流体动力学知识点复习
- 格式:doc
- 大小:188.00 KB
- 文档页数:17
流体力学复习要点流体力学复习要点第一章绪论1.1流体的主要物理力学性质1、流体的主要物理力学性质包括哪几部分?2、水的密度为1000kg/m33、牛顿内摩擦定律4、牛顿内摩擦定律表明内摩擦力的大小与流体的角变形速率成正比5、流体的黏度,运动黏性系数与动力黏性系数的关系;液体的μ随温度的升高而减小,气体的μ随温度的升高而增大1.2作用在流体上的力1、按作用方式的不同分为:表面力和质量力2、单位质量力是作用在单位质量流体上的质量力1.3流体的力学模型1、常用的物理力学模型:连续介质模型、理想流体、不可压缩流体。
2、连续介质模型是指的流体是一种毫无空隙的充满其所占空间的连续体的假定。
流体质点指的是大小同一切流体空间相比微不足道,又含有大量分子具有一定质量的流体微元。
3、理想流体是指假定流体没有黏性4、不可压缩流体是指假定流体的密度是一个常数第一章流体静力学2.1静止流体中压强的特征1、静压强的定义2、静止流体中压强的特征:(1)静止流体只能承受压应力,压强的方向垂直指向作用面(受力面的内法线方向)(2)流体内同一点的静压强的大小在各个方向均相等2.2流体平衡微分方程1、等压面:压强相等的空间点构成的面2、对于仅受重力作用的联通的同一均质流体,等压面为水平面。
2.3重力作用下流体静压强的分布规律1、p z C gρ+= 当质量力仅为重力时,静止流体内部任一点的p z gρ+是常数 2、0p p g ρ=+h 3、压强的度量:相对压强、绝对压强、真空度。
4、静压强分布图的绘制2.4压强的测量一般采用仪器测得都是相对压强2.5流体的相对平衡1、等加速直线运动的流体的等压面:倾斜面2、等角速旋转运动的流体的等压面:旋转抛物面2.6液体作用在平面上的总压力1、解析法c F p A= c c c +D I y y y A=(注意一下:y D 代表的是什么) 2、图解法F=bS 2.6作用在曲面上的液体压力1、压力体的组成有3个面,分别是:2、压力体的绘制第二章流体运动理论与动力学基础3.1流体运动的描述方法欧拉法中加速度由两部分组成:位变加速度、时变加速度(或者说迁移加速度和当地加速度)3.2流场的基本概念(分类)1、按照运动要素是否随时间发生变化,分为:恒定流和非恒定流2、按照运动要素与坐标变量之间的关系分为:一元流、二元流和三元流。
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。
以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。
液体和气体都具有易于流动的特点。
2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。
3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。
速度矢量的大小和方向决定了流体中每一点的速度和运动方向。
4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。
压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。
5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。
流体动力学包括流体的运动方程、速度场描述和流动量的计算等。
6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。
而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。
7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。
而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。
8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。
流体的黏度越大,流体粘性越大,流动越缓慢。
黏性对于流体的层流和湍流特性有重要影响。
9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。
当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。
10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
工程流体力学复习资料工程流体力学复习资料工程流体力学是一门研究流体在工程中运动和力学性质的学科。
它广泛应用于各个工程领域,如航空航天、汽车工程、建筑工程等。
对于学习和掌握工程流体力学的同学们来说,复习资料是必不可少的工具。
本文将为大家提供一些有关工程流体力学的复习资料,希望对大家的学习有所帮助。
一、流体力学基础知识1. 流体的性质:流体是一种物质状态,具有流动性和变形性。
流体包括液体和气体,其分子之间的相互作用力较小,因此流体的运动过程中,分子之间会发生相互滑动和碰撞。
2. 流体的运动描述:流体的运动可以通过速度场和压力场来描述。
速度场表示流体各点的速度分布情况,压力场表示流体各点的压力分布情况。
3. 流体的连续性方程:连续性方程是描述流体运动的基本方程之一,它表示了质量守恒的原理。
连续性方程可以用来描述流体在管道、河流等封闭系统中的流动情况。
4. 流体的动量守恒方程:动量守恒方程是描述流体运动的另一个基本方程,它表示了动量守恒的原理。
动量守恒方程可以用来描述流体在外力作用下的运动情况。
5. 流体的能量守恒方程:能量守恒方程是描述流体运动的第三个基本方程,它表示了能量守恒的原理。
能量守恒方程可以用来描述流体在热力学过程中的能量转化情况。
二、流体静力学1. 流体的静力学基本概念:流体静力学研究的是静止流体的力学性质。
在流体静力学中,我们需要了解压力、压强、液体的压强传递、浮力等基本概念。
2. 流体的压力:流体的压力是指单位面积上受到的力的大小。
根据帕斯卡定律,流体中的压力在各个方向上是均匀的,且与深度成正比。
3. 流体的浮力:浮力是指物体在液体中受到的向上的力。
根据阿基米德定律,浸没在液体中的物体所受到的浮力等于物体排开的液体的重量。
三、流体动力学1. 流体的运动描述:流体的运动可以分为层流和湍流两种情况。
层流是指流体的流动方式有序,流线平行且不交叉;湍流是指流体的流动方式混乱,流线交叉且不规则。
流体力学资料复习整理流体复习整理资料第一章流体及其物理性质1、流体的特征——流动性: 在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不就是变形的大小(与弹性体的不同之处)。
2、流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9、8m /s 23、密度:=1000kg/,=1、2kg/,=13、6,常压常温下,空气的密度大约就是水的1/8003、当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体与低速流动的气体(U<70m /s)可作为不可压缩流体处理。
4、压缩系数:弹性模数:21d /d p p E N m ρβρ==膨胀系数:)(K /1d d 1d /d T V V T V V t ==β5、流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就就是粘滞性。
流体的粘性就就是阻止发生剪切变形的一种特性,而内摩擦力则就是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6、牛顿内摩擦定律: 单位面积上的摩擦力为: 内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它与密度的比值称为流体的运动粘度ν 内摩擦力就是成对出现的,流体所受的内摩擦力总与相对运动速度相反。
为使公式中的τ值既能反映大小,又可表示方向,必须规定:公式中的τ就是靠近坐标原点一侧(即,其大小为μ du/dy,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
第一章流体力学基本知识物质在自然界中通常按其存在状态的不同分为固体(固相)、液体(液相)和气体(气相)。
液体和气体因具有较大的流动性,被统称为流体,第一节流体的主要物理性质一、流体的密度和容重对于均质流体,单位体积的质量,称为流体的密度,即:ρ=m/V对于均质流体,单位体积的流体所受的重力称为流体的重力密度,简称重度,即:γ=G/V由牛顿第二定律得:G=m g。
因此,γ=G/V=mg/V=ρg流体的密度和重度随其温度和所受压力的变化而变化,在实际工程中,液体的密度和重度随温度和压力的变化而变化的数值不大,可视为一固定值;而气体的密度和重度随温度和压力的变化而变化的数值较大,设计计算中通常不能视为一固定值。
常用流体的密度和重度如下:水在标准大气压,温度为4°C时密度和重度分别为:ρ=1000kg/m3,γ=9.807kN/m3水银在标准大气压,温度为0℃时其密度和重度是水的13.6倍。
干空气在标准大气压,温度为20°C时密度和重度分别为:ρ=1.2kg/m3,γ=11.82N/m3二、流体的粘滞性流体在运动时,由于内摩擦力的作用,使流体具有抵抗相对变形(运动)的性质,称为流体的粘滞性。
对于静止流体,由于各流层间没有相对运动,粘滞性不显示。
流体粘滞性的大小,通常用动力粘滞性系数μ和运动粘滞性系数v来反映,实验证明,水的粘滞性随温度的增高而减小,而空气的粘滞性却随温度的增高而增大。
内摩擦力的大小可用下式表示:T=μAdu/dy式中T一一流体的内摩擦力;μ——流体的动力粘性系数;A——层与层的接触面积;du/dy——流体的速度梯度。
三、流体的压缩性和热胀性流体的压强增大,体积缩小,密度增大的性质,称为流体的压缩性。
流体温度升高,体积增大,密度减小的性质,称为流体的热胀性。
在很多工程技术领域中,可以把液体的压缩性和热胀性忽略不计。
但在研究有压管路中水击现象和热水供热系统时,就要分别考虑水的压缩性和热胀性。
流体动力学基础知识点一:流场的基本概念一、迹线某一质点在某一时段内的运动轨迹线。
图中烟火的轨迹为迹线。
二、流线1、流线的定义表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
如图为流线谱中显示的流线形状。
2、流线的作法在流场中任取一点,绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
3、流线的性质a.同一时刻的不同流线,不能相交。
因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
4、流线的方程在流线上某点取微元长度dl(不代表位移),dl在各坐标轴上的投影分别为dx、dy、dz,则:或流线的微分方程迹线与流线的比较:概定备念义注流线流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。
流线方程为:时间t为参变量。
迹线迹线是指某一质点在某一时段内的运动轨迹,它描述流场中同一质点在不同时刻的运动情况。
迹线方程为:式中时间t为自变量。
三、恒定流和非恒定流1、恒定流流体质点的运动要素只是坐标的函数,与时间无关。
――恒定流动过流场中某固定点所作的流线,不随时间而改变——流线与迹线重合2、非恒定流流体质点的运动要素,既是坐标的函数,又是时间的函数。
――非恒定流动质点的速度、压强、加速度中至少有一个随时间而变化。
迹线与流线不一定重合注意:在定常流动情况下,流线的位置不随时间而变,且与迹线重合。
在非定常流动情况下,流线的位置随时间而变;流线与迹线不重合。
流体动力学知识点流体动力学是研究流体运动规律的科学,它在物理学、工程学和地球科学等领域中有着广泛的应用。
本文将主要介绍流体动力学中的一些重要知识点,帮助读者更好地理解和应用这一领域的知识。
1. 流体的定义在流体动力学中,流体是一种连续的物质,它没有固定的形状和体积,能够流动。
流体可以分为液体和气体两种状态,液体是一种近似不可压缩的流体,而气体则是一种高度可压缩的流体。
2. 流体的性质流体具有一些特殊的性质,包括粘性、密度、压力、流速等。
其中,粘性是流体的一种内在性质,它决定了流体的黏滞阻力。
流体的密度是流体在单位体积内所含物质的质量,而压力则是流体在单位面积上的作用力。
流速是流体通过单位面积的速度。
3. 流体的流动流体的流动是流体动力学中的核心概念,它描述了流体在空间中的运动规律。
流体的流动可以分为层流和湍流两种状态,层流是指流体在管道或河道中以层状、有序的方式流动,而湍流则是指流体在空间中以不规则、混乱的方式流动。
4. 流体的流量在流体动力学中,流体的流量是指单位时间内通过某个截面的流体体积。
流体的流量受到流体密度、流速和截面积的影响,可以用公式Q=Av来表示,其中Q表示流量,A表示截面积,v表示流速。
5. 流体的动量流体的动量是描述流体运动的一个重要物理量,它表示流体在单位时间内通过某个截面的动量。
根据动量守恒定律,流体在运动过程中动量守恒,可以用公式ρAv=常数来表示,其中ρ表示流体密度,A表示截面积,v表示流速。
6. 流体的能量流体的能量是流体动力学中的另一个重要物理量,它表示流体在运动过程中所具有的能量。
流体的能量可以分为动能、势能和压力能三种形式,动能是流体由于运动而具有的能量,势能是流体由于位置而具有的能量,压力能是流体由于受到压力而具有的能量。
7. 流体的控制方程流体的控制方程是描述流体运动规律的数学方程,包括连续性方程、动量方程和能量方程。
连续性方程描述了流体在流动过程中质量的守恒,动量方程描述了流体在流动过程中动量的守恒,能量方程描述了流体在流动过程中能量的守恒。
化工流体流动知识点总结一、流体动力学基础知识1. 流体的性质流体是一种物态,它可以分为液体和气体两种状态。
流体的特点有流动性、变形性和连续性。
2. 流体的力学性质流体的力学性质受到流体的粘性、密度、压强、速度和流体流动的稳定性等多种因素的影响。
3. 流体运动的描述流体运动可以通过流线、流量、速度、压力、流态和流体力学来描述。
4. 流场的描述流场是流体在空间中取得的分布特性,包括速度场、压力场和温度场。
流场的描述可以通过流线、流面和流管来描述。
5. 流体的动力学分析流体的动力学分析包括质量守恒定律、动量守恒定律和能量守恒定律。
这些定律可以用来分析流体的流动状态和特性。
6. 流体的黏性流体的黏性是流体流动性质的重要参数之一,它可以通过流体的雷诺数来描述。
7. 流体的湍流与层流流体的流动状态可以分为湍流和层流两种状态,它们在不同流动条件下具有不同的特性和稳定性。
二、常见流体流动现象分析1. 管道流动管道流动是化工领域常见的流体流动现象,它受到管道的材料、直径、长度、粗糙度和流速等因素的影响。
2. 混合流动混合流动是流体在管道中受到驱动力的作用而产生的流动现象,它在管道的转弯处、分支处和合流处表现出不同的特性。
3. 泵的运行原理泵是用来提供流体压力的装置,它基于流体的压力动力学原理进行设计和运行。
4. 喷射流动喷射流动是一种通过一个流体射流对另一个流体进行加速混合的流动现象,它可用于混合、冷却和清洗等工艺中。
5. 涡旋流动涡旋流动是一种流体在管道中产生的旋涡运动,它通常表现为流体的渦流和旋转。
6. 空气动力学空气动力学是研究空气在空间中运动和传热特性的学科,它包括空气流动、气动噪声、通风和换热等内容。
7. 风扇和风机的原理风扇和风机是用来产生气流和输送气体的机械设备,它们基于空气动力学原理进行设计和运行。
三、流体流动模拟及应用1. 流体流动模拟流体流动模拟是通过计算机模拟流体的流动状态和参数,以达到优化工艺设计、减少能耗、优化设备性能和降低生产成本的目的。
流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。
它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。
下面将对流体力学的一些重要知识点进行总结。
一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。
比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。
2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。
膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。
液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。
3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。
粘性的大小用动力粘度μ 或运动粘度ν 来表示。
牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。
4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。
表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。
二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。
2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。
3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。
4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。
真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。
5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。
6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。
主要概念:1. 位势涡度和无粘浅水流体的位势涡度守恒定律位势涡度:在旋转流体中,流体运动时存在着一个保守性或守恒性的较强的组合物理量,称为位势涡度,且定义为。
位势涡度的引入有两种方法:A . 可以从涡度方程出发涡度方程:ρρρωωωℑ⨯∇+∇⨯∇+⋅∇-∇⋅=p u u dt d a a a影响涡度变化的因素可概括为:涡管的倾斜效应,涡管的伸缩效应,斜压性以和摩擦作用。
位势涡度方程:)(}{][)(3ρρλρρλρωλρωℑ⨯∇∇+∇⨯∇⋅∇+Φ∇⋅=∇⋅p dt d a a因此,当满足以下三个条件时: 1. 0=ℑ 摩擦可忽略2. λ是守恒量,0=Φ3. λ仅是p ,ρ 的函数,0)(=∇⨯∇⋅∇p ρλ,或流体是正压的则有------------------------Ertel 涡旋定理(位涡守恒定理),位涡是。
浅水中引入守恒量则Hf H h z k f B ρζρζπ)()()(+=-∇⋅+= 故浅水位涡守恒B. 从浅水方程出发,按上述方法推导也可得出浅水位涡守恒。
2. 地转风和热成风地转风:在大尺度旋转流体运动中,其Rossby数的量级O(ε)≤110-,在旋转流体水平运动过程中若略去O(110-)以上的量,流体则在科氏力和压强梯度力的作用下达到平衡,此时的运动即为地转运动,此时的风为地转风。
风沿等压线的方向,在北半球高压在右。
热成风:地转风随高度的变化或为两个等压面之间地转风的差又:,热成风3.Taylor-proudman定理在均质或正压旋转流体中,流体准定常和缓慢的运动,其速度在沿Ω 的方向上将不改变。
也就是说,均质或正压旋转流体,准定常和缓慢的运动,其速度将独立于旋转轴Ω 的方向,即运动将趋于两维化。
4.地球上流体大尺度运动大尺度运动的定义:物理意义:流体相对运动的时间尺度大于地球自转周期,流体在其运动的时间尺度内几乎感不到地球的自转。
也就是说,大尺度大气与海洋运动正是他们相对于地球运动的一个小偏差。
流体的浮力与流体动力学知识点总结流体的浮力是指物体浸没在流体中时所受到的向上的浮力。
理解流体的浮力以及流体动力学的知识点对于科学研究、工程设计等领域都具有重要意义。
本文将对流体的浮力以及流体动力学的知识点进行总结。
1. 流体的浮力流体的浮力是由于流体对浸没其中的物体的压力差所产生的。
浮力的大小与物体在流体中的体积有关,与物体所受的压力差成正比。
根据阿基米德原理,物体在流体中受到的浮力等于所排开的流体的重量。
2. 浮力的计算浮力的计算可以使用以下公式:F = ρ * V * g其中,F为浮力,ρ为流体的密度,V为物体的体积,g为重力加速度。
3. 浮力的应用浮力在实际生活中有着广泛的应用。
例如,浮力的原理使得船只能够在水面上浮起;潜水艇则通过控制浮力的大小来实现在水中下沉和浮起。
4. 流体动力学概述流体动力学研究的是流体在运动过程中的性质和行为。
它涵盖了流体的运动、流速、压力和能量等方面的研究。
由于流体的特性复杂多样,流体动力学的研究领域也非常广泛。
5. 流体的流速分布流体在管道中的流速分布是流体动力学中的一个重要研究内容。
流速分布可以描述流体在管道中的速度随位置的变化规律。
常见的流速分布曲线有线性分布、抛物线分布等。
6. 流体的压力分布流体在流动过程中的压力分布也是流体动力学的研究重点之一。
压力分布可以反映流体在管道中的流动状态和流体对物体的作用力。
在管道中,流速越大,压力越小。
7. 流体的能量守恒定律费曼著名的流体动力学定律之一就是能量守恒定律。
能量守恒定律指出在不受外力影响的条件下,流体的总能量保持不变。
这个定律在流体动力学的研究中有着重要的应用。
8. 流体的黏性流体的黏性是指流体内部粘着摩擦的特性。
黏性对流体的流动性能有着重要影响。
流体的黏性较小的称为理想流体,黏性较大的称为非理想流体。
综上所述,流体的浮力与流体动力学是涉及流体性质和运动行为的重要领域。
理解和运用这些知识点对于科学研究和工程设计都具有非常重要的作用。
第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强;表压强力=绝对压强力-大气压强力 真空度=大气压强-绝对压 大气压力、绝对压力、表压力或真空度之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等;此方程式只适用于静止的连通着的同一种连续的流体; 应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s平均流速 u m/s G=u ρ ● 连续性方程及重要引论:● 一实际流体的柏努利方程及应用例题作业题 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =运算效率进行简单数学变换应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配;三、流体流动现象:● 流体流动类型及雷诺准数:1层流区 Re<2000 2过渡区 2000< Re<4000 3湍流区 Re>4000 本质区别:质点运动及能量损失区别层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别;流体在管内作层流流动时,其质点沿管轴作有规则的平行运动,各质点互不碰撞,互不混合 流体在管内作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的旋涡;由于质点碰撞而产生的附加阻力较自黏性所产生的阻力大得多,所以碰撞将使流体前进阻力急剧加大;管截面速度大小分布:无论是层流或揣流,在管道任意截面上,流体质点的速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大;层流:1、呈抛物线分布;2、管中心最大速度为平均速度的2倍; 湍流:1、层流内层;2、过渡区或缓冲区;3、湍流主体湍流时管壁处的速度也等于零,靠近管壁的流体仍作层流流动,这-作层流流动的流体薄层称为层流内层或层流底层;自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非完全端流流动的区域,这区域称为缓冲层或过渡层,再往中心才是揣流主体;层流内层的厚度随Re 值的增加而减小; 层流时的速度分布 max 21u u =湍流时的速度分布 max 8.0u u ≈四、流动阻力、复杂管路、流量计:● 计算管道阻力的通式:伯努利方程损失能范宁公式的几种形式: 圆直管道 22u d l h f λ=非圆直管道 22u d l W p f f ρλρ==∆运算时,关键是找出λ值,一般题目会告诉,仅用于期末考试,考研需扩充 ● 非圆管当量直径:当量直径:e d e d =4H r 4倍水力半径 水力半径:H r =ΠA流体在通道里的流通截面积A 与润湿周边长Π之比●流量计概述:节流原理孔板流量计是利用流体流经孔板前后产生的压力差来实现流量测量; 孔板流量计的特点:恒截面、变压差,为差压式流量计; 文丘里流量计的能量损失远小于孔板流量计;转子流量计的特点:恒压差、恒环隙流速而变流通面积,属截面式流量计; ● 复杂管路:了解并联管路各支路的能量损失相等,主管的流量必等于各支管流量之和;第二章、流体输送机械一、离心泵的结构和工作原理二、特性参数与特性曲线 三、气蚀现象与安装高度四、工作点及流量调节离心泵:电动机静压能流体(动能)转化−−−−→−→ 一、离心泵的结构和工作原理:● 离心泵的主要部件: 离心泵的的启动流程:叶轮 吸液管泵,无自吸能力 泵壳 液体的汇集与能量的转换 转能 泵轴 排放 密封 填料密封 机械密封高级叶轮 其作用为将原动机的能量直接传给液体,以提高液体的静压能与动能主要为静压能; 泵壳 具有汇集液体和能量转化双重功能;轴封装置 其作用是防止泵壳内高压液体沿轴漏出或外界空气吸入泵的低压区;常用的轴封装置有填料密封和机械密封两种;气缚现象:离心泵启动前泵壳和吸入管路中没有充满液体,则泵壳内存有空气,而空气的密度又远小于液体的密度,故产生的离心力很小,因而叶轮中心处所形成的低压不足以将贮槽内液体吸入泵内,此时虽启动离心泵,也不能输送液体,此种现象称为气缚现象,表明离心泵无自吸能力;因此,离心泵在启动前必须灌泵;汽蚀现象:汽蚀现象是指当泵入口处压力等于或小于同温度下液体的饱和蒸汽压时,液体发生汽化,气泡在高压作用下,迅速凝聚或破裂产生压力极大、频率极高的冲击,泵体强烈振动并发出噪音,液体流量、压头出口压力及效率明显下降;这种现象称为离心泵的汽蚀;二、特性参数与特性曲线:流量Q :离心泵在单位时间内排送到管路系统的液体体积;压头扬程H :离心泵对单位重量1N 的液体所提供的有效能量;效率η:总效率η=ηv ηm ηh轴功率N :泵轴所需的功率ηeN N =η-Q 曲线对应的最高效率点为设计点,对应的Q 、H 、N 值称为最佳工况参数,铭牌所标出的参数就是此点的性能参数;会使用IS 水泵特性曲线表,书P117三、气蚀现象与安装高度:● 气蚀现象的危害:①离心泵的性能下降,泵的流量、压头和效率均降低;若生成大量的气泡,则可能出现气缚现象,且使离心泵停止工作;②产生噪声和振动,影响离心泵的正常运行和工作环境; ③泵壳和叶轮的材料遭受损坏,降低了泵的使用寿命; 解决方案:为避免发生气蚀,就应设法使叶片入口附近的压强高于输送温度下的液体饱和蒸气压;通常,根据泵的抗气蚀性能,合理地确定泵的安装高度,是防止发生气蚀现象的有效措施; ● 离心泵的汽蚀余量:为防止气蚀现象发生,在离心泵人口处液体的静压头 p 1/p g 与动压头 u 12/2 g 之和必须大于操作温度下液体的饱和蒸气压头 p v /p g 某一数值,此数值即为离心泵的气蚀余量;必须汽蚀余量:NPSH r● 离心泵的允许吸上真空度:● 离心泵的允许安装高度H g 低于此高度:关离心泵先关阀门,后关电机,开离心泵先关出口阀,再启动电机;四、工作点及流量调节:● 管路特性与离心泵的工作点:由两截面的伯努利方程所得全程化简;联解既得工作点;● 离心泵的流量调节:1、 改变阀门的开度改变管路特性曲线;2、 改变泵的转速改变泵的特性曲线;减小叶轮直径也可以改变泵的特性曲线,但一般不用;3、 泵串联压头大或并联流速大 ● 往复泵的流量调节: 1、 旁路调节;2、 改变活塞冲程和往复次数;第三章、非均相物系的分离密度不同一、重力沉降 二、离心沉降 三、过滤 一、重力沉降:● 沉降过程:先加速短,后匀速长沉降过程;● 流型及沉降速度计算:参考作业及例题层流区滞流区或斯托克斯定律区:10-4<Re t <1 K<过渡区或艾伦定律区:1<Re t <103<K<湍流区或牛顿定律区:103<Re t <2⨯105K>相应沉降速度计算式:公式不用记,掌握运算方法 ● 计算方法: 1、 试差法:即先假设沉降属于某一流型譬如层流区,则可直接选用与该流型相应的沉降速度公式计算t u ,然后按t u 检验Re t 值是否在原设的流型范围内;如果与原设一致,则求得的t u 有效;否则,按算出的Re t 值另选流型,并改用相应的公式求t u ;2、 摩擦数群法:书p1493、 K 值法: 书p150 ● 沉降设备:为满足除尘要求,气体在降尘室内的停留时间至少等于颗粒的沉降时间,所以: 单层降尘室生产能力:t s blu V ≤与高度H 无关,注意判断选择填空题多层降尘室:t s blu V )1n (+≤n+1为隔板数,n 层水平隔板,能力为单层的n+1倍 二、离心沉降:● 离心加速度:惯性离心力场强度Ru2T ;重力加速度:g● 离心沉降速度u r :R u T s 23)(d 4ρζρρ-;重力沉降速度u T :gs ρζρρ3)(d 4-● 离心分离因数K C : K C RUu T Trg u 2==离心沉降速度与重力沉降速度的比值,表征离心沉降是重力沉降的多少倍 ● 离心沉降设备:旋风分离器:利用惯性离心力的作用从气流中分离出尘粒的设备 性能指标:1、 临界粒径d c :理论上在旋风分离器中能被完全分离下来的最小颗粒直径;2、 分离效率:总效率η0;分效率ηp 粒级效率;3、 分割粒径d 50:d 50是粒级效率恰为50%的颗粒直径;4、 压力降△p :气体经过旋风分离器时,由于进气管和排气管及主体器壁所引起的摩擦阻力,流动时的局部阻力以及气体旋转运动所产生的动能损失等,造成气体的压力降;标准旋风标准旋风N e =5,ζ=;三、过滤:● 过滤方式:1、 饼层过滤:饼层过滤时,悬浮液置于过滤介质的一侧,固体物沉积于介质表面而形成滤饼层;过滤介质中微细孔道的直径可能大于悬浮液中部分颗位的直径,因而,过滤之初会有一些细小颗粒穿过介质而使滤液浑浊,但是颗粒会在孔道中迅速地发生“架桥”现象见图,使小子孔道直径的细小颗粒也能被截拦,故当滤饼开始形成,滤液即变清,此后过滤才能有效地进行;可见,在饼层过滤中,真正发挥截拦颗粒作用的主要是滤饼层而不是过滤介质;饼层过滤适用于处理固体含量较高的悬浮液;深床过滤:在深床过滤中,固体颗粒并不形成滤饼,而是沉积于较厚的粒状过滤介质床层内部;悬浮液中的颗粒尺寸小于床层孔道直径,当颗粒随流体在床层内的曲折孔道中流过时,便附在过滤介质上;这种过滤适用于生产能力大而悬浮液中颗粒小、含量甚微的场合;自来水厂饮水的净化及从合成纤维纺丝液中除去极细固体物质等均采用这种过滤方法; ● 助滤剂的使用及注意:为了减少可压缩滤饼的流动阻力,有时将某种质地坚硬而能形成疏松饼层的另一种固体颗粒混入悬浮液或预涂于过滤介质上,以形成疏松饼层,使滤液得以畅流;这种预混或预涂的粒状物质称为助滤剂;对助滤剂的基本要求如下:①应是能形成多孔饼层的刚性颗粒,使滤饼有良好的渗透性、较高的空隙率及较低的流动阻力;②应具有化学稳定性,不与悬浮液发生化学反应,也不溶于液相中; 应予注意,-般以获得清净滤液为目的时,采用助滤剂才是适宜的; ● 恒压过滤方程式:理解,书P175对于一定的悬浊液,若皆可视为常数,、及'、νμr 令νμ'1r k =,k ——表征过滤物料特性的常数,;恒压过滤时,压力差△p 不变,k 、A 、s 都是常数再令● 过滤常数的测定:书P179,包括压缩因子 ● 板框压力机:过滤时,悬浮液在指定的压强下经滤浆通道自滤框角端的暗孔进入框内,滤液分别穿过两侧滤布,再经邻板板面流至滤液出口排走,固体则被截留于框内,如图所示,待滤饼充满滤框后,即停止过滤;若滤饼需要洗涤,可将洗水压人洗水通道,经洗涤板角端的暗孔进入板面与滤布之间;第四章 传 热一、热传导、对流传热二、总传热三、换热器及强化传热途径 一、热传导、对流传热:● 传热基本方式:1、热传导宏观无位移:若物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导又称导热;热传导的条件是系统两部分之间存在温度差,此时热量将从高温部分传向低温部分,或从高温物体传向与它接触的低温物体,直至整个物体的各部分温度相等为止;2、热对流宏观有位移:流体各部分之间发生相对位移所引起的热传递过程称为热对流简称对流;热对流仅发生在流体中;在流体中产生对流的原因有二: 一是因流体中各处的温度不同而引起密度的差别,使轻者上浮,重者下沉,流体质点产生相对位移,这种对流称为自然对流;二是因泵风机或搅拌等外力所致的质点强制运动,这种对流称为强制对流;3、热辐射不需要介质:因热的原因而产生的电磁波在空间的传递,称为热辐射;所有物体包括固体、液体和气体都能将热能以电磁波形式发射出去,而不需要任何介质,也就是说它可以在真空中传播;4、对流传热:流体流过固体壁面流体温度与壁面温度不同时的传热过程称为对流传热;1流体无相变的对流传热 流体在传热过程中不发生相变化,依据流体流动原因不同,可分为两种情况;①强制对流传热,流体因外力作用而引起的流动;②自然对流传热,仅因温度差而产生流体内部密度差引起的流体对.. 流动; 2流体有相变的对流传热 流体在传热过程中发生相变化,它分为两种情况; ①蒸气冷凝,气体在传热过程中全部或部分冷凝为液体;②液体沸腾,液体在传热过程中沸腾汽化,部分液体转变为气体对流传热的温度分布情况对流传热是集热对流和热传导于一体的综合现象;对流传热的热阻主要集中在层流内层,因此,减薄层流内层的厚度是强化对流传热的主要途径; ● 传热过程中热、冷流体接触热交换方式:书p211 1、 直接接触式换热和混合式换热器; 2、 蓄热式换热和蓄热器;3、 典型的间壁式换热器:列管换热器,区分壳程、管程、单/多壳程、单/多管程特定的管壳式换热器传热面积:S=dL n π S ——传热面积;n ——管数;d ——管径,m ; L ——管长,m;● 传热速率和热通量:传热速率Q 又称热流量指单位时间内通过传热面积的热量; 传热速率=传热热阻传热推动力(温度差);Q=Rt∆ R ——整个传热面的热阻,W C /。
6.2流体动力学基础知识点一:流场的基本概念一、迹线某一质点在某一时段的运动轨迹线。
图中烟火的轨迹为迹线。
二、流线1、流线的定义表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
如图为流线谱中显示的流线形状。
2、流线的作法在流场中任取一点,绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234…,若各点无限接近,其极限就是某时刻的流线。
3、流线的性质a.同一时刻的不同流线,不能相交。
因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
4、流线的方程在流线上某点取微元长度dl(不代表位移),dl在各坐标轴上的投影分别为dx、dy、dz,则:或流线的微分方程迹线与流线的比较:概定义备注念流线流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。
流线方程为:时间t为参变量。
迹线迹线是指某一质点在某一时段的运动轨迹,它描述流场中同一质点在不同时刻的运动情况。
迹线方程为:式中时间t为自变量。
三、恒定流和非恒定流1、恒定流流体质点的运动要素只是坐标的函数,与时间无关。
――恒定流动过流场中某固定点所作的流线,不随时间而改变——流线与迹线重合2、非恒定流流体质点的运动要素,既是坐标的函数,又是时间的函数。
――非恒定流动质点的速度、压强、加速度中至少有一个随时间而变化。
迹线与流线不一定重合注意:在定常流动情况下,流线的位置不随时间而变,且与迹线重合。
在非定常流动情况下,流线的位置随时间而变;流线与迹线不重合。
四、流管、流束、总流流管:在流场中取任一封闭曲线(不是流线),通过该封闭曲线的每一点作流线,这些流线所组成的管状空间。
管外的流体质点不能交流。
流束:流管中的流体。
微元流束:流管的横截面积为微元面积时的流束。
总流:由无限多微元流束所组成的总的流束。
五、过水(流)断面与某一流束中各条流线相垂直的截面,称为此流束的过水断面。
即水道(管道、明渠等)中垂直于水流流动方向的横断面,如图1-1,2-2断面。
六、流速(1)点速u:某一空间位置处的流体质点的速度。
(2)均速v:同一过水断面上,各点流速u对断面a的算术平均值。
微元流束的过水断面上,可以中心处的流速作为各点速度的平均值。
七、流量q单位时间通过某流束过水断面的流体体积。
米3/秒,升/秒微元流束dq=uda总流q=∫q dq=∫a uda知识点二:连续性方程1、微元流束的连续性方程微元流束上两个过水断面da1、da2,相应的速度分别为u1、u2,密度分别为ρ1、ρ2;dt时间,经da1流入的质量为dm1=ρ1u1da1dt,经da2流出的质量为dm2=ρ2u2da2dt,对定常流动,根据质量守恒定律:ρ1u1da1dt=ρ2u2da2dt→ρ1u1da1=ρ2u2da2对不可压缩流体ρ1=ρ2,u1da1=u2da2得:dq1=dq2不可压缩流体定常流动微元流束的连续性方程意义:在同一时间通过微元流束上任一过水断面的流量相等。
——流束段的流体体积(质量)保持不变。
2、总流连续性方程将ρ1u1da1=ρ2u2da2进行积分:∫a1ρ1u1da1=∫a2ρ2u2da2根据,得:ρ1m v1a1=ρ2m v2a2ρ1m、ρ2m——断面1、2上流体的平均密度。
ρ1m q1=ρ2m q2总流连续性方程对不可压缩流体q1=q2或物理意义:对于保证连续流动的不可压缩流体,过水断面面积与断面平均流速成反比,即流线密集的地方流速大,而流线疏展的地方流速小。
问题:1、一变直径管段,a断面直径是b断面直径的2倍,则b断面的流速是a断面流速的4倍。
对2、变直径管的直径d1=320mm,d2=160mm,流速υ1=1.5m/s,υ2为:a.3m/s;b.4m/s;c.6m/s;d.9m/s。
c.知识点三:恒定总流能量方程一、不可压缩无粘性流体伯努利方程意义:无粘性流体沿流线运动时,其有关值的总和是沿流向不变的。
二、不可压缩有粘性流体伯努利方程意义:粘性流体沿流线运动时,其有关值的总和是沿流向逐渐减少的。
各项的能量意义与几何意义:能量意义几何意义z比位能—单位重量流体流经给定点时的位能位置水头(位头)—流体质点流经给定点时所具有的位置高度p/γ比压能—单位重量流体流经给定点时的压能压强水头(压头)—流体质点流经给定点时的压强高度u2/2g比动能—单位重量流体流经给定点时速度水头(速度头)—流体质点流经给定点的动能时,因具有速度u,可向上自由喷射而能够到达的高度h'l能量损失—单位重量流体流动过程中损耗的机械能损失水头三、伯努利方程的能量意义:(1)对无粘性流体,总比能e1=e2单位重量无粘性流体沿流线(或微元流束)从位置1到位置2时:各项能量可互相转化,总和保持不变。
(2)对粘性流体,总比能e1=e2+△e单位重量粘性流体沿流线(或微元流束)从位置1到位置2时:各项能量可互相转化,总机械能也有损失。
伯努利方程的几何意义:单位重量无粘性流体沿流线(或微元流束)从位置1到位置2时:各项水头可互相转化,总和保持不变。
总水头h1=h2单位重量粘性流体沿流线(或微元流束)从位置1到位置2时:各项水头不但可以互相转化,其总和也必然沿流向降低。
总水头h1=h2+△h伯努利方程的图解—水头线水头线:沿程水头的变化曲线总水头线:总水头h顶点的连线。
对应的变化曲线。
测压管水头线(静压水头线):压强水头顶点的连线。
对应的变化曲线。
对无粘性流体:h=常数,总水头线为水平线。
测压管水头线为随过水断面改变而起伏的曲线。
对粘性流体:h≠常数,h1=h2+h'l,总水头线为沿流向向下倾斜的曲线。
测压管水头线为随过水断面改变而起伏的曲线。
注意:1.无粘性流体流动的总水头线为水平线;2.粘性流体流动的总水头线恒为下降曲线;3.测压管水头线可升、可降、可水平。
4.总水头线和测压管水头线之间的距离为相应段的速度水头。
流体沿水头的变化情况:——水力坡度四、总流伯努利方程应用条件:(1)定常流动;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是缓变流断面,但两过水断面间可以是急变流。
(5)总流的流量沿程不变。
(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。
(7)式中各项均为单位重量流体的平均能(比能)。
五、列伯努利方程解题:注意与连续性方程的联合使用。
例1某工厂自高位水池引出一条供水管路ab如图3-31所示。
已知:流量q=0.034米3/秒;管径d=15厘米;压力表读数p b=4.9牛/厘米2;高度h=20米。
问水流在管路ab 中损失了若干水头?解:选取水平基准面o-o,过水断面1-1、2-2。
设单位重量的水自断面1-1沿管路ab流到b点,则可列出伯努利方程:因为:z1=h=20米,z2=0,,v2=q/a=1.92米/秒取α1=α2=1,v1=0则:20 + 0 + 0=0 + 5 + 1.922/19.6 +h l故h l=14.812(米)例2:水深1.5m、水平截面积为3m×3m的水箱,箱底接一直径为200mm,长为2m的竖直管,在水箱进水量等于出水量情况下作恒定出流,略去水头损失,试求点2的压强。
解:根据题意和图示,水流为恒定流;水箱表面,管子出口,管中点2所在断面,都是缓变流断面;符合总流伯努利方程应用条件。
水流不可压缩,只受重力作用。
基准面o-o取在管子出口断面3-3上,取α2=α3=1,写断面2-2和3-3的总流伯努利方程:采用相对压强,则p3=0,同时v2=v3,所以p2=-9800 pa其真空值为9800 pa。
上式说明点2压强小于大气压强,其真空度为1m水柱,或绝对压强相当于10-1=9m水柱。
知识点四:恒定总流的动量方程及其应用一、动量方程动量定理:质量系的动量()对时间(t)的变化率,等于作用于该质点系的所有外力之矢量和,即:,如果以表示动量,则:或应用于不可压缩流体的定常流动中,对于过水断面1-1、2-2间的流体,可得:,式中:α01、α02—动量校正系数,一般取1。
不可压缩流体的定常流动总流的动量方程为作用于流体上所有外力(流束段1-2的重量、两过水断面上压力的合矢量、其它边界上受到的表面压力)的合力。
即:将各量投影到直角坐标轴上,得:适用围:(1)粘性流体、非粘性流体的不可压缩定常流动。
(2)选择的两个过水断面应是缓变流过水断面,而过程可以不是缓变流。
(3)质量力只有重力(4)沿程流量不发生变化;二、动量方程的应用例题:如图所示,一个水平放置的水管在某处出现θ=30o的转弯,管径也从d1=0.3m渐变为d2=0.2m,当流量为q=0.1m3/s时,测得大口径管段中心的表压为2.94×104pa,试求为了固定弯管所需的外力。
【解】根据题意,图示的截面1-1的表压p1’=p1-p a=2.94×104pa,截面2-2的表压p2’可根据伯努利方程求出。
而固定弯管所需的外力,则可以利用总流的动量方程求出。
取如图所示的分离体,截面1-1和2-2的平均流速分别为v1=q/a1=1.4147m/s v2=q/a2=3.1831m/s弯管水平放置,两截面中心高程相同,故即总流的动量方程是由于弯管水平放置,因此我们只求水平面上的力。
对于图示的分离体,x、y方向的动量方程是代入数据,得:f x=1254 n,f y=557nα=arc tgf y/f x=24○水流对弯管的作用力为1372牛,即固定弯管需1372牛的外力。