冷却塔的通风阻力计算
- 格式:doc
- 大小:117.37 KB
- 文档页数:4
自然通风冷却塔出口水温的影响因素冷却塔出口水温的影响因素(1)当保持干湿球温度、大气压力、断面风速以及蒸汽负荷的值不变时,随着循环水量增加,冷却塔进口水温逐渐下降,出口水温逐渐升高,两者的差值逐渐减小,循环水量的变化对出口水温的影响较小,而对进口水温的影响较大.(2)当保持冷却塔进口和出口水温差、干湿球温度、大气压力和循环水量以及蒸汽负荷的值不变时,随着断面风速的增大,冷却塔进口水温和出口水温均降低,但两者的差值保持恒定.(3)当保持干湿球温度、大气压力和循环水量以及断面风速的值不变时,随着凝汽器蒸汽负荷的增加,冷却塔进口水温和出口水温均会上升,且两者的差值逐渐扩大,但凝汽器蒸汽负荷的变化对出口水温的影响较小,而对进口水温的影响较大.(4)当保持冷却塔进口和出口水温差、干球温度、大气压力和循环水量、断面风速以及蒸汽负荷的值不变时,随着空气相对湿度的减小,进口水温和出口水温均会降低,但两者的差值保持不变.空气相对湿度的减小有利于降低冷却塔的出口水温.前言近年来,随着煤价不断上涨,电力生产行业的竞争越来越激烈,作为电厂热力循环重要冷端设备的冷却塔也越来越受到关注,因为冷却塔冷却性能的好坏很大程度上影响到机组的经济性以及运行的稳定和安全性.由于各种原因,人们在很长一段时间里缺乏对冷却塔节能潜力的认识,甚至忽略对冷却塔的监督和维护,导致其冷却能力下降.冷却塔出口水温的降低与电厂热效率的提高成正比.对于300MW机组,冷却塔出口水温每下降1K,凝汽器真空可提高约400~500Pa,机组热效率可提高0.2%~0.3%,标准煤耗可降低1.0~1.59g/(kW·h).因此,对影响冷却塔出口水温的各种因素及其变化规律进行研究能够及时监控和优化分析冷却水系统,可以实时对冷却塔的运行工况和性能进行评价,为冷却塔的实时运行、状态检修以及改造提供理论依据.1基于焓差法的冷却塔热力计算模型1.1麦克尔焓差法的基本原理冷却塔内热水与空气之间既有质量传递又有热量传递.德国的麦克尔引入刘易斯数,把传质与传热统一为焓变,建立了麦克尔焓差方程式,并在此基础上建立了冷却塔热力计算的基本方程:式中:βxv为容积散质系数,kg/(m3·s);V为淋水填料体积,m3;Q为冷却水流量,kg/s;cw为水的比热容,kJ/(kg·K);t1、t2分别为冷却塔进、出口水温,℃;h″t为水温t时的饱和空气比焓,kJ/kg;hθ为空气比焓,kJ/kg;dt为进、出该微元填料水的温差.引入蒸发水量系数K来表示蒸发水量带走的热量,经推导,可得:式中:ΔQ为蒸发散热量;rw为塔内水的平均汽化潜热,kJ/kg.由于rw变化不大,一般在计算中采用出口水温t2时的汽化潜热.式(1)左边为冷却塔的特性数,即淋水填料的散热特性,用Ω表示,它表征了在一定淋水填料以及塔型下冷却塔所具有的冷却能力,与填料的特性、构造、几何尺寸以及冷却水流量有关,一般由填料厂家直接给出淋水填料的散热特性:式中:A、n分别为常数;λ为气水比.式中:vin为冷却塔进口风速,m/s;Fm为淋水平均面积,m2;ρ1为进口空气密度,kg/m3;G为冷却塔进口空气体积流量,m3/s;Q为冷却水流量,kg/s.式(1)右边为冷却塔的冷却数,用N表示,它与气象条件有关,而与冷却塔的构造无关,一般采用辛普森近似积分法进行计算:式中:分别为出口水温t2、平均水温tm和进口水温t1时的饱和空气焓,kJ/kg;h1、hm、h2分别为冷却塔进口空气、平均状态空气和冷却塔出口空气的比焓,kJ/kg;Δt为水温差,K.湿空气的焓可由下式计算:式中:t为湿空气的温度,℃;pt为湿空气温度所对应的饱和蒸汽压力,kPa;Φ为相对湿度;p为大气压力,kPa.1.2冷却塔的通风量计算进入自然通风逆流式冷却塔空气的密度ρ1比较大,由于吸收了冷却水的热量而密度变小,空气变轻,塔内产生向上运动的抽力,使空气连续不断地进入塔内.进入塔内的空气流动过程中所产生的阻力与由密度差产生的抽力相等,使进口流量保持恒定,其基本方程为抽力方程阻力方程式中:vm为塔内淋水填料处平均风速,m/s;He为冷却塔有效高度,即从填料中部到塔顶部的距离,m;ξ为塔的总阻力系数,由进风口阻力系数、进风口至淋水填料下部空气分配区阻力系数、配水系统阻力系数、除水器阻力系数以及冷却塔出口阻力系数等5部分组成;ρm为塔内空气的平均密度,m3/kg.通风量是根据冷却塔的抽力和阻力相等的原则确定的,即:由式(9)可得塔内平均风速由此可得进口风量式中:D为填料1/2高度处的直径,m.塔内的风速一般取0.6~1.5m/s.从式(11)可以看出,进口风量与D2成正比,且与槡He也成正比.1.3冷却塔总阻力系数的计算传统的冷却塔一维计算方法是将冷却塔作为一个整体考虑,其总阻力系数计算公式为:式中:ξ为总的阻力系数;D1为进风口高度范围内塔的平均直径,m;h为进风口高度,m;ξf为淋水装置阻力系数;Ff为淋水面积,m2;Fo为冷却塔出口面积,m2.1.4冷却塔出口水温的迭代求解将式(3)和式(5)代入式(1),可得:满足式(13)的t2值即为冷却塔的出口水温.式(13)是一个非线性方程式,大多采用计算机求解.首先假设冷却塔出口水温t2,然后根据式(5)和式(3)分别计算出N和Ω,如果满足条件|N-Ω|≤0.01,那么所求得的t2即为冷却塔出口水温的计算值.否则,改变t2的值,继续迭代,直至满足上述条件.2研究方法在火力发电厂中,凝汽器和冷却塔都属于冷端系统(见图1),两者之间的关系非常紧密.因此,在考虑冷却塔出口水温的影响因素时,不能仅仅考虑冷却塔一侧,而应当从凝汽器和冷却塔相互影响的方面进行研究.从图1可以看出:在不考虑补水量的条件下,冷却塔内的冷却水量就是凝汽器中的冷却水量,所以凝汽器的出口和进口水温分别是冷却塔的进口和出口水温,冷却塔中冷却水的温降就是冷却水在凝汽器中的温升.2.1凝汽器的冷却水温差如果不考虑循环补水,冷却水在凝汽器中的温升就是冷却水温差.因此,在稳定工况下,凝汽器冷却水温差与冷却塔的参数和性能无关.根据式(13)可知,冷却水温差与冷却水量和机组负荷有关.式中:Dc为排汽量,t/h;hc为排汽的焓,kJ/kg;h′c为凝结水的焓,kJ/kg;Dw为冷却水量,t/h;ψ为循环倍率.2.2研究方法与对象当不考虑冷却塔进、出口水温变化的中间过程时,在水温稳定后,其最终的进、出口水温差由凝汽器侧决定,这是本文计算的一个基础.以新疆某自备电厂冷却塔为研究对象,采用焓差法定量计算和分析了影响逆流式自然通风冷却塔出口水温的各种因素.该冷却塔是自然通风逆流式冷却塔,总高为102.6m,进风口高为7.185m,喉部高为76.95m,底部直径为84.292m,淋水面积为4500m2,冷却塔塔壁为双曲线型,采用高为1m的双斜波梯形波淋水填料,其热力性能参数为:.3冷却塔性能的影响因素由第一节的分析可知,冷却塔出口水温由式(13)决定.当一座冷却塔的淋水填料和结构形式一定时,冷却塔的出口水温与冷却塔的冷却水量、冷却塔的通风量(通过填料层的速度)、气象条件以及冷却水温差有关,分别针对这4个因素对冷却塔进、出口水温的影响进行了研究.3.1冷却水量对冷却塔进、出口水温的影响当进入凝汽器的冷却水量变化后,根据式(14),在其他条件不变且水温稳定以后,冷却塔最终的进、出口水温差与冷却水量成反比.在迭代过程中,可以先适当假设一个断面风速和出口水温,通过式(14)计算进口水温,再采用焓差法进行计算,检查二者是否满足式(13).如果满足,则进行抽力与阻力计算;如果不满足,重新假设断面风速,直到抽力与阻力的数值接近为止.图2为迭代程序框图.选取新疆当地春、秋季的平均气温为计算条件:干球温度为17℃,湿球温度为11.55℃,大气压力为96.46kPa,循环水量为28942m3/h,断面风速为1.24m/s,在100%蒸汽负荷时的冷却塔进口水温为31.508℃.在此条件下,计算出的冷却塔出口水温为22.053℃,而设计冷却塔出口水温为22.04℃,两者相差0.013℃,说明该模型选取的计算条件是比较合理的.按照上述计算条件和迭代方法,保持干湿球温度、大气压力、断面风速以及凝汽器蒸汽负荷的值不变,通过不断改变冷却水量来计算和分析冷却循环水量变化对冷却塔进、出口水温的影响(见图3).从图3可知:当其他变量恒定时,随着循环水量的增加,冷却塔进口水温逐渐下降,而出口水温逐渐上升,两者的差值逐渐减小.从图3还可以看出:循环水量的变化对出口水温影响较小,对进口水温影响较大.例如,当循环水量从60%增加到120%时,进口水温下降了6.772K,而出口水温只升高了4.258K.3.2填料断面风速对冷却塔进、出口水温的影响断面风速是通过冷却塔的阻力和抽力相等的原则来确定的.当填料层断面风速变化、而凝汽器侧的参数(凝汽器蒸汽负荷和循环水量)不发生变化时,冷却塔稳定以后,进口和出口的水温差是恒定不变的.所以,在迭代过程中要保持进、出口的水温差恒定,并保证干湿球温度、大气压力和循环水量以及凝汽器蒸汽负荷的值不变.按照上述的计算条件和迭代方法,不断改变填料断面风速,分析断面风速变化对冷却塔进、出口水温的影响(见图4).从图4可知:在保持冷却塔进口和出口水温差、干湿球温度、大气压力和循环水量以及凝汽器蒸汽负荷值不变的工况下,当填料断面风速增加时,出口和进口水温均会降低,但两者的差值恒定.3.3凝汽器蒸汽负荷对冷却塔进、出口水温的影响由式(13)可知,循环冷却水的温升与进入凝汽器的蒸汽负荷成正比.综上所述,当水温稳定后,冷却塔最终的进、出口水温差与进入凝汽器的蒸汽负荷成反比.按照上述的计算条件和迭代方法,采用不断改变凝汽器蒸汽负荷的方法,计算和分析凝汽器蒸汽负荷变化对冷却塔进、出口水温的影响(见图5).从图5可知:当保持干湿球温度、大气压力和循环水量以及填料断面风速的值不变时,随着凝汽器蒸汽负荷的增加,冷却塔出口水温和进口水温均将升高,且两者的差值逐渐扩大.但是,凝汽器蒸汽负荷的变化对出口水温的影响较小,而对进口水温影响较大.例如,当蒸汽负荷从40%增加到120%时,进口水温升高了9.412K,而出口水温仅升高了4.794K.3.4相对湿度对冷却塔进、出口水温的影响当空气的相对湿度变化而凝汽器侧的参数(凝汽器蒸汽负荷和循环水量)不发生改变时,冷却塔稳定以后,进、出口的水温差是恒定不变的.所以,在迭代过程中要保持冷却塔进口和出口水温差、干球温度、大气压力、蒸汽负荷和循环水量以及填料断面风速的值恒定不变.按照上述的计算条件和迭代方法,通过不断改变相对湿度来计算和分析相对湿度变化对冷却塔进、出口水温的影响(见图6).从图6可知:当保持干球湿度、大气压力和循环水量、填料断面风速以及蒸汽负荷的值不变时,在相对湿度降低以后,冷却塔进口水温和出口水温均会下降,但两者的差值保持恒定.相对湿度的降低有利于降低冷却塔的出口水温.。
1.设备组成1.1设备原产地及制造厂家广东省广州市/斯必克(广州)冷却技术有限公司。
1.2供货明细NC玻璃钢冷却塔/NC8330F/4台SR玻璃钢冷却塔/SR-200/2台SR玻璃钢冷却塔/SR-40/2台1.3其他2.设备性能及技术参数2.1设备性能1)NC系列产品简介A、NC型横流式冷却塔系统性设计横流式冷却塔是马利公司工程师通过冷却塔多年热工测试试验,引进世界上最大的冷却塔生产商斯必克公司的先进技术和设备,对测试数据进行全面综合处理,参照美国冷却协会CTI标准和GB7190-1997等依据计算机运算得出的淋水填料的容积散质系数 xv,选择最佳的水气比,最佳截面水负荷,截面气负荷和填料的高度范围以确定填料体积,并以流体力学、空气动力学、材料学、建筑学等多种学科观点,综合设计塔的外型与结构,根据测试计算通风阻力,参考风机特性曲线和对测试数据进行优化,选择符合风量和噪音要求的风机和匹配的电机,使冷效、能耗、噪音达到一个优化的系统设计效果。
B、NC型横流式冷却塔淋水填料马利NC方形横流式冷却塔采用的MX-75型高级薄膜式复合波淋水填料, 堪称世界上薄膜式淋水填料的佼佼者,此填料片用于横流冷却塔, 由热处理PVC多层片构成,厚度0.38mm, 表面成波纹式, 相邻两层填料片形成的间隔,保证气流的通畅,经美国冷却塔协会(CTI)测试分析,其阻力特性和热力特性远远优于现有国内填料,使用寿命15年以上。
一般冷却塔产品填料均采用竖直放置,且无明显收水端。
参考右下图,一般冷却塔的做法是布水盘偏向外侧安装,A、B、C、D、E、F这6个区域内充满了填料,而当冷却塔运行起来以后,由于风机向上排风,气流由外向内流经填料,在风力的带动下,实际冷却水流过的区域是C、D、E、F、G这5个区域,A、B两区无水。
那么按照一般冷却塔的做法,用,而有水的G区却又没有填料。
马利的工程师们对这个问题进行了深入的研究,在千百次的实验之后,提出了冷却塔填料倾斜悬挂式安装的方案,在马利冷却塔当中C、D、E、F、G区充满填料,A、B两区无填料,而倾斜的角度又根据不同的塔型有十分严格的要求,这种方法有效地解决了进风面下端“无水区”问题,且填料带有明显的收水端,克服了竖直放置填料的缺点。
通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
冷却塔选型【1 】1.冷却塔的水流量 = 冷却水体系水量×(1.2~1.5);冷却塔的才能大多半为尺度工况下的出力(湿球温度28 ℃,冷水进出温度32ºC/37ºC),因为地区差别,夏日湿球温度会不合, 应依据厂家样册供给的曲线进行修改.湿球温度可查当地气候参数获得.冷却塔与四周障碍物的距离应为一个塔高.冷却塔散冷量冷吨的界说:在空气的湿球温度为27℃,将13L/min(0.78m³/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW.湿球温度每升高1℃,冷却效力约降低17%2.冷却塔冷却才能盘算:Q=72*L*(h1-h2)Q-冷却才能(Kcal/h)L-冷却塔风量,m³/hh1-冷却塔进口空气焓值h2-冷却塔出口空气焓值3.冷却塔若做自控,进出水必须都设电动阀,不然单台对应掌握时倒吸或溢水.4.冷却水泵扬程的肯定扬程为冷却水体系阻力+冷却塔积水盘至布水器的高差+布水器所需压力5.冷却塔不合类型噪音及处理办法:.7.冷却水泵扬程:扬程平日是指水泵所可以或许扬水的最高度,用H暗示.最经常应用的水泵扬程盘算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1. 个中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加快度,m/s2. 平日选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2. 按估算可大致取每100米管长的沿程损掉为5mH2O,水泵扬程盘算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降. △P2为该环中并联的各占空调未端装配的水压损掉最大的一台的水压降. L为该最晦气环路的管长 K为最晦气环路中局部阻力当量长度总和和与直管总长的比值,当最晦气环路较长时K值取0.2~0.3,最晦气环路较短时K值取0.4~0.6.8.冷却塔的选择:9.10.11.12.。
冷却塔的选型冷却塔是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。
英文名叫做Thecoolingtower。
最近几年,冷却塔高速发展,产品不断更新。
正因如此,才使玻璃钢冷却塔问世。
玻璃钢冷却塔开始和闭式,玻璃钢维护结构的冷却塔冷却塔设计气象条件大气压力:P=99.4X103kPa干球温度:e=31.5°C湿球温度:T=28C(方形和普通型为27C)冷却塔设计参数1•标准型:进塔水温37C,出塔水温32C2•中温型:进塔水温43C,出塔水温33C3•高温型:进塔水温60C,出塔水温35C4•普通型:进塔水温37C,出塔水温32C5•大型塔:进塔水温42C,出塔水温32C工业中,使热水冷却的一种设备。
水被输送到塔内,使水和空气之间进行热交换,或热、质交换,以达到降低水温的目的。
分类编辑一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。
二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。
三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。
四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。
五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。
六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。
七、按玻璃钢冷却塔的外形分为圆型玻璃钢冷却塔和方型玻璃钢冷却塔。
适用范围编辑工业生产或制冷工艺过程中产生的废热,一般要用冷却水来导走。
冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气中。
例如:火电厂内,锅炉将水加热成高温高压蒸汽,推动汽轮机做功使发电机发电,经汽轮机作功后的废汽排入冷凝器,与冷却水进行热交换凝结成水,再用水泵打回锅炉循环使用。
《机械通风冷却塔工艺设计规范》(征求意见稿)ICSGB中华人民共和国国家标准P GB/T50392-201X 机械通风冷却塔工艺设计规范Code for design of cooling tower for mechanical ventilation(征求意见稿)201X− XX − XX 发布201X − XX − XX 实施中华人民共和国住房和城乡建设部联合发布中华人民共和国国家质量监督检验检疫总局中华人民共和国国家标准机械通风冷却塔工艺设计规范Code for design of cooling towerfor mechanical ventilationGB/T50392-201X主编部门: 中国工程建设标准化协会化工分会批准部门: 中华人民共和国住房和城乡建设部实施日期: 201X年X月X 日中国计划出版社201X 北京前言本规范是根据中华人民共和国住房和城乡建设部建标[2013]169号文件的要求进行修订。
本规范修编组在总结了我国自本规范发布以来,国内循环冷却水系统机械通风冷却塔的设计、运行经验,去除了不适用的条、款,增补了塔型设计与选择的条文,新增加了冷却塔的消雾、消噪声章节,结合国内外机械通风冷却塔的先进技术和成熟的经验,在广泛征求国内有关单位和专家的意见的基础上,修订而成。
本规范的内容有7章,包括:总则,术语,一般规定,气象参数的确定,设计计算,塔型及部件设计,环境保护,另有1个附录。
本规范由住房和城乡建设部负责管理,中国工程建设标准化协会化工分会负责日常管理,由东华工程科技股份有限公司负责具体技术内容的解释。
本规范在执行过程中如发现需要修改和补充之处,请将意见和有关资料寄交东华工程科技股份有限公司(地址:安徽省合肥市望江东路70号,邮编:230024),以供今后修订时参考。
本规范主编单位、参编单位和主要起草人:主编单位:中国石油和化工勘察设计协会东华工程科技股份有限公司参编单位:中国成达工程公司中化工程沧州冷却塔技术有限公司上海理工大学江苏海鸥冷却塔股份有限公司参加单位:广州览讯科技开发有限公司主要起草人:韩玲项元红王进友章立新蒋晓明马强徐东溟包冰国刘婧楠彭昕目次1总则 (1)2术语 (2)3一般规定 (4)4气象参数的确定 (8)5设计计算 (9)5.1热力计算中常用参数计算95.2逆流式冷却塔工作特性115.3横流式冷却塔工作特性115.4热力工作点计算125.5阻力计算135.6水量计算155.7水力计算166塔型及部件设计 (19)6.1塔型196.2集水池206.3进风口206.4填料216.5配水系统226.6收水器236.7风筒236.8风机247环境保护 (25)7.1冷却塔消雾257.2冷却塔消噪声26附录A 逆流式冷却塔塔体阻力系数计算方法 (27)本规范用词说明 (32)附:条文说明 (33)Contents1 General provisions (1)2 Terms (2)3 General requirements (4)4 Determination of meteorological parameters 85 Design calculations 95.1Calculation of commonly used thermodynamic parameters 95.2 .............................................. C ounter-flow cooling tower characteristics 105.3 .................................................. Cross-flow cooling tower characteristics 115.4 ............................................................................. Design point calculation 125.5 ................................................................................. R esistance calculation 125.6 ........................................................................... Calculation of Capacity 145.7 ................................................................................. Hydraulic calculation 166 Selection of tower type and components 196.1 ................................................................................ S election of tower type 196.2 .................................................................................... Cooling water basin 206.3 ........................................................................................................ Air inlet 206.4 ................................................................................................................. F ill 216.5 .......................................................................... Water distribution system 226.6 .................................................................................................. Eliminators 236.7 ...................................................................................................... C ylinders 236.8 ................................................................................................... Fan system 247. Environmental protection7.1 .................................................... A nti-fogging measures of cooling tower 247.2 ........................................................ A nti-noise measures of cooling tower 25 AppendixA:Calculation method of Counter-flow cooling tower body resistance coefficient 27Explanation of wording in this code (32)Addition:Explanation of provisions (33)1总则1.0.1 为了经济、合理、安全地发挥机械通风冷却塔在循环冷却水系统的重要作用,使机械通风冷却塔的设计规范化、合理化,制定本规范。
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
1a m *在冷却塔中,热水流与空气流直接接触,由于温度差导致的显热传递,热水流被冷却,同时由于蒸发现象,热水流也会发生质量损失。
按空气流与水流的配置方式,冷却塔可以分为逆流冷却塔与交叉流冷却塔。
下图给出了逆流压力通风冷却塔的原理图。
环境空气被吸引向上穿过流下的水。
大多数的冷却塔都会有填充材料用来增加水与空气表面的接触面积。
一个冷却塔通常是由若干个塔细胞组成的。
这些塔细胞并联的分享了集水槽。
现阶段大多数研究者采用的是1989年Braun 提出的基于部件的冷却塔模型,其数学表达式如下所示:Q =£m (h -h ) cellaaa,w,ia,i式中,e ——冷却塔的热交换效率;am ——冷却塔内的空气质量流量,kg /s ; ah ——冷却塔内进口空气的焓值;kJ/kg ;a ,ih ——冷却塔内进口水表面饱和空气焓值kJ/kg a ,w ,iQ ——冷却塔单元散热量。
cell当Lewis 数为1时,对于逆流式冷却塔1-exp(-Ntu(1-m *))1-m *exp(-Ntu(1-m *))而叉流式冷却塔:(1-exp(-m *(1-exp(-Ntu ))))<a,111崗Water上述两式中:mCm *=a_— mC w ,ipw 其中:NTU ——传热单元数;m *——冷却塔空气和冷却水的热容比率; C ——平均饱和空气定压比热容,kJ/(kg ・K);m ——进口水流量; w ,ihD ——质量传递系数;A ——每塔单元中水滴表面积的交换量; vV ——所有塔单元的交换体积;cell饱和比热C 是由水的进出口状态和焓值确定的:w ,o式中h ——冷却塔进口处水表面饱和空气焓值,kJ/kg ;S ,w ,ih ——冷却塔的出口处水表面饱和空气焓值,kJ/kg ;S ,w ,o——冷却塔的进水温度,K ;w ,iT ——冷却塔出水温度,K 。
w ,o从整体的能量平衡来看,冷却塔的出水温度可以定义为m C (T -T )-Q 丁 ~w ,i p ,~w~w ,i ref cell +/ m C refw ,opw式中:m .——冷却塔进水的质量流量kg/s ;w ,im——冷却塔出水的质量流量kg/s ; w ,oC ——水的定压比热容;pwT ——水的参考温度(0°C)ref大多数的分析都忽略了水的损失量并假设出水流量等于进水流量。
冷却塔选型1.冷却水流量计算:L=(Q1+Q2)/(Δt*1.163)*1.1L—冷却水流量(m³/h)Q1—乘以同时使用系数后的总冷负荷,KWQ2—机组中压缩机耗电量,KWΔt—冷却水进出水温差,℃,一般取4.5-5冷却塔的水流量 = 冷却水系统水量×(1.2~1.5);冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32ºC/37ºC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得.冷却塔与周围障碍物的距离应为一个塔高。
冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m³/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。
湿球温度每升高1℃,冷却效率约下降17%2.冷却塔冷却能力计算:Q=72*L*(h1-h2)Q-冷却能力(Kcal/h)L-冷却塔风量,m³/hh1-冷却塔入口空气焓值h2-冷却塔出口空气焓值3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。
4.冷却水泵扬程的确定扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力5.冷却塔不同类型噪音及处理方法:.6.冷却水管径选择7.冷却水泵扬程:扬程通常是指水泵所能够扬水的最高度,用H表示。
最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。
其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。
通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。
按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷水机组蒸发器的水压降。
冷却塔计算公式范文冷却塔是一种用于将热量从流体中转移给空气的设备。
其主要目的是通过水蒸发来散热,从而降低流体的温度。
冷却塔的计算公式可以分为两个方面:空气侧和水侧。
空气侧计算公式:1.空气质量流率计算:空气质量流率(G)是冷却塔中空气的质量流动率,可以通过以下公式计算:G=ρxV其中,G为空气质量流率,ρ为空气密度,V为空气体积流率。
2.空气湿度计算:空气湿度(W)是空气中水分的含量,可以通过以下公式计算:W=(Wa/(Wa+Ws))x100其中,W为空气湿度,Wa为空气中气态水的质量含量,Ws为空气中水蒸气的质量含量。
3.空气温度计算:冷却塔的效果主要通过降低空气温度来实现,可以通过以下公式计算:T=Tǿ-(W/C)其中,T为冷却塔出口空气温度,Tǿ为冷却塔入口空气温度,W为空气内的水分含量,C为空气的比热容。
水侧计算公式:1.冷却塔效能计算:冷却塔效能指的是冷却塔总热量交换与冷却塔进口冷水端热量交换的比值,可以通过以下公式计算:E = (Tin - Tout) / (Tin - Tǿ)其中,E为冷却塔效能,Tin为进口水温,Tout为出口水温,Tǿ为冷却塔入口空气温度。
2.冷却塔冷却水量计算:冷却塔冷却水量(Q)是冷却塔冷却水的质量流动率,可以通过以下公式计算:Q=mxCpxΔT其中,Q为冷却塔冷却水量,m为冷却水质量流率,Cp为冷却水的比热容,ΔT为冷却水的温度差。
这些公式可以帮助工程师和设计师计算冷却塔的性能和参数,从而优化设备的设计和运行。
需要注意的是,上述公式只是一般性的计算公式,实际应用中可能还需要考虑一些其他因素,如湿球温度、各个传热过程的换热系数等。
因此,在具体应用中还需要根据实际情况进行调整和修正。
冷却塔的通风阻力计算
在设计新的冷却塔时,首先要选定冷却塔的型式,根据给定的工作条件决定冷却塔的基
本尺寸和结构,其中包括淋水装置的横截面面积和填料高度、冷却塔的进风口、导风装置、
收水器、配水器等,并选定风机的型号和风量、风压,这样就需要对冷却塔内气流通风阻力
作比较准确的计算。
1. 冷却塔的通风阻力构成
冷却塔的通风阻力,即空气流动在冷却塔内的
压力损失,为沿程摩阻和局部阻力之和。通常把冷
却塔的全部通风阻力从冷却塔的进口到风机出口分
为10个部分进行计算,如图所示:
1p——进风口的阻力;
2p——导风装置的阻力;
3p——空气流转弯的阻力;
4p——淋水装置进口处突然收缩的阻力;
5p——空气流过淋水装置的阻力(摩擦阻力和局部阻力);
6p——淋水装置出口处突然膨胀的阻力;
7p——配水装置的阻力;
8p——收水器的阻力;
9p——风机进口的阻力;
10p——风机风筒出口的阻力。
冷却塔的通风总阻力 : izp (1)
2.冷却塔的局部通风阻力计算
如前所述,冷却塔总的局部阻力包括进风口、导流设施、淋水装置、配水系统、收水器
以及风筒阻力(包括风机进出口)、气流的收缩、扩大、转弯等部分。各局部阻力可按下述公
式来计算:
gvPiii2
2
i
(毫米水柱) (2)
式中: i ——各局部阻力系数;
iv——相应部位的空气流速(米/秒);
i——相应部位的空气比重(公斤/米3);
g
——重力加速度。
而冷却塔的总局部阻力可写成:gvPhiii22i(毫米水柱)
由于气流密度在冷却塔内变化很小,所以在球求解时,各处的密度值均取冷却塔进、出
口的几何平均值。
气流通过冷却塔各种部件处的速度,可先根据风机特性曲线及热力计算时确定的气水比
选择风量G(公斤/时)后,由下式确定:
10...3,2,1
10...3,2,1
3600F
G
v
冷却塔各部件处局部阻力系数3,2,1值的确定:
(1)进风口 55.01
(2)导风装置式中:Lq25.01.02
q
——淋水密度(米3/米2·小时);
L
——导风装置长度(米)。
(3)进入淋水装置处气流转弯:5.03
(4)淋水装置进口处突然收缩: cpFF0415.0
cpF——淋水装置的截面(m2)。
(5)淋水装置 ZKqe15
式中:e——单位高度淋水装置的阻力系数;
K——系数;
Z
——淋水装置高度(m)。
淋水装置的阻力亦可以从试验资料直接查得,若需改变形水装置的尺度时,其阻力降的
近似值计算可参阅资料。
(6)淋水装置出口突然膨胀2061cpFF
(7)配水装置323713.15.0FFFFcpcp
式中:3F——配水装置中气流通过的有效截面积(米2)
cp
F
——塔壁内的横截面积(米2)。
(8)收水器式中:22228125.0FFFFcpcp
式中:2F——收水器中气流通过的有效截面积(米2);
cp
F
——塔壁内的横截面积(米2)。
(9)风机进口
9可根据下式确定:cpFF4091
0——根据0
Dl
查表取值;
4
F
——收缩后的截面积(㎡);
cp
F
——收缩前的截面积(㎡);
2
sin8
124
cp
F
F
式中:—摩擦系数;可采用0.03。
(10)风机凤筒出口(扩散筒) p110
式中: —-风筒速度分布不均匀而影响修正系数,根据0/lD ;
p——根据0Dl查表取值。
由上述计算,我们得到冷却塔的总通风阻力,然后再确认它是否与风机的额定风量下
所能提供的风压相适应。如果相适应且又能满足热力性能要求,则该冷却塔的设计计算完成。
若不适应就要选用另外的风机或改变冷却塔部件的结构尺寸,重新计算空气的流动阻力,经
过多次反复直到既满足风机的风压要求又满足热力性能时为止。