通风除尘系统主要参数、阻力快速计算表
- 格式:xlsx
- 大小:24.32 KB
- 文档页数:63
课程设计设计课题某企业车间通风系统设计系部班级安全与环境工程系安本0701班所属专业工业通风设计者成滔指导教师胡鸿湖南工学院课程设计任务书安全与环境工程系安全工程专业学生姓名:成滔学号:610070123 专业:安全工程1.设计题目:某企业车间通风系统设计、2.设计期限:自2009年12月10 日开始至2009年12月21日完成3.设计原始资料:抛光间的通风除尘设计与计算本设计只有抛光间产生粉尘,粉尘的成分有:抛光粉剂,粉末,纤维质灰尘等.抛光的目的主要是为了去掉金属表面的污垢及加亮镀件.(1)排风量的计算一般按抛光轮的直径D计算: L=A・D M3/H (A与轮子材料有关的系数)布轮:A=6M3/H・MM D为抛光轮直径(MM)每个抛光间有一台抛光机,抛光机有个抛光轮,抛光轮为布轮,其直径为D=200MM,抛光轮的排气罩应采用接受式排气罩.4.设计完成的主要内容:1.通风除尘系统的阻力计算2.选定除尘设备3.风机型号和配套电机。
5.提交设计(设计说明书与图纸等)及要求:. 1.做图规范:通风系统轴测图一张(3号图纸)及平面图纸一张(2号图纸),图例符合国家统一标准。
2.选择计算公式正确,计算程序清晰。
3.单位符合国家标准。
4.报告一律同统一采用小4号仿宋字体,A4纸型打印。
6.发题日期:2009年12 月10日指导老师(签名):学生(签名):成滔目录1车间简介 (1)2通风除尘系统设计与计算 (1)2.1系统和设备的布置 (1)2.1.1风量计算 (2)2.1.2风管的材料 (2)2.1.3风管截面的选择 (2)2.1.4 风管的形状 (2)2.1.5排风口位置的确定 (3)2.2水力计算 (3)2.3 确定风机型号和配套电机 (8)3.发电机室的通风设计 (12)3.1发电机室的基本情况 (12)3.2风量的计算 (12)4.设计小结 (12)参考文献 (13)附录 (13)1车间简介该车间是某企业的抛光车间。
通风阻力计算公式汇总通风阻力是流体在通过管道或设备时所经受的阻力。
在工程中,通风阻力的计算对于设计和优化通风系统至关重要。
下面是一些常用的通风阻力计算公式的汇总:1.管道阻力公式:管道阻力是通风系统中一个重要的组成部分。
下面是几种常见的管道阻力计算公式:-法氏方程公式:ΔP=(η*L/D)*(V^2/2g)其中,ΔP是管道阻力,η是比例系数(通常为0.02-0.05),L是管道长度,D是管道直径,V是流速,g是重力加速度。
-白寇厄尔公式:ΔP=η*(ρ*L/D)*(V^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
-弗里若克公式:ΔP=η1*(ρ1*L1/D1)*(V1^2/2)+η2*(ρ2*L2/D2)*(V2^2/2)+...+ηn*(ρn*Ln/Dn)*(Vn^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
以上公式可以根据具体问题中的参数进行计算,得到通风系统的管道阻力。
2.设备阻力公式:在通风系统中,除了管道阻力,设备也会产生阻力。
以下是几种常见的设备阻力计算公式:-弯头阻力:ΔP=ξ1*ρ*(V^2/2)其中,ξ是弯头阻力系数,常用值为0.25-1.0,ρ是流体密度,V是流速。
-扩散器阻力:ΔP=ξ2*(ρ*V^2/2)其中,ξ是扩散器阻力系数,常用值为0.09-0.35,ρ是流体密度,V是流速。
-突变阻力:ΔP=ξ3*(ρ*V^2/2)其中,ξ是突变阻力系数,常用值为1.5-10,ρ是流体密度,V是流速。
这些设备阻力公式可以帮助工程师根据具体设备的参数计算其阻力,从而优化通风系统设计。
3.阻力总和公式:在实际通风系统中,不仅仅有管道和设备阻力,还有其他因素如弯曲、分支、阻尼等会产生阻力。
以下是阻力总和公式的一个例子:ΔP=ΣΔP管道+ΣΔP设备+ΣΔP其他其中,ΔP是总阻力,ΣΔP管道表示管道阻力之和,ΣΔP设备表示设备阻力之和,ΣΔP其他表示其他因素的阻力之和。
说明:为了方便大家使用,本计算表的各栏目分为黄色、红色、绿色、白色四种。
黄色栏目为基本需填写的参数,的方法如下:1、先根据需要将风量、布袋规格、布袋长度三个参数进行填写。
2、再根据需要并参照自动生成的过滤风速及自动生成的初定箱室数(上箱体的数量)填写选取箱室数。
3、根据需要的上箱体尺寸及布袋除尘器的尺寸等对脉冲阀及布袋的排列进入修正。
经过几次修正就可得到需要的排列。
4、如这时生成的过滤风速超出了需要的范围,初定箱室数有了变化,这时可根据新的初定箱室数从新选取箱室数,直到上箱5、箱室排列与箱室数的关系:箱室排列目前通行的有1排、2排、四排。
选取的箱室数一定要能被排数整除,6、箱室数与灰斗数:通行的方法有A、一个箱室设一个灰斗;B、两个箱室设一个灰斗;C四个箱室设一个灰斗。
灰斗数需为箱7、箱室数、灰斗数、停风阀数及尺寸:A、当在线清灰时不设停风阀,停风阀数为0。
B、当离线清灰时最少每个灰斗一个停风数增加。
D、停风阀尺寸根据初设尺寸选取,既对初设尺寸进行园整。
8、一般袋底距进风口上口为0.5M,表内此值不需调整。
当有特殊要求时如含尘量较大、尘粒较大时及需方有特殊要求时此值9、一般袋与袋之间的净间距为50㎜(最小要求),当有具体要求时可对选取袋间距与选取阀向袋间距进行调整直到袋间净距10、一般仓壁与布袋之间的净距为150㎜(最小值)当有具体要求时可对此值进行调整。
11、卸灰阀尺寸可根据灰量及工作制度进行选取。
12、灰斗夹角最小为60度,也可根据要求如粉尘粒度,粒间粘度进入调整,一般夹角越小越好。
13、单位重量与预估重量:单位重量的选取:5万以下选28;10万风量以下选25;20万以下选22;20万以上选2014、生成的参数值的精度:各种参数为小数点后两位数参数,红色栏目为自动生成的参考值,绿色栏目可要据红色栏或经验填写,白色栏目自动生成的各项参数。
其具体室数。
就可得到需要的排列。
从新选取箱室数,直到上箱体尺寸,除尘器尺寸满足设计需要。
通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D 以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2 ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头布置管道时,应尽量取直线,减少弯头。
谈通风管道局部阻力计算方法胡宝林在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件和重杂物分离器、供料器、卸料器、除尘器等设备上产生。
由于管件形状和设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。
例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300a P 左右,离心式籽棉卸料器压损为400a P 左右,这些都是实测数据,由于规格结构不同差异也会很大,所以仅供参考。
只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。
局部阻力是管道阻力的重要组成部分,一个4R D = 90°弯头的阻力相当于2.5~6.5m 的直管沿程阻力。
由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下和带料运行时的局部阻力系数的变化及局部阻力计算方法。
一、纯空气输送时局部阻力和系数 1、局部阻力当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。
在产生局部损失的地方,由于主流与边界分离和漩涡的存在,质点间的摩擦和撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式:22j d H H ρυξξ=⋅=⋅式中:j H —局部阻力,a P ;ξ—局部阻力系数,实验取得或公式计算; d H —动压,a P ;ρ—空气密度,1.2053/kg m (20°℃); υ—空气流速,/m s2、阻力系数阻力系数的确定有两种方法,一是查表法,二是公式法。
查表法:许多管件或设备都具有特殊的形状或结构,阻力系数难以用理论公式计算,只能通过测试阻力后再反推阻力系数。
为了便于查询和参考,通过大量的实验已经制成了查询表。
旋风除尘器设计,自动计算表格
适用范围陶瓷多管高效除尘器和陶瓷多管脱硫除尘净化器适用于各种然少方式的燃煤锅
炉工业锅炉冲天锅炉等烟气的除尘脱硫治理
原理当含尘烟气进入除尘器后通过导向器由直线运动转换成圆周运动含尘烟气在离心力
作用下粉尘被分离捕集落入灰斗经下灰口排放进化后的烟气形成内漩流向上经排气管
进入汇风室后通过引风机排入烟囱陶瓷多管脱硫除尘净化器是在陶瓷多管的基础上增加
一个脱硫室烟气进入脱硫室经物化处理的脱硫环吸附烟气中的二氧化硫净化后排除
结构特点耐磨损腐蚀高温寿命长
节构合理性能稳定操作简单管理方便安全可靠造价低廉占地面积小使用范围广
技术性指标
除尘效率〉95%
阻力:700-900pa
林格曼黑度:〈1级
Xtj/g 型脱硫效率〉=60%
Xztd型号规格参数
吨位处理风量外形尺寸设备重量
A b h t
4t/h 12000m3/h 1070 1690 4544 3.5
进出烟口尺寸
a b c
350 1000 100
基础尺寸
L1 1390
F1 1315
L2 1990
F2 1915
旋风除尘器其特点是:没有运动部件,制作、管理十分方便。
处理相同的风量情况下效率高、
阻力低、体积小、性能稳定、造价低,作为除尘器使用时,可以立式安装,亦可以卧式安装,
使用方便,处理大风量时便于多台并联使用,效率阻力不受影响,因此使用范围广,为锅炉
及其它烟尘治理提供了理想的设备。
抽尘点风量合计(M 3/h)烟气含尘浓度g/M 3灰尘堆比重T/M 3除尘器设计阻力Pa 管道设定阻力Pa管网漏风率(%)除尘器漏风率(%)管网阻力余量(%)风机全压系数(%)风机效率(%)机械传动效率电机容量系数(%)除尘器设计风量(M3/h)风机最小风量(M3/h)10000202180018000.120.030.20.10.850.98 1.151153611767810000202180030000.120.030.20.10.850.98 1.15############除尘系统设计相关参数计算表说明:1)本表主要是针对除尘系统设计中的相关参数计算设计的,为除尘系统中除尘器、除尘供相关参数。
2)其中除尘器的设计风量考滤到了管网内外漏风率及除尘器本体的漏风率,风机漏风率,风机选型风量则考滤到风机在非高效点运行的情况下风机效率下降及风机在低温状态3)下表中黄色值需按系统要求进行填写,红色值则需要根据实际情况进行调节,如除尘器阻力布袋1200~1800,管网阻力变化范围较大方案阶段一般根据情况进行预估,小系统500~1500,色为经验余量值也可适当调整;青绿色可查风机相关手册;绿色为生成风机选型风量(M3/h)风机全压P(Pa )风机内功率(KW)风机轴功率(KW)电机功率(KW)单位小时灰重T/h 小时灰体积M 3/h 12120####2020240.20.1######################16.28.1算表除尘系统中除尘器、除尘风机、输灰系统的选型提尘器本体的漏风率,风机风量考滤到了风机本体的率下降及风机在低温状态下无法达到标称值的问题。
进行调节,如除尘器阻力一般电除尘器350~500Pa\预估,小系统500~1500,中大系统1800~3200;紫机相关手册;绿色为生成值。
通风管道系统的设计计算在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。
设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。
进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。
在一般的通风系统中用得最普遍的是等压法和假定流速法。
等压损法是以单位长度风管有相等的压力损失为前提的。
在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。
对于大的通风系统,可利用等压损法进行支管的压力平衡。
假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。
这是目前最常用的计算方法。
一、通风管道系统的设计计算步骤800m /h1500m /h 1234000m /h4除尘器657图6-8 通风除尘系统图一般通风系统风倌管内的风速(m/s)表6-10除尘通风管道最低空气流速(m/s)表6-111、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。
以风量和风速不变的风管为一管段。
一般从距风机最远的一段开始。
由远而近顺序编号。
管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。
2、选择合理的空气流速。
风管内的风速对系统的经济性有较大影响。
流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消耗增加,有时还可能加速管道的磨损。
流速低,压力损失小,动力消耗少;但是风管断面大,材料和建造费用增加。
对除尘系统,流速多低会造成粉尘沉积,堵塞管道。
因此必须进行全面的技术经济比较,确定适当的经济流速。
根据经验,对于一般的通风系统,其风速可按表6-10确定。
对于除尘系统,防止粉尘在管道内的沉积所需的最低风速可按表6-11确定。
通风除尘系统的阻力计算与阻力平衡通风除尘系统的阻力平衡集中风网中粉尘控制点比较多,在进行风网阻力计算时,往往选取其中的一条管路作为主路,而将其他与之并连的管路看作支路。
1.选取主路,并编管段号。
选取主路时,一般遵循以下原则:(1)路径最长,阻力最大;(2)风量最大。
图1中:主路:尘源设备A——管段①——管段②——管段③—除尘器——管段④——风机——管段⑤支路:支路1:尘源设备B——管段⑥;支路2:尘源设备C——管段⑦图1 通风除尘系统的阻力平衡为了清楚地表示风网中每一段管道,常将管道进行编号,如图1所示。
在编管段号时,管段的分界点为风网中的设备或以合流三通的总流断面为界。
如在图1中,管段①和管段⑥经过三通而汇合,则三通的总流断面N —N 就是分界面,其余三通的分界面类同。
2.支路阻力与主路阻力的平衡在图1所示的风网中,风网运行时,空气同时从设备A 、设备B 、设备C 进入风网,分别经过两个三通汇合后进入风管③中,并经风管③将含尘气流送到除尘器中进行净化,粉尘被分离后由除尘器底部的闭风器排出,而净化之后的气流则通过管道④、管段⑤排放到大气中。
支路进行阻力平衡,就是要求支路1的总阻力与主路设备A ——管段①的总阻力相等;支路2的总阻力与主路设备A ——管段①——管段②的总阻力相等。
粉尘控制工程上,支路阻力与主路阻力按下式(5-16)计算后,计算结果不大于10%,即阻力平衡:%10%100≤⨯-与支路并联的主路阻力与支路并联的主路阻力支路阻力(5-16)否则,若计算结果大于10%,即阻力不平衡。
3.进行阻力平衡的方法: (1)对支路重新进行阻力计算。
(2)在支路上安装阀门的阻力平衡法。
当支路阻力小于主路阻力时,可在支路上安装阀门,即使阀门消耗一定数量的阻力来使支路阻力与主路阻力平衡。
(3)调节支路管径进行阻力平衡(即0.225次方法)。
225.0⎪⎪⎭⎫⎝⎛=后前前后H H D D (5-20)式中 D前——阻力不平衡时支路管道的直径; D后——调到阻力平衡时支路管道的直径;H前——阻力不平衡时的支路阻力; H后——阻力平衡时支路的阻力。
工业通风除尘用旋风除尘器的选择计算1 引言旋风除尘器(简称旋风器)与其他除尘器相比,具有结构简单、造价便宜、维护管理方便以及适用面宽的特点。
旋风器适用于工业炉窑烟气除尘和工厂通风除尘;工业气力输送系统气固两相分离与物料气力烘干回收。
高性能的旋风器对于输送、破碎、卸料、包装、清扫等工业生产过程产生的含尘气体除尘效率可以达到95%~98%,对于燃煤炉窑产笺烟尘除尘效率可以达到92%~95%。
旋风器亦可以作为高浓度除尘系统的预除尘器,与其他类型高效除尘器合用。
旋风器具有可以适宜和于高温高压含尘气体除尘的特点。
旋风器的类型有切流反转式、轴流反转式、直流式等。
工厂通风除尘使用的主要是切流反转式旋风器。
2 旋风器结构2.1 单体基本结构单体基本结构参见图1,含尘气体通过进口起旋器产生旋转气流,粉尘在离心力作用下脱离气流和筒锥体边壁运动,到达壁附近的粉尘在气流的作用下进入收尘灰斗,去除了粉尘的气体汇向轴心区域由排气芯管排出。
图1 旋风器结构示意图2.2 结构改进措施旋风器在长期使用中,为了达到低阻高效性能其结构不断进行改进,改进措施主要有:(1)进气通道由切向进气改为回转通道进气,通过改变含尘气体的浓度分布、减少短路流排尘量。
回转通道在90°左右时阻力较小。
(2)把传统的单进口改为多进口,有效地改进旋转流气流偏心,同时旋风器阻力显著下降。
(3)在筒锥体上加排尘通道,防止到达壁面的粉尘二次返混。
(4)采用锥体下部装有二次分离装置(反射屏或中间小灰斗)防止收尘二次返混。
(5)排气芯管上部加装二次分离器,利用排气强旋转流进行微细粉尘的二次分离,对捕集短路粉尘极为有效。
(6)在筒锥体分离空间加装减阻件降阻,等。
2.3 组合技术处理气体量较大时,可以采用多个旋风器单体进行并联组合。
(1)多筒组合:多筒组合可以采用分支并联和环状并联方式,见图2。
组合技术的关键在于含尘气流分配的均匀性和防止气流串流。
分支并联一般采用双旋风器、四旋风器方式。
第一章通风除尘与气力输送系统的设计第一节概述在食品加工厂中,车间的通风换气、设备和物料的冷却、粉尘的清除等都需要通风除尘系统来完成。
粉状、颗粒状的物料(如奶粉、谷物等)的输送都可借助气力输送系统实现。
通风除尘和气力输送系统是食品加工厂的常用装置。
食品加工厂中粉尘使空气污染,影响人的身体健康。
灰尘还会加速设备的磨损,影响其寿命。
灰尘在车间内或排至厂房外,会污染周围的大气,影响环境卫生。
由于粉尘的这些危害性,国家规定工厂中车间内部空气的灰尘含量不得超过10mg/m3,排至室外的空气的灰尘含量不得超过150mg/m3,为了达到这个标准,必须装置有效的通风除尘设备。
图1是食品加工厂常见的通风除尘装置.主要由通风机、吸风罩、风管和除尘器等部分组成。
当通风机工作时,由于负压的作用,外界空气从设备外壳的缝隙或专门的风管引入工作室,把设备工作时产生的粉尘、热量和水汽带走,经吸风罩沿风管送入除尘器净化,净化后的空气排出室外.气力输送系统的形式与通风除尘系统相似,但其目的是输送物料,主要由接料器(供料器)、管道、卸料器、除尘器、风机等部分组成.气力输送系统除了起到输送作用外,还可以在输送过程中对物料进行清理、冷却、分级和对作业机完成除尘、降温等。
小型面粉厂气力输送工艺流程如图2。
风机气力输送具有设备简单、一次性投资低、可以一风多用等特点,与机械输送相比,气力输送的缺点主要是能耗较大,对颗粒物料易造成破碎。
通风除尘和气力输送都是利用空气的流动性能来进行空气的净化或物料的搬运的,因此,流体力学是本章的基础知识.有关流体力学的知识可参阅相关书籍资料,在此不再敷述.本章主要讨论食品加工厂通风除尘和气力输送系统的设计。
第二节通风除尘系统的设计与计算1 通风除尘系统的设计原则和计算内容通风除尘系统也叫除尘网路或风网。
通风除尘网路有单独风网和集中风网两种形式。
在确定风网形式时,当:1)吸出的含尘空气必须作单独处理;2)吸风量要求准确且需经常调节;3)需要风量较大;或设备本身自带通风机;4)附近没有其它需要吸风或可以合并吸风的设备或吸点时应采用单独风网.不符合上述任一条例的两个或两个以上的设备或吸点,应尽量采用集中风网,以发挥“一风多用”的作用.在把几台设备或吸点组合成一个集中风网时,应该遵循以下原则:1)吸出物的特性相似。