .2log 0x >B .021x <<C .12log 0x < D .122x <<7.不等式1122x +>的解集为( ) A .{01}x x x ><-或 B .{10}x x -<< C .{1}x x >- D .{0}x x <8.甲、乙、丙、丁4人排成一行,其中甲、乙必须排在两端,则不同的排放共有( ) A .4种 B .2种 C .8种 D .32种9.若向量(1,1)a =,(1,1)b =-,则1322a b -=( ) A .(1,2) B .(1,2)- C .(1,2)- D .(1,2)--10. 1023log 116(2)++-=( )A .2B .4C .3D .511.函数245y x x =--的图像与x 轴交于,A B 两点,则AB =( )A . 3B .4C . 6D .512.下列函数中,为奇函数的是( ) A .2y x=- B .23y x =-+ C .23y x =- D .3cos y x = 13.双曲线221916x y -=焦点坐标是( )A .(0,B .(C .(0,5),(0,5)-D .(5,0),(5,0)-14.若直线10mx y +-=与直线4210x y ++=平行,则m =( )A .1-B .0C .2D .115.在等比数列{}n a 中,若456a a =,则2367a a a a =( ) A .12 B .36 C .24 D .7216.已知函数()f x 的定义域为R ,且()241f x x =+,则()1f =( )A .9B .5C .7D .317.甲、乙各自独立地射击一次,已知甲射中10环的概率为0.9,乙射中10环的概率为0.5,,则甲、乙都射中10环的概率为( )A .0.2B .0.45C .0.25D .0.75第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)(18)椭圆2214x y +=的离心率为 . (19)函数()221f x x x =-+,在1x =处的导数为 . (20)设函数()f x x b =+,且(2)3f =,则()3f = .(21)从一批相同型号的钢管中抽取5根,测其内径,得到如下样本数据(单位:mm )110.8,109.4,111.2,109.5,109.1,则该样本的方差为 2mm .三、解答题(本大题共4小题,共49分。
成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是( )A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a -c>b -cB.|a|>|b|C.a 2>b 2D.ac>bc5.若π2<θ<π,且sin θ=13,则cos θ=( ) A .2√23 B.− 2√23 C. − √23 D. √236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x -y+1=0B.x+y -5=0C.x -y -1=0D.x -2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16) B.(-3,18) C.(-3,16) D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x -y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。
高考理科数学试题及答案 (考试时间:120分钟 试卷满分:150分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805. 已知双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y += 有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f(x)=cos(x+3π),则下列结论错误的是 A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .6 B .3C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a=A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分。
1 x2 2019年贵州成人高考高起点数学(理)真题及答案本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分 150 分。
考试时间 120 分钟。
第Ⅰ卷(选择题,共 85 分)一、选择题(本大题共 17 小题,每小题 5 分,共 85 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集 U={1,2,3,4}集合 M={3,4},则C U M =【 】A.{2,3}B.{2,4}C.{1,2}D.{1,4} 2. 函数 y=cos4x 的最小正周期为【 】A. B. C. D. 2 2 4 3.设甲:b=0;乙:函数 y=kx+b 的图像经过坐标原点,则【】A. 甲是乙的充分条件但不是必要条件B. 甲是乙的充要条件C. 甲是乙的必要条件但不是充分条件D. 甲既不是乙的充分条件也不是乙的必要条件4. 已知tan1.则tan(【 】2 A.-3 B.1 34C.3D. 1 35. 函数 y 的定义域是【】A. x x 1B. x x 1C. x 1 x 1D. x x 16. 设 0<x<1,则 【 】A. log 2 x0 B. 0 2x 1C. log 1 x0 2D.1 2x 27. 不等式 x 1 1 的解集为 【】2 2 A. x x 0或x 1C. x x 1B. x 1 x 0D. x x 0)3 y8. 甲、乙、丙、丁 4 人排成一行,其中甲、乙必须排在两端,则不同的排法共有 【 】 A.4 种 B.2 种 C.8 种 D.24 种9.若向量 a =(1,1),b =(1,一 1),则 1 a 3b 【 】2 2A.(1.2)B.(-1.2)C.(1,-2)D.(-1,-2)110. log 1162 (2)0 【 】A.2B.4C.3D.511. 函数 y x 2 4x 5 的图像与 x 轴交于 A ,B 两点,则|AB|=A.3B.4C.6D.512.下列函数中,为奇函数的是 【 】A. y 2x13.双曲线 x 9 B.y=-2x+3 C. y x 232- 1的焦点坐标是 【 】16 D.y=3cosxA.(0,- ),(0, )B.(- ,0),( ,0)C.(0,-5),(0,5)D.(-5,0),(5,0)14.若直线mx y 1 0 与直线4x 2 y 1 0 平行,则 m=【】A.-1B .0C.2D.115.在等比数列a n 中, 若a 4a 5 6, 则a 2a 3a 6a 7 【 】A.12B.36C.24D.7216.已知函数 f x 的定义域为 R ,且 f (2x ) 4x 1, 则 f (1) 【 】A.9B.5C.7D.3 17. 甲、乙各自独立地射击一次,已知甲射中 10 环的概率为 0.9,乙射中 10 环的概率为 0.5,则甲、乙都射中 10 环的概率为 【 】 A.0.2 B.0.45 C.0.25 D.0.75第Ⅱ卷(非选择题,共 65 分) 二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)18.椭圆 x 4 + y 21的离心率为。
19.函数 f (x ) x 2 2x 1在 x=1 处的导数为。
20.设函数 f(x)=x+b ,且 f(2)=3,则 f(3)= 。
21.从一批相同型号的钢管中抽取 5 根,测其内径,得到如下样本数据(单位:mm):110.8,109.4,111.2,109.5,109.1,7 7 7 7 2 2则该样本的方差为mm².三、解答题(本大题共 4 小题,共 49 分.解答应写出推理、演算步骤)百度文库资料店22.(本小题满分 12 分)已知为a n等差数列,且a3a51(1)求a n的公差 d;(2)若a1 2 ,求a n的前 20 项和S20.23.(本小题满分 12 分)2在△ABC中,已知B=75°,c os C2(1)求cosA;(2)若BC=3,求AB.24.(本小题满分 12 分)在平面直角坐标系xOy 中,已知⊙M的方程为x2 y2 2x 2 y 6 0 ,⊙O经过点M.(1)求⊙O的方程;(2)证明:直线 x-y+2=0 与⊙M,⊙O都相切.25.(本小题满分 13 分)已知函数f x 2x3 12x 1,求f (x) 的单调区间和极值.1- x 2 1- x 2.2 1参考答案及解析一、选择题 1. 【答案】 C【考情点拨】本题考查了补集的知识点. 【应试指导】CuM=U-M={1,2}. 2. 【答案】A【考情点拨】本题考查了三角函数的最小正周期的知识点。
【应试指导】函数 y=cos4x 的最小正周期T 2 2.4 23. 【答案】 B【考情点拨】本题考查了简易逻辑的知识点.【应试指导】易知 b=0→y=kx+b 经过坐标原点,而 y=kx 十 b 经过坐标原点→b=0, 因此甲是乙的充要条件. 4. 【答案】C【考情点拨】本题考查了两角和的三角函数的知识点.tan tan11 【应试指导】tan(5. 【答案】C ) 4 41 tan tan42 3. 1 1 1 2 【考情点拨】本题考查了函数的定义域的知识点. 【应试指导】当1 x 20 时,函数 y 有意义,所以函数 y 的定义域为x 1 x 16. 【答案】D【考情点拨】本题考查了指数函数与对数函数的知识点.【应试指导】当 0<x<1 时,1 2x 2 , log x 0, log x 027. 【答案】A【考情点拨】本题考查了绝对值不等式的知识点.【应试指导】x 11x 11或x 11,即x0或x 1 ,故绝对值不2 22 2 22等式的解集为x x 0或x18. 【答案】A【考情点拨】本题考查了排列组合的知识点【应试指导】甲乙必须排在两端的排法有C 1 A 24 种。
2 23 9. 【答案】B【考情点拨】本题考查了向量的运算的知识点.【应试指导】 1 a 3 b 1 1,1 3(1,1) (一 1,2)2 2 2 210. 【答案】D【考情点拨】本题考查了指数函数与对数函数运算的知识点.1【应试指导】log 116 2 (2)00 4 1 511. 【答案】C【考情点拨】本题考查了两点间距离的知识点.【应试指导】令 y x24x5 0 ,解得 x=-1 或 x=5,故 A ,B 两点间的距离为|AB|=6.12. 【答案】 A【考情点拨】本题考查了函数的奇偶性的知识点【应试指导】对于 A 选项, f (x ) 2 2f (x ) 故 f x2是奇函数.13. 【答案】 D- x xx【考情点拨】本题考查了双曲线的知识点.【应试指导】双曲线 x 9 - y2 161 的焦点在 x 轴上易知 a²=9,b²=16,故 c²=a²+b²=9+16=25,因此焦点坐标为(一 5,0),(5.0). 14. 【答案】C【考情点拨】本题考查了直线的位置关系的知识点.【应试指导】两直线平行斜率相等,故有-m=-2,即 m=2. 15. 【答案】B【考情点拨】本题考查了等比数列的知识点【应试指导】 a a a aa a a a a a 236.2 3 6 716. 【答案】 D2 73 645 【考情点拔】本题考查了函数的定义域的知识点.【应试指导】 f (1) f (2 1 ) 4 11 32 217. 【答案】B【考情点拨】本题考查了独立事件同时发生的概率的知识点. 【应试指导】甲乙都射中 10 环的概率 P=0.9×0.5=0.45. 二、填空题18. 【答案】【考情点拨】本题考查了椭圆的知识点.23 2 【应试指导】由题可知,a=2,b=1,故c .离心率ec3 a219. 【答案】0【考情点拨】本题考查了导数的知识点.【应试指导】 f (x ) (x 22x 1)2x2 ,故 f (1) 21 220. 【答案】4【考情点拨】本题考查了一元一次函数的知识点【应试指导】由题可知 f(2)=2+b=3,得 b=1,故 f(3)=3 十 b=3+1=4. 21. 【答案】0.7【考情点拨】本题考查了样本方差的知识点.【应试指导】样本平均值 x 110.8 109.4 111.2 109.5 109.1/ 5 110故样本方差 S=[(110.8 一 110)²+(109.4 一 110)²+(111.2 一110)²十(109.5 一 110)²十(109.1 一 110)²]/5=0.7.三、解答题22.(1)设公差为 d ,易知a 5 a 3 2d ,故a 5a 32d a 31, ,因此有d 1 2(2) 由前 n 项和公式可得S 220a 1 20 20 1 d 220 220 20 1-1-55. 23. (1) 由 cosC=2 得 C=45°.2故 A=180°-75°-45°=60°.因此 cosA=cos 60° 12(2)由正弦定理BC sinAABsin C故 ABBC sin C sin Aa 2 b22 1+1+ 220 + 0 + 222 232 23 2624.(1)⊙M 可化为标准方程(x 1)2( y1) 2(2其圆心 M 点的坐标为(1,一 1), 2)2半径为r 1 2 ,⊙O 的圆心为坐标原点, 可设其标准方程为 x²+y²=r², ⊙0 过 M 点,故有r 2 因此⊙O 的标准方程为 x²+y²=2.(2)点 M 到直线的距离d 1 2点 O 到直线的距离d 2故⊙M 和⊙O 的圆心到直线 x-y+2=0 的距离均等于其半径, 即直线 x-y+2=0 与⊙M 和⊙○都相切. 25. f (x ) 6x 212 令 f x 0可得 x 1 当 x , x 2或 x时, f(x ) 0 ;当 x 时, f (x ) 0 ;故 f (x ) 的单调增区间是(,2] , (2,]单调减区间是( 2,2] .当 x时,函数取得极大值 f ( 2)81 ;当 x时,函数取得极小值 f (2) 812 222 22 22 222。