直线与平面垂直
- 格式:doc
- 大小:101.50 KB
- 文档页数:4
直线与平面垂直的判定1.如果一条直线l和一个平面α内的,我们就说直线l和平面α互相垂直,记作,直线l叫做平面α的,平面α叫做直线l的,直线与平面垂直时,它们唯一的公共点叫做.2.过一点一条直线与已知平面垂直;过一点一个平面与已知直线垂直.3.直线与平面垂直的判定方法:(1)如果两条平行直线中的一条垂直于一个平面,那么另一条.用符号表示为.(2)判定定理:如果一条直线和一个平面内的直线都垂直,那么这条直线垂直于这个平面.用符号表示为.4.一条直线P A与平面α相交但不垂直,那么这条直线叫做这个平面的,交点A叫做,过斜线上除斜足外的任一点P作平面α的垂线PO,则AO叫做.平面的一条斜线和它在平面内的射影所成的锐角叫做,一条直线垂直于平面,它们所成的角为,一直线平行于平面或在平面内,它们所成的角为.主要要点:1.线面垂直的判定①用定义:证l和α内任意一条直线垂直.②用定理:证l和α内“两条相交”直线都垂直,我们可把定理简化为:线线垂直⇒线面垂直.③利用平行线:若a⊥α,证l∥a即可知l⊥α. 2.由线面垂直定义:l⊥α,a⊂α,则l⊥a.3.A是平面α外一点,AB⊥α,B为垂足,则线段AB叫做点A到平面α的垂线段,垂线段的长叫做点A到平面α的距离,点B是A在平面α内的正投影(简称射影)设P是三角形ABC所在平面α外一点,O是P在α内的射影.(1)若P A=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB的中点.(2)若P A、PB、PC两两垂直,则O为△ABC的垂心.(3)若P到△ABC三边距离相等,则O为△ABC的内心.二、典型例题[例1]在平面α内有直角∠BCD,AB⊥平面α,求证:CD⊥平面ABC.练习1、在正方体A1B1C1D1-ABCD中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心,求证:EF⊥平面BB1O.[例2]在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切.(2)求直线A1B与平面BDD1B1所成的角.练习2、在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为___________.例3、有一根旗杆AB 高12m ,它的顶端A 挂着两条长13m 的绳子.拉紧绳子,并把它的下端放在地面上的两点C 、D (和旗杆脚B 不在同一条直线上).若这两点和旗杆脚B 的距离都是5m ,则旗杆就和地面垂直,为什么?练习3、在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,O 是底面正方形ABCD 的中心,求证:OE ⊥平面ACD 1.[例4] 如图,在底面为直角梯形的四棱锥P -ABCD 中,AD∥BC ,∠ABC=90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.求证:BD ⊥平面P AC .练习4、如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1,(1)求证:E 、B 、F 、D 1四点共面;(2)若点G 在BC 上,BG = ,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.例5、过一点和已知平面垂直的直线只有一条. 已知:平面α与一点P .求证:过点P 与α垂直的直线只有一条.练习5、(1)已知:直线l ⊥平面α,垂足A ,直线AP ⊥l .求证AP 在平面α内. (2)已知直线a 不在平面α内,且与平面α的一条垂线b 垂直,求证:a ∥α.例6、如图a ∥b ,点P 在a 、b 所确定的平面外,P A ⊥a 于A ,AB ⊥b 于B .求证:PB ⊥b .基础练习1.如图,P A ⊥平面ABC ,△ABC 中,BC ⊥AC ,则图中直角三角形的个数是( )A .4B .3C .2D .12.若一条直线l 上有两个点到平面α的距离相等,则l 与α的关系是( ) A .平行 B .相交 C .垂直 D .不确定3.设m ,l 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l ⊥m ,m ⊂α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ⊂α,则l ∥m D .若l ∥α,m ∥α,则l ∥m4.如图,从直线CD 出发的两个半平面α、β,EA ⊥α于A ,EB ⊥β于B , 求证:CD ⊥AB .5.S 为直角△ABC 所在平面外一点,且SA =SB =SC . (1)求证:点S 与斜边AC 中点D 的连线SD ⊥平面ABC ; (2)若直角边BA =BC ,求证:BD ⊥平面SAC .巩固练习: 一、选择题1.下列命题中,正确的有( )①如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直. ②过直线l 外一点P ,有且仅有一个平面与l 垂直.③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面. ④垂直于三角形两边的直线必垂直于第三边.⑤过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内. A .2个B .3个C .4个D .5个2.设直线l 、m ,平面α、β,下列条件能得出α∥β的是( )A .l ⊂α,m ⊂α,且l ∥β,m ∥βB .l ⊂α,m ⊂β,且l ∥mC .l ⊥α,m ⊥β,且l ∥mD .l ∥α,m ∥β,且l ∥m3.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63 B.255 C.155 D.1054.如图,已知六棱锥P -ABCDEF 的底面是正六边形,P A ⊥平面ABC , P A =2AB ,则下列结论正确的是( )A .PB ⊥AD B .平面P AB ⊥平面PBCC .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45°5.如图,在三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠ACC 1=60°,∠BCC 1=45°, 侧棱CC1的长为1,则该三棱柱的高等于( )A.12B.22 C.32D.336.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上 有两个动点E ,F ,且EF =22,则下列结论中错误的是( ) A .AC ⊥BE B .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等7.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°8.在空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD ,则对角线AC 与BD 的位置关系为( )A .相交但不垂直B .垂直但不相交C .不相交也不垂直D .无法判断 二、填空题10.▱ABCD 的对角线交点为O ,点P 在▱ABCD 所在平面外,且P A =PC ,PD =PB , 则PO 与平面ABCD 的位置关系是________.11.在矩形ABCD 中,AB =3,BC =4,P A ⊥平面ABCD ,且P A =1,则点P 到 对角线BD 的距离是________.12.如图中的三个直角三角形是一个体积20cm 3的几何体的三视图,则h =______ cm. 三、解答题13.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,C 1E =3EC . 求证:A 1C ⊥平面BED .14.已知△ABC 中,∠ACB =90°,SA ⊥平面ABC ,AD ⊥SC 于D ,求证:AD ⊥平面SBC .15.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°,求证:AB ⊥A 1C .16.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥P -EFGH ,下半部分是长方体ABCD -EFGH .图2、图3分别是该标识墩的正(主)视图和俯视图. (1)求该安全标识墩的体积; (2)证明:直线BD ⊥平面PEG .17.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AD ⊥CD ,DB 平分∠ADC ,E 为PC 的中点,AD =CD =1,DB =2 2(1)证明P A ∥平面BDE ; (2)证明AC ⊥平面PBD .直线与平面垂直的判定参考答案例1、如图:,AB CD αα⊥⊂ AB CD ∴⊥又90BCD ∠=BC CD ∴⊥AB BC B ⋂=CD ∴⊥平面ABC练习1、如右图,连结AC ,BD ,则O 为AC ,BD 的交点 ∵ABCD 为正方形,∴AC ⊥BO又∵BB 1⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥BB 1 ∵BO ∩BB 1=B , ∴AC ⊥平面BB 1O .又∵EF 是△ABC 的中位线 ∴EF ∥AC ∴EF ⊥平面BB 1O例2、(1)∵直线A 1A ⊥平面ABCD ,∴∠A 1CA 为直线A 1C 与平面ABCD 所成的角,设A 1A =1,则AC =2,∴tan ∠A 1CA =22。
直线与平面垂直的方法直线与平面垂直是一个基本的几何概念,它表示直线与平面之间的相互关系。
在三维空间中,直线与平面的垂直关系可以通过几种方法来确定。
方法一:使用向量求垂直设直线L的向量方向为v,平面P的法线向量为n。
则L与P垂直的条件是v·n=0,即直线L的向量与平面P的法线向量的点积为0。
这是因为两个向量的点积为0意味着它们相互垂直。
具体而言,我们可以通过以下步骤使用向量求垂直:1. 求直线的向量:a) 确定直线上两点A(x1, y1, z1)和B(x2, y2, z2);b) 直线的向量v = AB = (x2 - x1, y2 - y1, z2 - z1)。
2. 求平面的法线向量:a) 找出平面上的三个点(点A、点B、点C);b) 确定平面的两个向量:AB和AC;c) 使用向量叉乘,求平面的法线向量:n = AB ×AC。
3. 进行点乘运算:a) 将直线的向量v和平面的法线向量n进行点乘运算。
b) 若结果为0,则直线与平面垂直;c) 若结果不为0,则直线与平面不垂直。
方法二:使用平面的方程求垂直设平面P的方程为Ax + By + Cz + D = 0,直线L的参数方程为{x = x0 + at, y = y0 + bt, z = z0 + ct},其中(a, b, c)为直线的方向向量。
则直线L与平面P垂直的条件是平面的法线向量(n)与直线的方向向量(a, b, c)的点乘为0。
具体而言,我们可以通过以下步骤使用平面的方程求垂直:1. 将直线的参数方程代入平面的方程中,得到以下表达式:A(x0 + at) + B(y0 + bt) + C(z0 + ct) + D = 0。
2. 展开并整理上述表达式,得到以下结果:Ax0 + By0 + Cz0 + D + (aA + bB + cC)t = 0。
3. 对比上述方程中t的系数,即(aA + bB + cC),若其为0,则直线与平面垂直;若不为0,则直线与平面不垂直。
直线与平面垂直的判定[新知初探]1.直线与平面垂直的定义(1)自然语言:如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足.(2)图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.(3)符号语言:任意a⊂α,都有l⊥a⇒l⊥α.[点睛](1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.2.直线与平面垂直的判定定理(1)自然语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(2)图形语言:如图所示.(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.[点睛]判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.如图,∠PAO就是斜线AP与平面α所成的角.(2)当直线AP与平面垂直时,它们所成的角是90°.(3)当直线与平面平行或在平面内时,它们所成的角是0°.(4)线面角θ的范围:0°≤θ≤90°.[点睛]把握定义应注意两点:①斜线上不同于斜足的点P的选取是任意的;②斜线在平面上的射影是过斜足和垂足的一条直线而不是线段.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若直线l垂直于平面α,则l与平面α内的直线可能相交,可能异面,也可能平行()(2)若a∥b,a⊂α,l⊥α,则l⊥b()(3)若a⊥b,b⊥α,则a∥α()答案:(1)×(2)√(3)×2.直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是()A.平行B.垂直C.在平面α内D.无法确定解析:选D3.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:(1)与PC垂直的直线有________________________________________________________________________;(2)与AP垂直的直线有________________________________________________________________________.答案:(1)AB,AC,BC(2)BC对直线与平面垂直的判定定理的理解[典例]下列说法正确的有________(填序号).①垂直于同一条直线的两条直线平行;②如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直;③如果一条直线垂直于平面内的两条直线,那么这条直线与这个平面垂直;④若l与平面α不垂直,则平面α内一定没有直线与l垂直.[答案]②(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.[活学活用]1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC解析:选C2.如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________(填序号).答案:①③④线面垂直的判定[典例]如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[证明](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD.又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知SD⊥BD.又因为SD∩AC=D,所以BD⊥平面SAC.利用线面垂直的判定定理证明线面垂直的步骤(1)在这个平面内找两条直线,使它和这条直线垂直;(2)确定这个平面内的两条直线是相交的直线;(3)根据判定定理得出结论.[活学活用]如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM.(2)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB . 证明:(1)∵AB 为⊙O 的直径, ∴AM ⊥BM .又PA ⊥平面ABM ,∴PA ⊥BM . 又∵PA ∩AM =A ,∴BM ⊥平面PAM . 又AN ⊂平面PAM ,∴BM ⊥AN . 又AN ⊥PM ,且BM ∩PM =M , ∴AN ⊥平面PBM .(2)由(1)知AN ⊥平面PBM , PB ⊂平面PBM ,∴AN ⊥PB . 又∵AQ ⊥PB ,AN ∩AQ =A , ∴PB ⊥平面ANQ .又NQ ⊂平面ANQ ,∴PB ⊥NQ .直线与平面所成角[典例] 三棱锥S -ABC 的所有棱长都相等且为所成角的余弦值. [解] 如图,过S 作SO ⊥平面ABC 于点O ,连接AO ,BO ,CO .则SO ⊥AO ,SO ⊥BO ,SO ⊥CO .∵SA =SB =SC =a , ∴△SOA ≌△SOB ≌△SOC , ∴AO =BO =CO , ∴O 为△ABC 的外心. ∵△ABC 为正三角形, ∴O 为△ABC 的中心. ∵SO ⊥平面ABC ,∴∠SAO 即为SA 与平面ABC 所成的角. 在Rt △SAO 中,SA =a ,AO =23×32a =33a ,∴cos ∠SAO =AO SA =33,∴SA 与底面ABC 所成角的余弦值为33.求斜线与平面所成的角的步骤(1)作角:作(或找)出斜线在平面上的射影,将空间角(斜线与平面所成的角)转化为平面角(两条相交直线所成的锐角),作射影要过斜线上一点作平面的垂线,再过垂足和斜足(有时可以是两垂足)作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算.(2)证明:证明某平面角就是斜线与平面所成的角.(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算.在正方体ABCD-A1B1C1D1中,(1)直线A1B与平面ABCD所成的角的大小为________;(2)直线A1B与平面ABC1D1所成的角的大小为________;(3)直线A1B与平面AB1C1D所成的角的大小为________.解析:(1)由线面角定义知,∠A1BA为A1B与平面ABCD所成的角,∠A1BA=45°.(2)如图,连接A1D,设A1D∩AD1=O,连接BO,则易证A1D⊥平面ABC1D1,∴A1B在平面ABC1D1内的射影为OB,∴A1B与平面ABC1D1所成的角为∠A1BO.∵A1O=12A1B,∴∠A1BO=30°.(3)∵A1B⊥AB1,A1B⊥B1C1,∴A1B⊥平面AB1C1D,即A1B与平面AB1C1D所成的角的大小为90°.答案:(1)45°(2)30°(3)90°层级一学业水平达标1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂αB.m∥n,且n⊥βC.m⊥n,且n⊂βD.m⊥n,且n∥β解析:选B2.若两条不同的直线与同一平面所成的角相等,则这两条直线()A.平行B.相交C.异面D.以上皆有可能解析:选D.3.下列四个命题中,正确的是()①若一条直线垂直于一个平面内的无数条直线,则这条直线与这个平面垂直;②若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;③若一条直线平行于一个平面,另一条直线垂直于这个平面,则这两条直线互相垂直;④若两条直线垂直,则过其中一条直线有惟一一个平面与另一条直线垂直.A.①②B.②③C.②④D.③④解析:选D①②不正确.4.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定解析:选C5.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30°D.120°解析:选A6.已知直线l,a,b,平面α,若要得到结论l⊥α,则需要在条件a⊂α,b⊂α,l⊥a,l⊥b中另外添加的一个条件是________.答案:a,b相交7.如图所示,三棱锥P-ABC中,PA⊥平面ABC,PA=AB,则直线PB与平面ABC所成的角等于________.答案:45°8.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形ABCD 一定是________.答案:菱形9.如图,在四面体A-BCD中,∠BDC=90°,AC=BD=2,E,F分别为AD,BC的中点,且EF= 2.求证:BD⊥平面ACD.证明:取CD的中点为G,连接EG,FG.又∵E,F分别为AD,BC的中点,∴FG∥BD,EG∥AC.∵AC =BD =2,则EG =FG =1.∵EF =2,∴EF 2=EG 2+FG 2,∴EG ⊥FG , ∴BD ⊥EG .∵∠BDC =90°,∴BD ⊥CD . 又EG ∩CD =G ,∴BD ⊥平面ACD .10.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成的角的正弦值.解:如图,取CD 的中点F ,连接EF 交平面ABC 1D 1于O ,连接AO ,B 1C .由ABCD -A 1B 1C 1D 1为正方体,易得B 1C ⊥BC 1,B 1C ⊥D 1C 1,BC 1∩D 1C 1=C 1,BC 1⊂平面ABC 1D 1,D 1C 1⊂平面ABC 1D 1,∴B 1C ⊥平面ABC 1D 1.∵E ,F 分别为A 1B 1,CD 的中点,∴EF ∥B 1C ,∴EF ⊥平面AC 1,即∠EAO 为直线AE 与平面ABC 1D 1所成的角.在Rt △EOA 中,EO =12EF =12B 1C =22,AE =A 1E 2+AA 21= ⎝⎛⎭⎫122+12=52, ∴sin ∠EAO =EO AE =105. ∴直线AE 与平面ABC 1D 1所成的角的正弦值为105. 层级二 应试能力达标1.在正方体ABCD -A 1B 1C 1D 1中,与AD 1垂直的平面是 ( ) A .平面DD 1C 1C B .平面A 1DB 1 C .平面A 1B 1C 1D 1 D .平面A 1DB答案:B2.下面四个命题:①过一点和一条直线垂直的直线有且只有一条; ②过一点和一个平面垂直的直线有且只有一条; ③过一点和一条直线垂直的平面有且只有一个; ④过一点和一个平面垂直的平面有且只有一个. 其中正确的是( ) A .①④ B .②③ C .①②D .③④解析:选B过一点和一条直线垂直的直线有无数条,故①不正确;过一点和一个平面垂直的平面有无数个,故④不正确;易知②③均正确.故选B.3.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m解析:选B根据两条平行线中的一条直线垂直于一个平面,则另一条直线也垂直于这个平面,知选项B正确.4.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析:选D选项A正确,因为SD垂直于平面ABCD,而AC在平面ABCD内,所以AC垂直于SD;再由ABCD为正方形,所以AC垂直于BD,而BD与SD相交,所以AC垂直于平面SBD,进而垂直于SB.选项B正确,因为AB平行于CD,而CD在平面SCD内,AB不在平面SCD内,所以AB平行于平面SCD.选项C正确,设AC与BD的交点为O,连接SO,则SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于∠SCD,而DC与SA所成的角是∠SAB,这两个角不相等.5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是AD的中点,F是BB1的中点,则直线EF与平面ABCD所成角的正切值为________.解析:连接EB,由BB1⊥平面ABCD,知∠FEB即直线EF与平面ABCD所成的角.在Rt△FBE中,BF=1,BE=5,则tan∠FEB=55.答案:5 56.如图所示,将平面四边形ABCD 沿对角线AC 折成空间四边形,当平面四边形ABCD 满足________时,空间四边形中的两条对角线互相垂直.(填上你认为正确的一种条件即可,不必考虑所有可能情况)解析:在平面四边形中,设AC 与BD 交于E ,假设AC ⊥BD ,则AC ⊥DE ,AC ⊥BE . 折叠后,AC 与DE ,AC 与BE 依然垂直,所以AC ⊥平面BDE ,所以AC ⊥BD .若四边形ABCD 为菱形或正方形,因为它们的对角线互相垂直,同上可证AC ⊥BD .答案:AC ⊥BD (或四边形ABCD 为菱形、正方形等)7.如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1. (1)求证:AB 1⊥平面A 1BC 1.(2)若D 为B 1C 1的中点,求AD 与平面A 1B 1C 1所成角的正弦值. 解:(1)证明:由题意知四边形AA 1B 1B 是正方形, ∴AB 1⊥BA 1.由AA 1⊥平面A 1B 1C 1得AA 1⊥A 1C 1. 又∵A 1C 1⊥A 1B 1,AA 1∩A 1B 1=A 1, ∴A 1C 1⊥平面AA 1B 1B , 又∵AB 1⊂平面AA 1B 1B , ∴A 1C 1⊥AB 1.又∵BA 1∩A 1C 1=A 1,∴AB 1⊥平面A 1BC 1. (2)连接A 1D .设AB =AC =AA 1=1, ∵AA 1⊥平面A 1B 1C 1,∴∠A 1DA 是AD 与平面A 1B 1C 1所成的角. 在等腰直角三角形A 1B 1C 1中,D 为斜边的中点, ∴A 1D =12×B 1C 1=22.在Rt △A 1DA 中,AD =A 1D 2+A 1A 2=62. ∴sin ∠A 1DA =A 1A AD =63,即AD 与平面A 1B 1C 1所成角的正弦值为63.8.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =1,∠ACB =90°,AA 1=2,D 是A 1B 1的中点.(1)求证C1D⊥平面AA1B1B;(2)当点F在BB1上的什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.证明:(1)∵ABC-A1B1C1是直三棱柱,∴A1C1=B1C1=1,且∠A1C1B1=90°.又D是A1B1的中点,∴C1D⊥A1B1.∵AA1⊥平面A1B1C1,C1D⊂平面A1B1C1,∴AA1⊥C1D,又A1B1∩C1D=D,∴C1D⊥平面AA1B1B.(2)作DE⊥AB1交AB1于E,延长DE交BB1于F,连接C1F,则AB1⊥平面C1DF,点F为所求.∵C1D⊥平面AA1B1B,AB1⊂平面AA1B1B,∴C1D⊥AB1.又AB1⊥DF,DF∩C1D=D,∴AB1⊥平面C1DF.∵AA1=A1B1=2,∴四边形AA1B1B为正方形.又D为A1B1的中点,DF⊥AB1,∴F为BB1的中点,。
直线与平面垂直的判定和性质1.定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面. 2. 直线和平面垂直的判定定理.如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 3.直线和平面垂直的性质定理如果两条直线同垂直与一个平面,那么这两条直线平行 4.唯一性定理(1)过一点有且只有一条直线与已知平面垂直。
(2)过一点有且只有一个平面与已知直线垂直。
5.距离(1)点到平面的距离的定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)直线和平面的距离的定义:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.6、平面的斜足、斜线、斜线在平面内的射影(1)直线l 与平面α斜交:当直线l 与平面α相交且不垂直时,叫做直线l 与平面α斜交。
此时l 叫平面α的斜线;直线l 与平面α斜交于点M ,点M 叫斜足。
(2)点的射影:直线α⊥PQ 于Q ,点Q 是点P 在α内的射影。
PQ 是P 到平面α的垂线段。
(3)直线l 在平面α上的射影:直线MQ 叫作直线l 在平面α上的射影。
射影定理:从平面外一点向这个平面所引的垂线段和斜线段中: (1) 射影相等的两条斜线段相等,射影较长的斜线段也较长; (2) 相等的斜线段的射影相等,较长的斜线段的射影较长; (3) 垂线段比任何一条线段都短。
7、直线与平面α所成的角:(1)斜线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角;(2)直线和平面垂直,它们所成的角是90;(3)直线在平面内或与平面平行,它们所成的角是0; 注:一条直线和平面α所成的角的范围是]2,0[π直线和平面所成角的步骤 : ①作图—找出或作出直线在平面上的射影 ②证明—证明所找或所作的角即为所求角 ③计算—通常在三角形中计算角8.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 三垂线定理的逆定理:在平面内的一条直线,如果和这个平面上的一条斜线垂直,那么它也和这条斜线的射影垂直例题:1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A . 垂直 B . 平行 C . 相交不垂直 D .不确定2、下列命题中错误的是( )A .若一直线垂直于一平面,则此直线必垂直于这一平面内所有直线B .若一平面经过另一平面的垂线,则两个平面互相垂直C .若一条直线垂直于平面内的无数条直线,则此直线垂直于这一平面D .若平面内的一条直线和这一平面的一条斜线的射影垂直,则它也和这条斜线垂直3.如图,已知正四棱柱1111D C B A ABCD -中,过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F ,求证:A 1C ⊥平面BDE ;4.如图,四面体ABCD 中,O 分别是BD的中点,2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;5.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AA 1、AB 的中点,则EF 与对角面BDD 1B 1所成角的度数是( )A .30°B .45°C .60°D .150°6.如图,已知三棱锥S -ABC 中,底面ABC 为边长等于2的等边三角形,SA ⊥底面ABC ,SA =3,那么直线SB 与平面SAC 所成角的正弦值为________.7.如图,直线l 是平面α的斜线,AB ⊥α,B 为垂足,如果θ=45°,∠AOC=60°,则∠BOC=( ) A .45° B .30° C .60° D .15°8.在正方体ABCD —A 1B 1C 1D 1中,求: (1)直线1D B 与平面ABCD 所成角的正弦值。
直线与平面垂直
教学目标:掌握直线与平面垂直的定义、性质;掌握直线与平面垂直的判断定理和性质定理的内容;能初步应用定义、性质、定理证题。
教学重点:直线与平面垂直的定义、性质、定理的应用。
教学过程:
一、问题情境:
观察圆锥SO,它给我们以轴SO垂直底面的形象。
轴SO与底面内的哪些直线垂直呢?
二、建构数学
(1)线面垂直的定义
如果一条直线a与一个平面α内的任意一条直线都垂直,则称直线a垂直于平面α,并且记作a⊥α.直线a叫平面α的垂线,平面α叫直线a的垂面,垂线和平面的交点叫垂足.
(2)线面垂直的性质
过一点有且只有一条直线与已知平面垂直;
过一点有且只有一个平面与已知直线垂直;
(3)判定定理:
判定定理1:如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面。
已知:a∥b ,a⊥α,求证:b⊥α.
(用线面垂直的定义)
本题结论限在填选题中用!
判定定理2:
①内容:如果一条直线和一个平面内的两条相交
..
直线都垂直,那么这条直线垂直于这个平面.
这里必须强调的是:相交两字.
②符号表示:若a⊥m,a⊥n,m⊂α,n⊂α,m∩n=A,则a⊥α.
③友情提示:用线面垂直判断定理证明线面垂直必须验证定理中五个条件!
(4)性质定理:
①内容:如果两条直线同时垂直于一个平面,那么这两条直线平行.
②符号表示:若a⊥α,b⊥α,则a∥b.
③定理证明:(文字题应先写已知求证)
已知a⊥α,b⊥α,求证:a∥b.
证明:假设b不平行于a,设b∩α=O,
b ′是
经过点O 与直线a 平行的直线。
∵a ∥b ′,a ⊥α ∴ b ′⊥ a ,
即经过同一点O 的两条直线b 与b ′都垂直于平面α,这是不可能的。
因此,a ∥b .
(5)点面距:
过平面α外一点A 向平面α引垂线,则点A 和垂足B 之间的距离叫点A 到平面α的距离.
(6)线面距(只有在线面平行时才可定义!)
①线面距的定义:如果一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离。
②定义的合理性: 已知:直线l ∥平面α .
求证: 直线l 上各点到平面α的距离相等.
证明:过直线l 上任意两点A,B 分别作平面α 的垂线AA ′, BB ′, 垂足分别记为A ′,B ′. ∵ AA ′⊥α , BB ′⊥α , ∴AA ′∥BB ′. 设经过直线AA ′和BB ′的平面为β,
则 β与α的 交 线 为A ′B ′. ∵ l ∥α, ∴l ∥A ′B ′., ∴四边形A ′B ′B A . 是平行四边形,∴AA ′=BB ′. 即直线l 上各点到平面α的距离相等.
三、数学应用
例1 如图,定点A 和B 都在平面α内,定点P ∉α,PB ⊥α, C 是α内异于A 和B 的动点,且PC ⊥AC .那么,动点C 在平面α内的轨迹是___________
例2不共面的四个定点到平面α的距离都相等,这样的平面α共有 __________个
例3 如图,在直.四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)
A B
C
D
A 1
B 1
C 1
D 1
(凡是能推出AC ⊥BD 的条件均可)
例4在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,O 是底面正方形ABCD 的中心,
求证:OE ⊥平面ACD 1.
根据线面垂直的判定定理,要证明OE ⊥平面ACD 1,只须在平面ACD 1内找两条相交直线与OE 垂直.
解:证法一 如图,连B 1D 、A 1D 、BD .
在△B 1BD 中,∵E 、O 分别是B 1B 和DB 的中点, ∴EO ∥B 1D .
∵B 1A 1⊥面AA 1D 1D , AD 1⊂面AA 1D 1D ,
∴B 1A 1⊥AD 1.
又∵AD 1⊥A 1D ,∴AD 1⊥平面A 1DB 1. ∴AD 1⊥DB 1. 同理可证,B 1D ⊥D 1C . 又∵AD 1∩CD 1=D 1,AD 1、D 1C ⊂面ACD 1, ∴B 1D ⊥平面ACD 1. ∵B 1D ∥EO ,
∴EO ⊥平面ACD 1.
证法二 如图,连结AE 、CE 、D 1O 、D 1B 1、D 1E ,设正方体DB 1的棱长为a ,易证AE =CE . 又∵AO =OC ,∴OE ⊥AC . 在正方体DB 1中易求出:
D 1O =22
1
DD DO +=a 26
, OE =22BE OB +=a 23
, D 1E =22111D B B E +=a 2
3
,∴D 1O 2+OE 2=D 1E 2,
∴D 1O ⊥OE .
∵D 1O ∩AC =O ,D 1O 、AC ⊂平面ACD 1. ∴OE ⊥平面ACD 1.
四、课堂练习:
1.△ABC 所在的平面外一点P ,过P 作PO ⊥平面,垂足为O ,连接PA 、PB 、PC . ①若PA =PB =PC ,则O 为△ABC 的 心;
②若PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,则O 是△ABC 的 心;
③若P 点到三边AB 、BC 、CA 的距离相等,且O 点在△ABC 的内部,则O 是△ABC 的 心; ④若PA =PB =PC ,∠ACB =90º,则O 是AB 边 的 点。
2.如图,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那
么点M 到截面ABCD 的距离是 .
3.已知一个正三角形ABC 的边长为3
4
,则到三个顶点的距离都为1的平面个
B
A
C D A 1
B 1
C 1
D 1
E
O
B
A C D
A 1
B 1 1
D 1
E
O B
A
C
D
A 1
B 1
C 1
D 1 E
O
A
D
C
B
M
O
S
A
B
C
α
数是 .
4.如图 ,过点S 引三条两两互相垂直的直线,一个平面与这三条直线分别相交于A 、B 、C . 求证:
(1)△ABC 是锐角三角形; (2)设△ABC 的垂心为O ,
求证:SO ⊥平面ABC .
5.如图,斜边为AB 的Rt △ABC ,过A 作AP ⊥平面ABC ,AE ⊥PB 交于E ,AF ⊥PC 交于F , 求证:PB ⊥平面AEF .
6.如图,三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,侧棱AA 1⊥面ABC .且
D 是BC 的中点,AB =a . (1)求证:A 1D ⊥B 1C 1;
(2)求点D 到平面ACC 1的距离;
(3)判断A 1B 与平面ADC 1的位置关系,并证明你的结论.
五、回顾反思 六、作业:
P
A
B
C
E
F 第5题图 A
B
C
C 1
B 1
A 1
D。