八年级(下)期末数学试卷1+参考答案与试题解析(人教版)
- 格式:doc
- 大小:228.50 KB
- 文档页数:18
人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。
人教版八年级下册期末考试数 学 试 卷一、单项选择题(将题中唯一正确答案的序号填在题后的括号内.每小题2分,共12分) 1.要使25x +有意义,x 必须满足( ) A. 52x ≥- B. 52x ≤- C. x 为任何实数 D. x 为非负数 2.下列二次根式①12,②22,③23,④27,能与3合并的是( ) A. ①和② B. ②和③ C. ①和④ D. ③和④ 3.如果p(2,m),A (1,1),B (4,0)三点在同一条直线,那么m 的值为( )A. 2B. -23C. 23D. 14.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A. B. C. D. 5.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④ 6.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()+的值为( )A. 13B. 19C. 25D. 169二、填空题(每小题3分,共24分)7.化简:22738⨯= . 8.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的表示的数为_____.9.如图,函数2y x =和4y ax +=的图象交于点()3A m ,,则不等式24x ax +<的解集是_____.10.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).11.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.12.一次函数y kx b =+(k ,b 为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.13.如图,菱形ABCD 中,AE 垂直平分BC ,垂足为E ,2AB cm =.那么菱形ABCD 的对角线BD 的长是_____cm .14.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得60B ∠︒=,接着活动学具成为图2所示正方形,并测得正方形的对角线40AC cm =,则图1中对角线AC 的长为_____cm .三、解答题(每题5分,共20分)15.化简:1(312248)233-+÷. 16.计算:2(21)(21)(32)+-+-.17.已知23x =-,23y +=,求代数式22x y -的值.18.已知,正比例函数1y k x=的图象与一次函数23y k x -=的图象交于点6(3)P -,. (1)求1k ,2k 的值; (2)求一次函数23y k x -=的图象与3y =,3x =围成的三角形的面积.四、解答题(每小题7分,共28分)19.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.操作发现:小颖在图 1 中画出△ABC ,其顶点 A ,B ,C 都是格点,同时构造正方形 BDEF , 使它的顶点都在格点上,且它的边 DE ,EF 分别经过点 C ,A ,她借助此图求出了△ABC 的面积.(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB = ,BC = ,AC= ;△ABC 的面积为 . 解决问题:(2)已知△ABC 中,AB 10,BC =2 5AC =5 2,请你根据小颖的思路,在图 2的正方形网格中画出△ABC,并直接写出△ABC 的面积.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.21.如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.22.如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.证=.明:FD AB五、解答题(每小题8分,共16分)23.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个; (2)求出甲厂印刷费y 甲与证书数量x 的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.24. 如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D,AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.六、解答题(每小题10分,共20分)25.如图,直线6y kx +=分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(80)-,,点A 的坐标为(03),.(1)求k 的值;(2)若点()P x y ,是第二象限内的直线上的一个动点,当点P 运动过程中,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,OPA ∆的面积为278,并说明理由.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么?运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.答案与解析一、单项选择题(将题中唯一正确答案的序号填在题后的括号内.每小题2分,共12分)1.x必须满足()A.52x≥- B.52x≤- C. x为任何实数 D. x为非负数【答案】A【解析】【分析】根据二次根式有意义的条件可得2x+5≥0,再解不等式即可.2x+5≥0,解得:52x≥-.故选A.【点睛】本题考查二次根式有意义条件,关键是掌握二次根式中的被开方数是非负数.2.合并的是()A. ①和②B. ②和③C. ①和④D. ③和④【答案】C【解析】【分析】先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.,是同类二次根式,故选:C.【点睛】本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.3.如果p(2,m),A(1,1),B(4,0)三点在同一条直线,那么m的值为()A. 2B. -23C.23D. 1【答案】C【解析】【分析】先设直线的解析式为y=kx+b (k≠0),再把A (1,1),B (4,0)代入求出k 的值,进而得出直线AB 的解析式,把点P (2,m )代入求出m 的值即可.【详解】解:设直线的解析式为y=kx+b (k≠0),∵A(1,1),B (4,0),∴104k b k b =+⎧⎨=+⎩,解得1343k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为y=13-x+43, ∵P(2,m )在直线上,∴m=(13-)×2+43=23. 故选C .“点睛”本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A. B. C. D.【答案】D【解析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D5.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】 分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF 是平行四边形,故①错误;添加条件②∠ADE =∠CBF .∵ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠DAC =∠BCA ,∴△ADE ≌△CBF ,∴DE =BF ,∠DEA =∠BFC ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴DEBF 是平行四边形,故②正确;添加条件③AF =CE .易得AD =BC ,∠DAC =∠BCA ,∴△ADF ≌△CBE ,∴DF =BE ,∠DFE =∠BEF ,∴DF ∥BE ,∴DEBF 是平行四边形,故③正确;添加条件④∠AEB =∠CFD .∵ABCD 是平行四边形,DC =AB ,DC ∥AB ,∴∠DCF =∠BAE .∵∠AEB =∠CFD ,∴△ABE ≌△CDF ,∴DF =BE .∵∠AEB =∠CFD ,∴∠DFE =∠BEF ,∴DF∥BE ,∴DEBF 是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D .点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.6.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()+的值为( )A. 13B. 19C. 25D. 169【答案】C【解析】 试题分析:根据题意得:222c a b =+=13,4×12ab=13﹣1=12,即2ab=12,则2()a b +=222a ab b ++=13+12=25,故选C .考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.二、填空题(每小题3分,共24分)7.化简:22738⨯= . 【答案】32. 【解析】试题分析:原式=227933842⨯==. 考点:二次根式的乘除法.8.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的表示的数为_____.101【解析】 【分析】首先根据勾股定理计算出AC 的长,进而得到AM 的长,再根据A 点表示1-,可得M 点表示的数.【详解】解:由勾股定理得:22223110AC AB CB =++=则10AM =, A Q 点表示1-,M ∴101,101.【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.9.如图,函数2y x =和4y ax +=的图象交于点()3A m ,,则不等式24x ax +<的解集是_____.【答案】3x <【解析】【分析】观察图象,写出直线2y x =在直线4y ax =+的下方所对应的自变量的范围即可.【详解】解:观察图象得:当3x <时,24x ax <+,即不等式24x ax <+的解集为3x <.故答案为:3x <.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的解集.10.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.11.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.【答案】10米【解析】【分析】根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果.【详解】解:如图,设大树高为AB=10米,小树高为CD=4米,过C 点作CE ⊥AB 于E ,则EBDC 是矩形,连接AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6米,在Rt △AEC 中,AC=22AE EC +=10米故答案为10.【点睛】本题考查勾股定理的应用,即222a b c +=.12.一次函数y kx b =+(k ,b为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.【答案】x =3【解析】【分析】直接根据图象找到y =kx +b =4的自变量的值即可.【详解】观察图象知道一次函数y =kx +b (k 、b 为常数,且k≠0)的图象经过点(3,4),所以关于x 的方程kx +b =4的解为x =3,故答案为x =3.【点睛】本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键. 13.如图,菱形ABCD 中,AE 垂直平分BC ,垂足为E ,2AB cm =.那么菱形ABCD 的对角线BD 的长是_____cm .【答案】23 【解析】 【分析】 由AE 垂直平分BC 可得AC AB =,再由菱形的性质得出OA ,根据勾股定理求出OB ,即可得出BD .【详解】解:Q AE 垂直平分BC ,AB =2cm ,∴AB AC ==2cm ,在菱形ABCD 中,12OA AC =,12OB BD =,AC BD ⊥, 1OA ∴=, 22213OB ∴=-=,223BD OB ∴==;故答案为:23.【点睛】本题考查了垂直平分线的性质、菱形的性质、勾股定理的运用;熟练掌握菱形的性质,运用勾股定理求出OB 是解决问题的关键.14.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得60B ∠︒=,接着活动学具成为图2所示正方形,并测得正方形的对角线40AC cm =,则图1中对角线AC 的长为_____cm .【答案】202【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明ABC ∆是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .在图2中,Q 四边形ABCD 是正方形,AB BC ∴=,90B ∠=︒,∵40AC cm =,202AB BC ∴==cm ,在图1中,四边形ABCD 是菱形,BA BC =, 60B ∠=︒Q ,ABC ∆∴是等边三角形,202AC BC ∴==cm , 故答案为:202 【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(每题5分,共20分)15.化简:1(312248)233÷. 【答案】143. 【解析】试题分析:先进行二次根式的化简,然后进行二次根式的除法运算. 试题解析:原式=(3333÷3 =3﹣13+2 =143.16.计算:21)2)+.【答案】8-【解析】【分析】首先利用平方差公式和完全平方公式计算,然后合并同类二次根式即可.【详解】解:原式=21(34)-+-=17+-=8-【点睛】本题考查了二次根式的混合运算,正确理解平方差公式和完全平方公式的结构是关键.17.已知2x =,2y +=22x y -的值.【答案】-【解析】【分析】先将22x y -分解因式,然后将2x =-2y =代入求值即可.【详解】解:∵22()()x y x y x y -=+-将2x =2y +=原式(22(22=+⨯4(=⨯-=-【点睛】本题考查了因式分解和二次根式混合运算,熟练掌握因式分解和运算法则是解题的关键.18.已知,正比例函数1y k x =的图象与一次函数23y k x -=的图象交于点6(3)P -,. (1)求1k ,2k 的值;(2)求一次函数23y k x -=的图象与3y =,3x =围成的三角形的面积.【答案】(1)12k =-,21k =-;(2)40.5【解析】【分析】(1)把交点P 的坐标代入两个函数解析式计算即可得解;(2)设直线3y =与3x =交于点C ,则(3,3)C ,一次函数3y x =--与3x =,3y =分别交于点A 、B ,求出A 、B 两点的坐标,再根据三角形的面积公式列式计算即可.【详解】解:(1)Q 正比例函数1y k x =的图象与一次函数23y k x =-的图象交于点(3,6)P -, 136k ∴=-,2336k -=-,解得12k =-,21k =-;(2)如图,设直线3y =与3x =交于点C ,则(3,3)C .一次函数的解析式为3y x =--.设直线3y x =--与3x =,3y =分别交于点A 、B ,当3x =时,336y =--=-,(3,6)A ∴-.当3y =时,33x =--,解得6x =-,(6,3)B ∴-. 11·9940.522ABC S BC AC ∆∴==⨯⨯=.【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.四、解答题(每小题7分,共28分)19.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.操作发现:小颖在图 1 中画出△ABC ,其顶点 A ,B ,C 都是格点,同时构造正方形 BDEF , 使它的顶点都在格点上,且它的边 DE ,EF 分别经过点 C ,A ,她借助此图求出了△ABC 的面积.(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB = ,BC = ,AC= ;△ABC 的面积为 . 解决问题:(2)已知△ABC 中,AB 10,BC =2 5AC =5 2,请你根据小颖的思路,在图 2的正方形网格中画出△ABC ,并直接写出△ABC 的面积.【答案】(1)1317,10,2;(2)图见解析,5 【解析】【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【详解】解:(1)AB 223+4=5,BC 221+417,AC 221+310, △ABC 的面积为:4×4﹣12×3×4-12×1×4﹣12×3×1= 132, 故答案为5; 1710132;(2)△ABC 的面积:7×2﹣12×3×1﹣12×4×2﹣12×7×1=5.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.【答案】(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】【分析】(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1)5162748291712421a⨯+⨯+⨯+⨯+⨯==++++,将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击的中位数787.52b +==, ∵乙射击的次数是10次,∴2222222(37)(47)(67)2(77)3(87)(97)(107)c ⎡⎤=-+-+-+⨯-+⨯-+-+-⎣⎦=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.21.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.【答案】(1)(0,3);(2)112y x =-. 【解析】【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222(13)OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.22.如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F .证明:FD AB =.【答案】见解析【解析】【分析】由在平行四边形ABCD 中,E 是AD 边上的中点,易证得()ABE DFE AAS ∆≅∆,从而证得FD AB =.【详解】证明:Q 四边形ABCD 是平行四边形,//AB CD ∴,则AB ∥CF ,ABE F ∴∠=∠,E Q 是AD 边上的中点,AE DE ∴=,在ABE ∆和DFE ∆中,ABE F AEB DEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE DFE AAS ∴∆≅∆,FD AB ∴=.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.五、解答题(每小题8分,共16分)23.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个; (2)求出甲厂的印刷费y 甲与证书数量x 的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.【答案】(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元.【解析】【分析】(1)根据纵轴图象判断即可,用2到6千个时费用除以证件个数计算即可得解;(2)设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,利用待定系数法解答即可;(3)用待定系数法求出乙厂x >2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.【详解】解:(1)(1)由图可知,甲厂的制版费为1千元; 当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;故答案为1;1.5;(2)解:设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,可得: 146b k b =⎧⎨=+⎩,解得: 0.51k b =⎧⎨=⎩, 所以甲厂的印刷费y 甲与证书数量x 的函数关系式为:y=0.5x+1;(3)解:设乙厂x >2时的函数解析式为y=k 2x+b 2 ,则 22222364k b k b +=⎧⎨+=⎩,解得 220.252.5k b =⎧⎨=⎩, ∴y=0.25x+2.5,x=8时,y=0.25×8+2.5=4.5千元,甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元, 印制8千个的费用为0.5×8+1=4+1=5千元, 5﹣4.5=0.5千元=500元,所以,选择乙厂节省费用,节省费用500元.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.24. 如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D,AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.【答案】(1)证明见试题解析;(2)4.【解析】【详解】试题分析:(1)由AE=DF ,∠A=∠D ,AB=DC ,易证得△AEC ≌△DFB ,即可得BF=EC ,∠ACE=∠DBF ,且EC ∥BF ,即可判定四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE=CE ,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC ,∴AC=DB ,在△AEC 和△DFB 中{AC DBA D AE DF=∠=∠=,∴△AEC ≌△DFB (SAS ),∴BF=EC ,∠ACE=∠DBF ,∴EC ∥BF ,∴四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE=CE ,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4时,四边形BFCE 是菱形,故答案为4.【考点】平行四边形的判定;菱形的判定.六、解答题(每小题10分,共20分)25.如图,直线6y kx +=分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(80)-,,点A 的坐标为(03),.(1)求k 的值;(2)若点()P x y ,是第二象限内的直线上的一个动点,当点P 运动过程中,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)34;(2)3(80)2=--<<S x x ;(3)P 点坐标为969(,)416-时,OPA ∆的面积为278,理由见解析【解析】【分析】 (1)把E 的坐标为(−8,0)代入y=kx +6中即可求出k 的值;(2)如图,OA 的长度可以根据A 的坐标求出,OA 作为△OP A 的底,P 点横坐标的绝对值作为高的长度,那么根据三角形的面积公式就可以求出△OP A 的面积S 与x 的函数关系式,自变量x 的取值范围可以利用点P (x ,y )是第二象限内的直线上的一个动点来确定;(3)可以利用(2)的结果求出P 的横坐标,然后就可以求出P 的纵坐标.【详解】解:(1)Q 直线6y kx =+分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(8,0)-, 086k ∴=-+,34k ∴=; (2)如图,过P 作PH OA ⊥于H ,Q 点3(,6)4P x x +是第二象限内的直线上的一个动点,则80x -<<, PH x x ∴==-,∵点A 的坐标为(0,3),∴OA =3,∴1133()(80)222=⋅⋅=⨯⨯-=--<<S OA PH x x x ; (3)当P 点坐标为969(,)416-时,OPA ∆的面积为278,理由如下: 当278S =时,即32728-=x , 解得:94x =-, 6916y ∴=. P ∴坐标为9(4-,69)16. 【点睛】此题把一次函数与三角形的面积相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.解答此题的关键是根据一次函数的特点,分别求出已知各点的坐标再计算.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么?运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.【答案】(1)见解析;(2)GE=BE+GD 成立,理由见解析;(3)685【解析】【分析】 (1)利用已知条件,可证出△BCE ≌△DCF (SAS ),即可得到CE=CF ;(2)借助(1)的结论得出∠BCE =∠DCF ,再通过角的计算得出∠GCF =∠GCE ,由SAS 可得△ECG ≌△FCG ,则EG=GF ,从而得出GE=DF+GD=BE+GD ;(3)过C 作CG ⊥AD ,交AD 延长线于G ,先证四边形ABCG 是正方形(有一组邻边相等的矩形是正方形),再设DE =x ,利用(1)、(2)的结论,在Rt △AED 中利用勾股定理构造方程即可求出DE .【详解】(1)证明:如图①,在正方形ABCD 中,BC=CD ,∠B =∠ADC =90°,∴∠CDF=90°,即∠B =∠CDF =90°,在△BCE 和△DCF 中,BC DC B CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),∴CE=CF ;(2)解:如图①,GE=BE+GD 成立,理由如下:由(1)得△BCE ≌△DCF ,∴∠BCE=∠DCF ,∴∠ECD +∠ECB=∠ECD +∠FCD ,即∠ECF =∠BCD =90°,又∵∠GCE =45°,∴∠GCF =∠ECF −∠ECG =45°,则∠GCF=∠GCE ,在△GEC 和△GFC 中,CE CF GCE GCF GC GC =⎧⎪∠=∠⎨⎪=⎩,∴△GEC ≌△GFC (SAS ),∴EG=GF ,∴GE=DF+GD=BE+GD ;(3)解:如图②,过C 作CG ⊥AD 于G ,∴∠CGA=90°,在四边形ABCD 中,AD ∥BC ,∠A =∠B =90°,∴四边形ABCG 为矩形,又∵AB=BC ,∴四边形ABCG 为正方形,∴AG =BC=AB =16,∵∠DCE =45°,由(1)和(2)的结论可得:ED=BE+DG ,设DE=x ,∵4BE =,∴AE =12,DG=x −4,∴AD =AG −DG =20−x在Rt △AED 中,由勾股定理得:DE 2=AD 2+AE 2,即x 2=(20−x )2+122 解得:685=x , 即685=DE . 【点睛】本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.。
2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟,一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+12.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°4.在下列各式中,化简正确的是()A.√53=3√15B.√12=±12√2C.√a4b=a2√b D.√x3−x2=−x√x−15.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表:周作业时量/小时 4 6 8 10 12 人数 2 23 21 3 1 则这次调查中的众数、中位数是()A.6,8 B.6,7 C.8,7 D.8,86.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.1009.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥211.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.1212.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为cm.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 8016.观察计算结果:①3=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103=17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.知识竞赛演讲比赛版面创作项目班次甲85 91 8887乙90 8422.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长23.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.24.在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米/时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.25.如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD 与BC相交于点E,已知OA=8,AB=4(1)求证:△OBE是等腰三角形;(2)求E点的坐标;(3)坐标平面内是否存在一点F,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.26.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+1【分析】根据二次根式中的被开方数是非负数进行分析即可.【解析】A、当x=1时,√x2−5无意义,故此选项错误;B、当x=1时,√−x−5无意义,故此选项错误;C、当x<0时,√x无意义,故此选项错误;D、无论x取什么值,√x2+1都有意义,故此选项正确;故选:D.2.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象不经过哪个象限.【解析】∵一次函数y=7x﹣6,k=7,b=﹣6,∴该函数经过第一、三、四象限,不经过第二象限,故选:B.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°【分析】直接利用菱形的性质得出DC∥AB,∠DAC=∠1,进而结合平行四边形的性质得出答案.【解析】∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=12∠DAB=25°.4.在下列各式中,化简正确的是( ) A .√53=3√15 B .√12=±12√2C .√a 4b =a 2√bD .√x 3−x 2=−x √x −1【分析】根据二次根式的性质求出每个式子的值,再根据求出的结果进行判断即可. 【解析】A 、结果是13√15,故本选项错误;B 、结果是12√2,故本选项错误;C 、√a 4b =a 2√b ,故本选项正确;D 、当x ≥1时,√x 3−x 2=√x 2(x −1)=|x |√x −1=x √x −1,故本选项错误; 故选:C .5.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表: 周作业时量/小时4 6 8 10 12 人数2232131则这次调查中的众数、中位数是( ) A .6,8B .6,7C .8,7D .8,8【分析】根据众数、中位数的定义求解即可.【解析】由统计表可知,学生平均每周课后作业时量为6小时的有23人,人数最多,故众数是6; 因表格中数据是按从小到大的顺序排列的,一共50个人,中位数为第25位和第26位的平均数,它们分别是6,8,故中位数是6+82=7.故选:B .6.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是( ) A .甲B .乙C .丙D .丁【分析】平均数相同,比较方差,谁的方差最小,谁发挥的就最稳定. 【解析】∵四个人的平均成绩都是10.3秒,而0.019<0.020<0.021<0.022, ∴乙发挥最稳定,7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【分析】根据平行四边形、菱形、矩形、正方形的判定分别进行分析即可.【解析】A、一组对边平行且相等的四边形是平行四边形,说法正确;B、四条边都相等的四边形是菱形,说法正确;C、对角线互相垂直的平行四边形是正方形,说法错误;D、四个角都相等的四边形是矩形,说法正确;故选:C.8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.100【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解析】∵在Rt△ABC中,AC2+AB2=BC2,又由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∴S3=S1+S2=36+64=100.故选:D.9.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC【分析】根据同角的余角相等判断A;根据题意判断B;根据等腰三角形的性质判断C;根据三角形的外角性质判断D.【解析】∵∠C=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵AD=CD,∴∠A=∠ACD,∴∠B=∠BCD,A选项结论正确,不符合题意;BC与BD不一定相等,B选项结论错误,符合题意;∵∠B=∠BCD,∴BD=CD,∵AD=CD,∴AD=BD,C选项结论正确,不符合题意;∵∠A=∠ACD,∴∠BDC=∠A+∠ACD=2∠ACD,∴∠ACD=12∠BDC,D选项结论正确,不符合题意;故选:B.10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥2【分析】关于x的不等式kx+b≤−12x+52的解集,直线y=kx+b的图象在y=−12x+52的图象的下边的部分,对应的自变量x的取值范围.【解析】把A(m,2)代入y=−12x+52,得2=−12m+52.解得m=1.则A(1,2).根据图象可得关于x的不等式kx+b≤−12x+52的解集是x≤1.故选:C.11.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.12【分析】首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.【解析】如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=40x千米,BB′=20x千米,∵BC=500km,AB=300km,∴AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.故选:B.12.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S △DOP求得答案.【解析】连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC=√AB2+BC2=10,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式y =﹣x+2(答案不唯一).【分析】设该一次函数的解析式为y=kx+b(k<0),再把(﹣1,3)代入即可得出k+b的值,写出符合条件的函数解析式即可.【解析】该一次函数的解析式为y=kx+b(k<0),∵一次函数的图象经过点(﹣1,3),∴﹣k+b=3,∴当k=﹣1时,b=2,∴符合条件的函数关系式可以是:y=﹣x+2(答案不唯一).14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为(2+2√2)cm.【分析】由等腰直角三角形的性质求出斜边长和直角边长,即可得出答案.【解析】∵等腰直角三角形斜边上的高为1cm,也是斜边上的中线,∴等腰直角三角形的斜边长=2cm,∴等腰直角三角形的直角边长=√22×2=√2(cm),∴这个等腰直角三角形的周长为2+2√2(cm),故答案为:(2+2√2).15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么李老师 (填“李老师”或“王老师”)将被录用.测试项目测试成绩 李老师王老师 笔试90 95 面试 85 80【分析】利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【解析】李老师总成绩为:90×25+85×35=87,王老师的成绩为:95×25+80×35=86, ∵87>86,∴李老师成绩较好,故答案为:李老师.16.观察计算结果:①√13=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103= 55【分析】根据前四个式子得到规律,根据规律计算得到答案.【解析】√13=1;√13+23=3=1+2;√13+23+33=6=1+2+3;√13+23+33+43=10=1+2+3+4;则√13+23+33+⋯+103=1+2+3+4+5+6+7+8+9+10=55,故答案为:55.17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 1或73 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【分析】由已知以点P ,Q ,E ,D 为顶点的四边形是平行四边形有两种情况,(1)当Q 运动到E 和B 之间,(2)当Q 运动到E 和C 之间,根据平行四边形的判定,由AD ∥BC ,所以当PD =QE 时为平行四边形.根据此设运动时间为t ,列出关于t 的方程求解.【解析】由已知梯形,当Q 运动到E 和B 之间,设运动时间为t ,则得:2t −82=3﹣t ,解得:t =73,当Q 运动到E 和C 之间,设运动时间为t ,则得:82−2t =3﹣t , 解得:t =1,故当运动时间t 为1或73秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 故答案为:1或73. 18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 (√2)n .【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n 个等腰直角三角形的斜边长.【解析】第一个斜边AB =√2,第二个斜边A 1B 1=(√2)2,所以第n 个等腰直角三角形的斜边长为:(√2)n ,故答案为:(√2)n .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.【分析】(1)根据算术平方根、零指数幂、负整数指数幂和绝对值可以解答本题;(2)根据二次根式的乘法和完全平方公式可以解答本题.【解析】(1)√12−(π+√2)0+(12)﹣1+|1−√3| =2√3−1+2+√3−1=3√3;(2)8√12−√6×2√3+(√2+1)2 =4√2−6√2+2+2√2+1=3.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?【分析】连接AC ,在Rt △ACD 中利用勾股定理计算出AC 长,再利用勾股定理逆定理证明∠ACB =90°,再利用S △ACD ﹣S △ABC 可得空地面积,然后再计算花费即可.【解析】连接AC ,在Rt △ABC 中,AB =3米,BC =4米,∵AC 2=AB 2+BC 2=32+42=25,∴AC =5,∵AC 2+AD 2=52+122=169,CD 2=132=169,∴AC 2+AD 2=CD 2,∴∠DAC =90°,该区域面积=S △ACD ﹣S △ABC =30﹣6=24(平方米),铺满这块空地共需花费=24×500=12000(元).答:用该盆景铺满这块空地共需花费12000元.21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛 演讲比赛 版面创作甲85 91 88 乙 90 84 87【分析】(1)根据加权平均数的计算公式列出算式,再进行计算即可得出答案.(2)将甲、乙两人的总成绩按比例求出最后成绩,再进行比较,即可得出结果.【解析】(1)甲班的平均成绩是:13(85+91+88)=88(分), 乙班的平均成绩是:13(90+84+87)=87(分), ∵87<88,∴甲班将获胜.(2)甲班的平均成绩是85×5+91×3+88×25+3+2=87.4(分), 乙班的平均成绩是90×5+84×3+87×25+3+2=87.6(分),∵87.6>87.4,∴乙班将获胜.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理解答即可.【解答】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;解:(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠EBD=30°.由(1)知,平行四边形BFDE是菱形,则EF⊥BD,BO=OD=6.∴EO=12BE.由勾股定理得到:BE 2=62+EO 2,即4EO 2=62+EO 2.解得:EO =2√3.所以EF =4√3.23.如图,在平面直角坐标系中,过点B (4,0)的直线AB 与直线OA 相交于点A (3,1),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式;(2)直线AB 交y 轴于点C ,求△OAC 的面积;(3)当△OAC 的面积是△OMC 面积的3倍时,求出这时点M 的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OAC 的面积是△OMC 面积的3倍时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解析】(1)设直线AB 的解析式是y =kx +b ,根据题意得:{4k +b =03k +b =1, 解得:{k =−1b =4, 则直线的解析式是:y =﹣x +4;(2)在y =﹣x +4中,令x =0,解得:y =4,S △OAC =12×4×3=6;(3)当M 在线段OA 时,设OA 的解析式是y =mx ,把A (3,1)代入得:3m =1,解得:m =13,则直线的解析式是:y =13x ,∵△OAC 的面积是△OMC 面积的3倍时, ∴当M 的横坐标是13×3=1,在y =13x 中,当x =1时,y =13, 则M 的坐标是(1,13);当M 在射线AC 上时, 在y =﹣x +4中,x =1时, 则y =3,则M 的坐标是(1,3); 当M 的横坐标是﹣1时,在y =﹣x +4中,当x =﹣1时,y =5, 则M 的坐标是(﹣1,5);综上所述:M 的坐标是:M 1(1,13)或M 2(1,3)或M 3(﹣1,5).24.在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题: (1)甲车行驶速度是 60 千米/时,B ,C 两地的路程为 360 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【分析】(1)根据F 点坐标可求出甲车速度,根据M 纵坐标可得B ,C 两地之间距离;(2)根据甲车比乙车晚1.5小时到达C 地得出点E 坐标,再求出点N 坐标,利用待定系数法求解即可; (3)根据运动过程,分3种情况讨论,由路程=速度×时间,可求解. 【解析】(1)由题意可得: F (10,600),∴甲车的行驶速度是:600÷10=60千米/时, M 的纵坐标为360,∴B ,C 两地之间的距离为360千米, 故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地, ∴点E (8.5,0),乙的速度为360×2÷(10﹣0.5﹣1.5)=90千米/小时, 则360÷90=4,∴M (4,360),N (4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入, {0=8.5k +b 360=4.5k +b ,解得:{k =−90b =765, ∴y (千米)与x (小时)之间的函数关系式为:y =﹣90x +765; (3)设出发x 小时,行驶中的两车之间的路程是15千米, ①在乙车到B 地之前时,600﹣S 甲﹣S 乙=15,即600﹣60x ﹣90x =15, 解得:x =3910,②当乙车从B 地开始往回走,追上甲车之前,15÷(90﹣60)+4.5=5小时; ③当乙车追上甲车并超过15km 时, (30+15)÷(90﹣60)+4.5=6小时;④乙到达B 地停留时,15÷60+4=174(小时)(不符合题意行驶中舍弃,) ⑤乙到达C 地时,(600﹣15)÷60=394小时(不符合题意行驶中舍弃) 综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或5小时或6小时.25.如图,矩形OABC 的顶点与坐标原点O 重合,将△OAB 沿对角线OB 所在的直线翻折,点A 落在点D 处,OD 与BC 相交于点E ,已知OA =8,AB =4 (1)求证:△OBE 是等腰三角形; (2)求E 点的坐标;(3)坐标平面内是否存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.【分析】(1)由矩形的性质得出OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC ,得出B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8,得出∠OBC =∠DOB ,证出OE =BE 即可; (2)设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得出方程,解方程即可; (3)作DF ⊥y 轴于F ,则DF ∥BC ,由平行线得出△ODF ∽△OEC ,得出DF CE=OF OC=ODOE,求出DF =245,OF =325,得出D (245,325);分三种情况,由平行四边形的性质即可得出结果. 【解答】(1)证明:∵四边形OABC 是矩形, ∴OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC , ∴B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8, ∴∠OBC =∠DOB ,∴OE =BE ,∴△OBE 是等腰三角形;(2)解:设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得:42+(8﹣x )2=x 2, 解得:x =5,∴OE =5,CE =8﹣x =3, ∵OC =4,∴E 点的坐标为(3,4);(3)解:坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形;理由如下: 作DF ⊥y 轴于F ,如图所示: 则DF ∥BC , ∴△ODF ∽△OEC , ∴DF CE=OF OC=OD OE,即DF 3=OF 4=85,解得:DF =245,OF =325, ∴D (245,325);当BE 为平行四边形的对角线时,点P 的坐标为(315,85); 当BD 为平行四边形的对角线时,点P 的坐标为(495,325);当DE 为平行四边形的对角线时,点P 的坐标为(−15,325);综上所述,坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形,P 点坐标为(315,85)或(495,325)或(−15,325).26.如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O .(1)如图1,设E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.【分析】(1)首先证明△EOA ≌△FOB ,推出AE =BF ,从而得出结论;(2)在BC 上取一点H ,使得BH =AE .由△OAE ≌△OBH ,推出AE =BH ,∠AOE =∠BOH ,OE =OH ,由△FOE ≌△FOH ,推出EF =FH ,由∠FBH =90°,推出FH 2=BF 2+BH 2,由此即可解答. 【解析】(1)EF 2=AF 2+BF 2. 理由:如图1,∵四边形ABCD 是正方形, ∴OA =OB ,∠OAE =∠OBF =45°,AC ⊥BD , ∴∠EOF =∠AOB =90°, ∴∠EOA =∠FOB , 在△EOA 和△FOB 中, {∠EOA =∠FOBOA =OB ∠OAE =∠OBF, ∴△EOA ≌△FOB (ASA ), ∴AE =BF ,在Rt △EAF 中,EF 2=AE 2+AF 2=AF 2+BF 2; (2)在BC 上取一点H ,使得BH =AE .∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBH ,∠AOB =90°, 在△OAE 和△OBH 中,{OA =OB∠OAE =∠OBH AE =BH∴△OAE ≌△OBH (SAS ),∴AE =BH ,∠AOE =∠BOH ,OE =OH , ∵∠EOF =45°, ∴∠AOE +∠BOF =45°, ∴∠BOF +∠BOH =45°, ∴∠FOE =∠FOH =45°, 在△FOE 和△FOH 中•, {OF =OF∠FOE =∠FOH OE =OH, ∴△FOE ≌△FOH (SAS ), ∴EF =FH , ∵∠FBH =90°, ∴FH 2=BF 2+BH 2, ∴EF 2=BF 2+AE 2,。
2021年人教版数学八年级下册期末《折叠问题》复习卷一、选择题1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12 3D.16 32.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,将△BCD沿CD折叠,点B恰好落在AB中点E处,则∠A=()A.75° B.60° C.45° D.30°5.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )A.78°B.75°C.60°D.45°6.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)7.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是( )A. B.﹣1 C. D.二、填空题8.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______9.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.10.如图,已知在矩形ABCD中,AB=4,AD=8,将△ABC沿对角线AC翻折,点B落在点E处,联结DE,则DE的长为______________.11.如图,在▱ABCD中,AB=13,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为 .12.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为 .13.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为 .14.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.15.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.16.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.17.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为__________.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.三、解答题19.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE.直线CE的关系式是y=﹣0.5x+8,与x轴相交于点F,且AE=3.(1)求OC 长度;(2)求点B'的坐标;(3)求矩形ABCO 的面积.20.已知函数y=x 34,完成下列问题: (1)画出此函数图象;(2)若B 点(6,a )在图象上,求a 的值;(3)过B 点作BA ⊥x 轴于A 点,BC ⊥y 轴于C 点,求OB 的长;(4)将边OA 沿OE 翻折,使点A 落在OB 上的D 点处,求折痕OE 直线解析式.21.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌△CDE ;(2)若AB=4,BC=8,求图中阴影部分的面积.22.准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.23.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.24.如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t <6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD的长;(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)连接DE,当t为何值时,△DEF为直角三角形?(4)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?25.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形.(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.参考答案1.答案为:D;2.B3.C4.D5.B6.B.7.答案为:A.8.答案为:51.9.答案为:2.10.答案为: .11.答案为:3.12.答案为: 2.13.答案为:3.7514.答案为:4﹣6.15.答案是:2.16.解:在Rt△ABC中,由勾股定理可知:AC=4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.17.答案为:2;18.答案为:(-2014,+1).19.解:(1)∵直线y=﹣0.5x+8与y轴交于点为C,∴令x=0,则y=8,∴点C坐标为(0,8),∴OC=8;(2)在矩形OABC中,AB=OC=8,∠A=90°,∵AE=3,∴BE=AB﹣BE=8﹣3=5,∵是△CBE沿CE翻折得到的,∴EB ′=BE=5,在Rt △AB ′E 中,AB ′===4,由点E 在直线y=﹣0.5x+8上,设E (a ,3),则有3=﹣0.5a+8,解得a=10,∴OA=10,∴OB ′=OA ﹣AB ′=10﹣4=6,∴点B ′的坐标为(0,6);(3)由(1),(2)知OC=8,OA=10,∴矩形ABCO 的面积为OC ×OA=8×10=80.20.(1)画图略;(2)a=8;(3)OB=10;(4)y=0.5x.21.解:(1)证明:由翻折的性质可得AF=AB ,∠F=∠B=90°.∵四边形ABCD 为矩形,∴AB=CD ,∠B=∠D=90°.∴AF=CD ,∠F=∠D.又∵∠AEF=∠CED ,∴△AFE ≌△CDE(AAS).(2)∵△AFE ≌△CDE ,∴AE=CE.根据翻折的性质可知FC=BC=8.在Rt △AFE 中,AE 2=AF 2+EF 2,即(8-EF)2=42+EF 2,解得EF=3.∴AE=5.∴S 阴影=12EC ·AF=12×5×4=10. 22.(1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∴∠EBD=∠FDB ,∴EB ∥DF ,∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)∵四边形BFDE 为菱形,∴BE=ED ,∠EBD=∠FBD=∠ABE ,∵四边形ABCD 是矩形,∴AD=BC ,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,∴菱形BFDE 的面积为:×2=23. (1)证明:根据翻折的方法可得EF=EC ,∠FEG=∠CEG.又∵GE=GE ,∴△EFG ≌△ECG.∴FG=GC.∵线段FG 是由EF 绕F 旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE 是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8-x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,=,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=0.5BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=0.5BE.∴G为BE的中点.∴CG=BG=0.5BE.24.解:(1)如图①∵DF⊥BC,∠C=30°,∴DF=0.5CD=0.5×2t=t.∵AE=t,∴DF=AE.∵∠ABC=90°,DF⊥BC,∴DF∥AE∴四边形AEFD是平行四边形;(2)①显然∠DFE<90°;②如图①′,当∠EDF=90°时,四边形EBFD为矩形,此时AE=0.5AD,∴t=0.5(12−2t),∴t=3;③如图①″,当∠DEF=90°时,此时∠ADE=90°∴∠AED=90°-∠A=30°∴AD=0.5AE,∴12−2t=0.5t,∴t=4.8.综上:当t=3秒或t=4.8秒时,△DEF为直角三角形;(3)如图②,若四边形AEA′D为菱形,则AE=AD,∴t=12-2t,∴t=4.∴当t=4时,四边形AEA′D为菱形.25.(1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.∵点B与点E关于PQ对称,∴CE=BC=5cm.在Rt△CDE中,DE=4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm.在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=5/3cm,∴菱形BFEP的边长为5/3cm.②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.。
人教版数学八年级下册期末考试试卷一、选择题(本大题10小题,每小题3分,共30分),每小题只有一个正确答案。
1.下列各式是最简二次根式的是( )A.B.C.D.2.要使式子有意义,则x的取值范围是( )A.x>0B.x≥﹣3C.x≥3D.x≤33.数据2,4,3,4,5,3,4的众数是( )A.5B.4C.3D.24.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12D.167.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )A.2B.3C.4D.28.由线段a,b,c组成的三角形不是直角三角形的是( )A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=159.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( )A.4B.16C.D.4或10.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能比较二、填空题(本大题6小题,每小题4分,共24分)。
11.求值:= .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 分.13.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .14.如图,字母A所代表的正方形面积为 .15.函数y=kx与y=6﹣x的图象如图所示,则k= .16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:÷+×﹣.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.19.如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:﹣,其中x=1+2,y=1﹣2.21.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?24.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.25.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑1.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可.【解答】解:这组数据的众数为:4.故选:B.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.【分析】直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【解答】解:∵四边形ABCD是菱形,∴AB∥DC,故选项A正确,不合题意;无法得出AC=BD,故选项B错误,符合题意;AC⊥BD,故选项C正确,不合题意;OA=OC,故选项D正确,不合题意;故选:B.【点评】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.6.【分析】由折叠可得AE=A'E=2,∠EFB=∠EFB'=60°,根据平行线性质可得∠A'EF=120°,∠B'EF=60°,解直角三角形A'E'B'可得A'B'的长度,则可求矩形ABCD面积.【解答】解:∵折叠∴∠BFE=∠EFB'=60°,AB=A'B'∠A=∠A'=90°,AE=A'E=2∵ABCD是矩形∴AD∥BC∴∠DEF=∠EFB=60°∵A'E∥B'F∴∠A'EF+∠EFB'=180°∴∠A'EF=120°∴∠A'EB'=60°且∠A'=90°∴∠A'B'E=30°,且A'E=2∴B'E=4,A'B'=2=AB∵AE=2,DE=6∴AD=8∴S矩形ABCD=AB×AD=2×8=16故选:D.【点评】本题考查了折叠问题,等边三角形的性质,矩形的性质,关键灵活运用折叠的性质解决问题.7.【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:A.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题正确答案填写在答题卷相应的位置上11.【分析】根据二次根式的性质,求出算术平方根即可.【解答】解:原式=.故答案为:.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.【点评】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:2【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.16.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:原式=+﹣2=4+﹣2=4﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【分析】根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【解答】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.19.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】根据分式的减法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:﹣===x+y,当x=1+2,y=1﹣2时,原式=1+2+1﹣2=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(3,5)和(﹣4,﹣9)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,2)代入一次函数的解析式,求出m的值即可.【解答】解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.24.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.25.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形【点评】本题考查了矩形的性质判定,等腰三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.。
2022~2023学年八年级第二学期期末质量检测数学(人教版)本试卷共8页,总分120分,考试时间120分钟.题号一二三20212223242526得分注意事项:1.仔细审题,工整作答,保持卷面整洁.2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题(本大题共16个小题,1~10小题每题3分,11~16小题每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列属于最简二次根式的是()2.如图,在平行四边形ABCD 中,60A ∠=︒,则C ∠的度数为()A.30︒B.60︒C.90︒D.120︒3.a =+,则a =()C.2D.44.下列各组数中,能作为直角三角形三边长的是()A. B.1,2,3D.3,5,65.如图所示的条形统计图描述了某校若干名学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.3分B.4分C.5分D.27分6.若等腰三角形的周长为30cm ,则底边长()cm y 与腰长()cm x (不写自变量的取值范围)之间的函数解析式为()A.15y x=- B.152y x=- C.30y x=- D.302y x=-7.某博物馆要招聘一名讲解员,一名应聘者笔试、试讲、面试三轮测试的得分分别为90分、94分、95分,综合成绩中笔试占30%,试讲占50%,面试占20%,则该应聘者的综合成绩为()A.88分B.90分C.92分D.93分8.依据图所标数据,则四边形ABCD 一定是()A.正方形B.矩形C.菱形D.四个角均不为90︒的平行四边形9.如图,分别以直角三角形的三边为边,向外作正方形,则阴影部分的面积1S ,2S 与3S 之间的数量()A.123S S S +>B.123S S S +<C.123S S S +=D.1232S S S +=10.函数12y x b =+的图象如图所示,点()1,1A x -,点()2,2B x 在该图象上,下列判断正确的是()甲:1x 与2x 之间的大小关系为12x x <;乙:关于x 的不等式102x b +>的解集为0x >A.只有甲对B.只有乙对C.甲、乙都对D.甲、乙都不对11.将矩形纸片的长减少,宽不变,就成为一个面积为248cm 的正方形纸片,则原矩形纸片的长为()A.2B.2C.2D.212.如图,直线111:l y k x b =+与直线222:l y k x b =+(其中120k k ≠)在同一平面直角坐标系中,则下列结论中一定正确的是()A.120k k +<B.120k k >C.120b b +=D.120b b >13.现有一四边形ABCD ,借助此四边形作平行四边形EFGH ,有以下两种方案,对于方案Ⅰ、Ⅱ,下列说法正确的是()方案Ⅰ作边AB ,BC ,CD ,AD 的垂直平分线1l ,2l ,3l ,4l ,分别交AB ,BC ,CD ,AD于点E ,F ,G ,H ,顺次连接这四点围成的四边形EFGH 即为所求.方案Ⅱ连接AC ,BD ,过四边形ABCD 各顶点分别作AC ,BD 的平行线EF ,GH ,EH ,FG ,这四条平行线围成的四边形EFGH 即为所求.A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m ,梯子顶端到地面的距离AC 为2.4m .若保持梯子底端位置不动,将梯子斜靠在右墙时,则梯子顶端到地面的距离A D '为1.5m ,则小巷的宽CD 为()A.2.7mB.2.5mC.2.4mD.2m15.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地,如图中的线段OA 和折线BCD 分别表示货车、轿车离甲地的距离()cm y 与货车行驶时间()h x 之间的函数关系,当轿车追上货车时,轿车行驶了()A.3.9hB.3.7hC.2.7hD.2.5h16.如图,在平面直角坐标系中,矩形ABCD 的边6AB =,3BC =.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在y 轴的正半轴上上下移动时,矩形的另一个顶点B 始终在x 轴的正半轴上随之左右移动.已知M 是边AB 的中点,连接OM ,DM .下列判断正确的是()结论Ⅰ:在移动过程中,OM 的长度不变;结论Ⅰ:当45OAB ∠=︒时,四边形OMDA 是平行四边形A.结论Ⅰ、Ⅱ都对 B.结论Ⅰ、Ⅱ都不对C.只有结论Ⅰ对D.只有结论Ⅱ对二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.数据3,4,4,5,6,的中位数是________18.如图,菱形ABCD 与正方形AECF 的顶点B ,E ,F ,D 在同一条直线上,且4AB =,60ABC ∠=︒.(1)BAE ∠的度数为________(2)点E 与点F 之间的距离为________.19.在平面直角坐标系中,直线()1:0l y kx b k =+≠由函数y x =-的图象平移得到,且经过点()1,1,直线1l 与y 轴交于点A .直线()2:10l y mx m =->与y 轴交于点B .(1)直线1l 的函数解析式为__________;(2)AB 的长度为__________;(3)当1x <时,对于x 的每一个值,()10y mx m =->的值都小于y kx b =+的值,则m 的取值范围是__________.三、解答题(本大题共7个小题,共69分,解答应写出文字说明、证明过程或演算步骤)20.计算下列各小题.(1÷;(2)2-.21.如图,四边形ABCD 是某校在校园一角开辟的一块四边形“试验田”,经过测量封得90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =.(1)求AC 的长度和D ∠的度数;(2)求四边形“试验田”的面积22.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm )为:甲:91,94,95,96,98,96;乙:93,95,95,96,96,95.(1)数据整理,补全下表;小麦平均数众数中位数方差甲95143乙95951(2)通过比较方差,判断哪种小麦的长势比较整齐.23.如图,在平行四边形ABCD 中,连接AC ,AC 恰好平分BAD ∠.(1)求证:四边形ABCD 是菱形;(2)已知E ,F 分别是边AB ,AD 的中点,连接EF ,交AC 于点G ,连接BD ,交AC 于点O .①若6BD =,求EF 的长度;②EF 与AC 之间的位置关系,为_______________.24.某科技活动小组制作了两款小型机器人,在同一赛道上进行运行试验.甲机器人离点A 的距离与出发时间满足一次函数关系,部分数据如下表所示,乙机器人在离点A 15米处出发,以0.5米/秒的速度匀速前进,两个机器人同时同向(远离点A )出发并保持前进的状态.出发时间x (秒)…510…甲机器人离点A 的距离y 甲(米)…1015…(1)分别求出甲、乙两机器人离点A 的距离y 甲(米),y 乙(米)与出发时间x (秒)之间的函数解析式;(2)求甲机器人出发时距离点A 多远?(3)求两机器人出发多长时间时相遇?25.如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE DF =,A D ∠=∠,AB DC =.(1)求证:四边形BFCE 是平行四边形;(2)若11AD =,4DC =,60FCB ∠=︒,①连接EF ,当BC EF =时,请直接写出四边形BFCE 的形状,并求CE 的长度;②当BE 的长为__________时,四边形BFCE 是菱形,并证明.26.经过点()1,4,()0,1的一次函数y kx b =+的图象(直线1l )在如图所示的平面直角坐标系中,某同学为观察k 对图象的影响,将上面函数中的k 减去2,b 不变得到另一个一次函数,设其图象为直线2l .(1)求直线1l 的函数解析式;(2)在图上画出直线2l (不要求列表计算),并求直线1l ,2l 和x 轴所围成的三角形的面积;(3)将直线2l 向下平移()0a a >个单位长度后,得到直线3l ,若直线1l 与3l 的交点在第三象限,求a 的取值范围;(4)若(),0P m 是x 轴上的一个动点,过点P 作y 轴的平行线,该平行线分别与直线1l ,2l 及x 轴有三个不同的交点,且其中一个交点的纵坐标是另外两个交点的纵坐标的平均数,请直接..写出m 的值.2022—2023学年八年级第二学期期末质量检测数学(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分.一、(1-10小题每题3分,11-16小题每题2分,共计42分)题号12345678910111213141516答案BBAABDDBCABBCACA二、(每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.418.(1)15︒;(2)419.(1)2y x =-+;(2)3;(3)02m <≤三、20.解:(1)原式=6;(2)原式=5-21.解:(1)在Rt ABC △中,24AB =,7BC =,根据勾股定理可得25AC =,即AC 的长度为25m .在ACD △中,2625AC =,2400AD =,2225CD =,222AC AD CD ∴=+,90D ∴∠=︒;(2)()2112471520234m 22⨯⨯+⨯⨯=,即四边形“试验田”的面积为2234m .22.解:(1)如下表所示;小麦平均数众数中位数方差甲959695.5143乙9595951(2)22S S > 甲乙,∴乙小麦的长势比较整齐.23.解:(1)证明: 四边形ABCD 是平行四边形,AD BC ∴∥,DAC BCA ∴∠=∠.AC 平分BAD ∠,DAC BAC ∴∠=∠,BCA BAC ∴∠=∠,AB BC ∴=,∴四边形ABCD 是菱形;(2)①E ,F 分别是边AB ,AD 的中点,132EF BD ∴==;②EF AC ⊥;24.解:(1)设甲机器人离点A 的距离y 甲(米)与出发时间x (秒)之间的函数解析式为y kx b =+.将()5,10,()10,15代入y kx b =+甲中,解得1,5,k b =⎧⎨=⎩5x y ∴=+甲.由题意得乙机器人离点A 的距离y 乙(米)与出发时间x (秒)之间的函数解析式为0.515y x =+乙;(2)当0x =时,55y x =+=甲,即甲机器人出发时距离点A 5米;(3)由题意得50.515x x +=+,解得20x =,即两机器人出发20秒时相遇.25.解:(1)证明:在ABE △和DCF △中,AE DF = ,A D ∠=∠,AB DC =,ABE DCF ∴△≌△,BE CF ∴=,ABE DCF ∠=∠.又180CBE ABE ∠=︒-∠ ,180FCB DCF ∠=︒-∠,CBE FCB ∴∠=∠,BE CF ∴∥,∴四边形BFCE 是平行四边形;(2)①四边形BFCE 是矩形;11AD = ,4DC AB ==,3BC ∴=.在Rt BCE △中,60EBC FCB ∠=∠=︒,30BCE ∴∠=︒,1322BE BC ∴==,根据勾股定理可得2CE =;②3;证明:由①可得3BC =. 四边形BFCE 是平行四边形,3BE CF ∴==,BE CF ∴=.又60FCB ∠=︒ ,BCF ∴△是等边三角形,BF CF ∴=,∴四边形BFCE 是菱形.26.解:(1)将()1,4,()0,1代入y kx b =+中,解得3,1,k b =⎧⎨=⎩∴直线1l 的函数解析式为31y x =+;(2)如图;由题意可得直线2l 的函数解析式为1y x =+.在直线1l 上,当0y =时,310x +=,解得13x =-.在直线2l 上,当0y =时,10x +=,解得1x =-,()12133∴---=.∴直线1l ,2l 和x 轴所围成的三角形的面积为1211233⨯⨯=;(3)由题意可得直线3l 的函数解析式为1y x a =+-.联立31,1,y x y x a =+⎧⎨=+-⎩解得,231.2a x a y ⎧=-⎪⎪⎨⎪=-⎪⎩ 交点在第三象限,0,2310,2aa ⎧-<⎪⎪∴⎨⎪-<⎪⎩解得23a >;(4)m 的值为1或12-或15-.【精思博考:将x m =代入31y x =+,得31y m =+,将x m =代入1y x =+,得1y m =+,∴过点(),0P m 与y 轴平行的直线与直线1l ,直线2l 的交点分别为(),31m m +,(),1m m +.根据图象,当0m >时,()31021m m ++=+,解得1m =;当103m -<<时,()10231m m ++=+,解得15m =-;当113m -<<-时,1310m m +++=,解得12m =-;当1m <-时,()31021m m ++=+,解得1m =,不符合题意.综上所述,m 的值为1或12-或15-】。
明.)20。
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。
(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。
21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。
下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。
如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。
点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。
八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。
2020-2021学年内蒙古乌海市八年级(下)期末数学试卷一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.92.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2 3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20 4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6 6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.38.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.211.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<112.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是.14.(3分)已知y=,则x y的值为.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN 折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间x(min)等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.2020-2021学年内蒙古乌海市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.9【考点】二次根式的性质与化简.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选:A.2.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件即可求出答案.【解答】解:由题意可知:,解得:x≤.故选:B.3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,进行计算即可解答.【解答】解:A、∵(32)2+(42)2=337,(52)2=625,∴(32)2+(42)2≠(52)2,∴以32,42,52不能构成直角三角形,故A不符合题意;B、∵72+242=625,252=625,∴72+242=252,∴以7,24,25能构成直角三角形,故B符合题意;C、∵82+132=233,172=289,∴82+132≠172,∴以8,13,17不能构成直角三角形,故C不符合题意;D、∵102+152=325,202=400,∴102+152≠202,∴以10,15,20不能构成直角三角形,故D不符合题意;故选:B.4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间【考点】勾股定理;坐标与图形性质.【分析】根据点P的坐标为(﹣2,3),勾股定理求出OP的长,得出点A的坐标,再判定出3<<4,即可得出﹣的范围.【解答】解:∵点P的坐标为(﹣2,3),∴OP=,∴A(﹣,0),∵9<13<16,∴3<<4,∴﹣4<,故选:A.5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6【考点】平行四边形的性质;三角形三边关系.【分析】平行四边形的两条对角线相交于平行四边形的两边构成三角形,这个三角形的两条边是3,5,第三条边就是平行四边形的一条边x,即满足,解得即可.【解答】解:∵平行四边形ABCD∴OA=OC=3,OB=OD=5∴在△AOB中,OB﹣OA<x<OB+OA即:2<x<8故选:B.6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件【考点】加权平均数.【分析】直接利用加权平均数求法进而分析得出答案.【解答】解:由题意可得,这一周小张平均每天投递物品的件数为:=(件),故选:C.7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.3【考点】命题与定理.【分析】根据矩形的判定、中位数和众数的判定、算术平方根的性质判断即可.【解答】解:①若=a,则a≥0,原命题是假命题;②的算术平方根是2,是真命题;③对角线相等的平行四边形是矩形,原命题是假命题;④一组数据5,6,7,8,9的中位数是7,但众数不是7,原命题是假命题;故选:B.8.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°【考点】菱形的性质.【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH ⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数【解答】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选:A.9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【考点】菱形的判定.【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.2【考点】一次函数的定义.【分析】直接利用一次函数的定义得出m的值进而得出答案.【解答】解:∵关于x的函数y=(m﹣1)x|m|﹣5是一次函数,∴|m|=1,m﹣1≠0,解得:m=﹣1.故选:B.11.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<1【考点】一次函数图象上点的坐标特征.【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m 的取值范围.【解答】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,∴当﹣1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m﹣1<0,解得m<,故选:A.12.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6【考点】轴对称﹣最短路线问题;正方形的性质.【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【解答】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选:D.二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是 4.4.【考点】方差;算术平均数.【分析】先根据平均数是5,求出a的值,然后利用方差的计算公式求解即可.【解答】解:因为3、4、3、a、8的平均数是5,所以3+4+3+a+8=25,解得a=7,故这组数据为3,4,3,7,8,所以这组数据的方差为×[(3﹣5)2+(4﹣5)2+(3﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.14.(3分)已知y=,则x y的值为.【考点】二次根式有意义的条件.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y 的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是﹣9.【考点】一次函数图象上点的坐标特征.【分析】将点的坐标代入直线中可得出b=a﹣2,整理得到3b﹣a=﹣6,代入代数式求得即可.【解答】解:∵P(a,b)是直线y=x﹣2上的点,∴b=a﹣2,∴3b﹣a=﹣6,∴6b﹣2a+3=2×(﹣6)+3=﹣9.故答案为:﹣9.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=25°.【考点】作图—复杂作图;平行四边形的性质.【分析】利用平行四边形的性质求出∠ABC=50°,再利用角平分线的定义,平行线的性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知BE平分∠ABC,∴∠EBC=∠ABC=25°,∴∠AEB=∠EBC=25°,故答案为:25°.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为 2.5.【考点】三角形中位线定理.【分析】根据直角三角形斜边上的中线的性质求出DF,根据三角形中位线定理求出DE,计算即可.【解答】解:在Rt△AFB中,D为AB的中点,AB=7,∴DF=AB=3.5,∵DE为△ABC的中位线,BC=12,∴DE=BC=6,∴EF=DE﹣DF=2.5,故答案为:2.5.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据折叠的性质可以证明△DEM≌△DCN,得DM=DN,再根据折叠可得∠BNM =∠DNM=∠DNC,可证明△DMN是等边三角形,再根据等边三角形的性质即可求出AD的长.【解答】解:由折叠可知:点B与点D重合,∴∠EDN=90°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠EDM+∠MDN=∠CDN+∠MDN,∴∠EDM=∠CDN,∵∠E=∠C=90°,DE=DC,∴△DEM≌△DCN(ASA),∴DM=DN,由折叠,∠BNM=∠DNM,∠DNC=∠DNM,∴∠BNM=∠DNM=∠DNC=180°=60°,∴△DMN是等边三角形,∴DM=MN=5,点C恰好落在MN上的点F处可知:∠DFN=90°,即DF⊥MN,∴MF=NF=MN=,∴CN=ME=AM=,∴AD=AM+DM=.故答案为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b﹣kx+1>0的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.故答案为:x>﹣1.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是①②③.【考点】平行四边形的性质;全等三角形的判定.【分析】①根据等腰直角三角形的性质即可判断;②通过三角形全等和平行四边形的性质即可判断;③根据平行四边形的性质和线段的等量代换即可判断;④通过角的关系即可求得结果;【解答】解:∵∠DBC=45°,DE⊥BC,∴BD=BE,BE=DE,∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°,∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC(SAS),∴∠BHE=∠C,BH=CD,∵四边形ABCD是平行四边形,∴∠C=∠A,AB=CD,∴∠A=∠BHE,AB=BH,∴正确的有①②③;故答案为:①②③.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)先根据完全平方公式和分母有理数将式子展开,然后再合并同类项和同类二次根式即可;(2)根据二次根式的除法化简即可.【解答】解:(1)(﹣2)2++6=3﹣4+4+2+2=7;(2)(3﹣2+)÷2=﹣+===3﹣+2=4.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3584分析数据:补全下列表格中的统计量:平均数中位数众数808181得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为B;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?【考点】统计量的选择;用样本估计总体;频数(率)分布表.【分析】根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)(3)结果.【解答】解:(1)根据上表统计显示:样本中位数和众数都是81,平均数是80,都是B 等级,故估计该校学生每周的用于课外阅读时间的情况等级为B.(2)∵=160∴该校现有学生400人,估计等级为“B”的学生有160名.(3)以平均数来估计:×52=26∴假设平均阅读一本课外书的时间为160分钟,以样本的平均数来估计该校学生每人一年(按52周计算)平均阅读26本课外书.故答案为:5,4,81,81,B;23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可得DP=20米,然后分别在Rt△BDP和Rt△CDP中,利用锐角三角函数的定义求出BD,CD的长,进行计算即可解答.【解答】解:由题意得:DP=20米,在Rt△BDP中,∠BPD=60°,∴BD=DP•tan60°=20(米),在Rt△CDP中,∠CPD=45°,∴CD=DP•tan45°=20(米),∴BC=BD﹣CD=(20﹣20)米,∴标语牌的宽度BC为(20﹣20)米.24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意即可列出一元一次方程,即可求解.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,根据题意得到a的取值,再列出w关于a的一次函数.②根据一次函数的性质即可求解.【解答】解:(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意得:10a+15(a﹣2)=1570,解得:a=64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,依题意可得:,解得0≤a≤且x为整数,∴w=(83﹣64)(10+a)+(78﹣62)(50﹣a+15),=1230+3a,∴w与a之间的函数关系式为w=3a+1230.②∵3>0,∴w随a的增大而增大,=1230+3×33=1329(元).∴当a=33时,y最大∴购进甲种盲盒33个,购进乙种盲盒17个;才能使售完这二批盲盒获得总利润最大;最大利润是1329元.26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)联立两直线解析式求出A的坐标即可;(2)根据D在直线OA上,设出D坐标,表示出三角形COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;(ii)当四边形OP2CQ2为菱形时;(iii)当四边形OQ3P3C为菱形时;分别求出P坐标即可.【解答】解:(1)解方程组,得,∴A(6,3);(2)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴直线CD解析式为y=﹣x+6;(3)在直线l1:y=﹣x+6中,当x=0时,y=6,∴C(0,6),存在点P,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);(ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线CP1的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3);(iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);综上可知存在满足条件的点的P,其坐标为(6,0)或(3,3)或(3,﹣3+6).。
2023-2024学年海南省海口市八年级(下)期末数学试卷一、选择题(本大题满分36分,每小题3分)1.(3分)约分的结果是()A.B.C.x D.﹣2.(3分)化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.13.(3分)数据1.08×10﹣4用小数表示为()A.0.00108B.0.000108C.﹣0.000108D.0.00001084.(3分)直线y=kx+b交坐标轴于A(﹣3,0)、B(0,2)两点,则不等式kx+b<0的解集是()A.x>﹣3B.x<﹣3C.x>2D.x<25.(3分)某山山脚气温为26℃,海拔每升高1km,气温下降6℃,则山上气温y(℃)与该处距山脚垂直高度x(km)之间的函数关系式为()A.y=﹣6x B.y=6x+26C.y=﹣6x﹣26D.y=﹣6x+266.(3分)在同一平面直角坐标系中,函数y=kx+k,与的图象大致为()A.B.C.D.7.(3分)某生数学科课堂表现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按3:3:4的比例计入总评成绩,则该生数学科总评成绩为()A.86分B.86.8分C.88.6分D.89分8.(3分)如图,在▱ABCD中,∠BCD的平分线交AD于点E,若AB=EC,则∠A等于()A.60°B.110°C.120°D.135°9.(3分)如图,在菱形ABCD中,E是BC的中点,且AE⊥BC,BE=2,连接AC,则△ACD的周长等于()A.8B.9C.12D.1610.(3分)如图,▱ABCD的对角线AC、BD交于点O,∠OBC=∠OCB,要使▱ABCD为正方形还需增加一个条件.在条件①AB=BC;②AC⊥BD;③AC=BD;④∠ABC=90°中正确的是()A.①②B.②③C.①③D.②④11.(3分)如图,在矩形ABCD中,BC=6,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD于点H,若FH=4,则AE等于()A.1.5B.2C.2.5D.312.(3分)如图,平面直角坐标系中,在边长为1的菱形ABCD的边上有一动点P从点A出发沿A→B→C→D→A匀速运动一周,则点P的纵坐标y与点P走过的路程S之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(本大题满分12分,每小题3分)13.(3分)计算:=.14.(3分)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是.15.(3分)如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是厘米.16.(3分)如图,正方形ABCD的顶点B、C在x轴上,反比例函数的图象经过点A(1,4),交CD于点E,则k的值为,△ADE的面积等于.三、解答题(本大题满分72分)17.(12分)计算:(1);(2).18.(10分)某市今年计划修建一段全长1500米的景观路,为了尽量减少施工对城市交通的影响,实际施工时,每天的工效比原计划增加20%,结果提前2天完成这一任务,求原计划每天修路多少米?19.(10分)在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)=﹣15x+30.请根据所提供的信息,解答下列问题:之间的关系如图所示.已知y甲(1)求乙蜡烛燃烧时,y与x之间的函数关系式;(2)燃烧多长时间时,甲、乙两根蜡烛剩余部分的高度一样(不考虑都燃尽时的情况)?(3)甲蜡烛燃烧多长时间时,甲、乙两根蜡烛剩余部分的高度相差2cm?20.(10分)为了从甲、乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了10次测验,成绩如下:(单位:分)甲成绩76849084818788818584乙成绩82868790798193907478(1)请填写下表:平均数中位数众数方差85分以上的频率甲848414.40.4乙848434(2)利用以上的信息,请你对甲、乙两名同学的成绩进行分析.21.(15分)在矩形ABCD中,AB=3,BC=5,将矩形ABCD绕点C顺时针旋转,得到矩形FECG.(1)如图1,当点B的对应点E落在AD边上时,求AE的长;(2)如图2,连接AF、AC,当点B的对应点E落在线段AF上时,①求证:△AEC≌△ABC;②求AH的长;(3)如图3,连接DF、CF,当点B的对应点E落在对角线BD的延长线上时,求证:四边形BCFD 是平行四边形.22.(15分)如图,直线与x轴、y轴分别交于A、B两点,直线BC与x轴交于点C(2,0),P是线段AB上的一个动点(与点A、B不重合),过点P作直线PQ∥x轴,交直线BC于点Q,连接OQ.设动点P的横坐标为t.(1)求直线BC的解析式;(2)求四边形AOQB的面积S与t的函数关系式,并写出自变量t的取值范围;(3)当四边形PAOQ是平行四边形时,求点P的坐标;(4)在线段PQ上存在点M,使得四边形MOQB是菱形,直接写出此时点M的坐标.2023-2024学年海南省海口市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题满分36分,每小题3分)1.【分析】先根据积的乘方法则计算分母,再确定公因式,约分即可.【解答】解:==﹣,故选:B.【点评】本题考查的是分式的约分,正确作出分子和分母的公因式是解题的关键.2.【分析】几个分式相加减,根据分式加减法则进行运算;【解答】解:原式==a+b.故选:B.【点评】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000108=1.08×10﹣4,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【分析】看在x轴下方的函数图象所对应的自变量的取值即可.【解答】解:由图象可以看出,x轴下方的函数图象所对应自变量的取值为x<﹣3,∴不等式kx+b<0的解集是x<﹣3.故选:B.【点评】本题考查了一次函数与一元一次不等式解集的关系;理解函数值小于0的解集是x轴下方的函数图象所对应的自变量的取值是解决本题的关键.5.【分析】根据“山上气温=山脚气温﹣6x”即可得出答案.【解答】解:y=26﹣6x.故选:D.【点评】本题主要考查一次函数的应用,根据题意找到等量关系是解题的关键.6.【分析】根据一次函数及反比例函数的图象与系数的关系即可判断.【解答】解:∵一次函数y=kx+k=k(x+1),∴直线经过点(﹣1,0),B、C、D错误;A、由一次函数的图象经过第二、三、四象限可知k<0,反比例函数的图象在二、四象限可知k<0,正确;故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的性质,一次函数的图象上点的坐标特征,重点是注意系数k的取值.7.【分析】根据加权平均数的定义,将各成绩乘以其所占权重,即可计算出加权平均数.【解答】解:该生数学科总评成绩为:=88.6(分),故选:C.【点评】本题考查了加权平均数的求法,重在理解“权”不同,各数所起的作用也会不同,会对计算结果造成不同影响.8.【分析】由平行四边形的性质得∠A=∠BCD,AD∥BC,AB=CD,再证明∠DEC=∠ECD,则DE=CD,然后证明△CDE是等边三角形,得∠DCE=60°,即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD,AD∥BC,AB=CD,∴∠DEC=∠BCE,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠DEC=∠ECD,∴DE=CD,∵AB=EC,∴DE=CD=EC,∴△CDE是等边三角形,∴∠DCE=60°,∴∠A=∠BCD=2∠DCE=120°,故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定以及等边三角形的判定与性质等知识,熟练掌握平行四边形的性质和等边三角形的判定与性质是解题的关键.9.【分析】由菱形的性质推出AB=BC=CD=AD,由线段垂直平分线的性质得到AB=AC,BC=2BE=4,即可求出△ACD的周长.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵E是BC的中点,且AE⊥BC,∴AB=AC,BC=2BE,∵BE=2,∴BC=4,∴△ACD的周长=AD+CD+AC=4×3=12.故选:C.【点评】本题考查菱形的性质,线段垂直平分线的性质,关键是由以上知识点推出AD=CD=AC.10.【分析】根据平行四边形的性质得到AO=OC,OB=OD,根据等腰三角形的判定定理得到OB=OC,推出平行四边形ABCD是矩形,由AB=BC,得到矩形ABCD为正方形,故①符合题意;由四边形ABCD 是矩形,AC⊥BD,得到矩形ABCD为正方形,故②符合题意;当AC=BD或∠ABC=90°,平行四边形ABCD仍是矩形,故③④不符合题意.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AO=OB=OC=OD,∴AC=BD,∴平行四边形ABCD是矩形,∵AB=BC,∴矩形ABCD为正方形,故①符合题意;∵四边形ABCD是矩形,AC⊥BD,∴矩形ABCD为正方形,故②符合题意;当AC=BD或∠ABC=90°,四边形ABCD仍是矩形,故③④不符合题意,故选:A.【点评】本题考查了正方形的判定,矩形的判定和性质,平行四边形的性质,熟练掌握正方形的判定定理是解题的关键.11.【分析】先根据已知条件求出AD=BC=6,∠EHF=∠D=90°,EF=CE,再根据全等三角形的判定证明△EFH≌△CED,从而求出DE,最后根据AE=AD﹣DE,求出答案即可.【解答】解:四边形ABCD是矩形,∴∠D=90°,AD=BC=6,∵四边形CEFG是正方形,∴EF=CE,∠FEH+∠CED=90°,∵FH⊥AD,∴∠EHF=∠D=90°,∴∠FEH+∠EFH=90°,∴∠CED=∠EFH,在△EFH和△CED中,,∴△EFH≌△CED(AAS),∴DE=FH=4,∴AE=AD﹣DE=6﹣4=2,故选:B.【点评】本题主要考查了矩形的性质、正方形的性质、全等三角形的判定与性质,解题关键是熟练掌握根据正方形和矩形的性质证明△EFH≌△CED的条件.12.【分析】要找出准确反映y与x之间对应关系的图象,需分析在不同阶段中y随x变化的情况.【解答】解:由题意知当从A→B→C时,纵坐标从2到1.5然后到1,当从C→D→A时,纵坐标从1到1.5然后到2,故选:A.【点评】本题以动态的形式考查了分类讨论的思想,函数的知识,具有很强的综合性.二、填空题(本大题满分12分,每小题3分)13.【分析】根据负整数指数幂和零指数幂计算即可.【解答】解:原式=×1﹣=﹣=﹣2.故答案为:﹣2.【点评】本题考查了有理数的混合运算,零指数幂,负整数指数幂,掌握a﹣p=(a≠0),a0=1(a ≠0)是解题的关键.14.【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【解答】解:∵一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x﹣1与y=kx的方程组的解为:,故答案为:.【点评】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.15.【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形.∵AD=AH+HD=HM+MF=HF,HF===5,∴AD=5厘米.故答案为:5.【点评】主要考查学生对翻转、折叠矩形、三角形等知识的掌握情况.错误的主要原因是空间观念以及转化的能力不强,缺乏简单的逻辑推理能力.16.【分析】根据反比例函数的图象经过点A(1,4)可得出k的值;再根据正方形性质得点C(5,0),点D(5,4),点E,则DE=16/5,由此可得S△ADE的面积.【解答】解:∵反比例函数的图象经过点A(1,4),∴k=4;∵四边形ABCD为正方形,∴OB=1,AB=BC=CD=DA=4,AB∥CD,AD∥BC,∴OC=OB+BC=5,∴点C(5,0),点D(5,4),∴点E的横坐标为5,∵反比例函数的图象交CD于点E,∴点E的坐标为E,∴DE=,=AD•DE==.∴S△ADE故答案为:4;.【点评】此题主要考查了反比例函数图象上点的坐标,正方形的性质,理解反比例函数图象上点的坐标满足反比例函数的表达式,熟练掌握正方形的性质是解决问题的关键.三、解答题(本大题满分72分)17.【分析】(1)先计算乘方,再计算乘法即可得;(2)先计算括号内分式的减法,再将除法转化为乘法,最后约分即可得.【解答】解:(1)原式=9x2y﹣4•=;(2)原式=[﹣]÷=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.18.【分析】设原计划每天修路x米,实际每天修路(1+20%)x米,根据题意可得等量关系:原计划修1500米所用的天数﹣实际修1500米所用的天数=2天,根据等量关系,列出方程即可.【解答】解:设原计划每天修路x米.根据题意,得.解得x=125.经检验,x=125是原方程的解,且符合题意.答:原计划每天天修路125米.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意不要忘记检验.19.【分析】(1)先设出乙蜡烛燃烧时,y与x之间的函数解析式,然后根据函数图象中的数据即可求得相应的函数解析式;=﹣15x+30的值相等,即可解答本题;(2)根据题意,令(1)中的函数解析式与y甲(3)用分类讨论,由解析式建立方程,求出其解就可以得出高度相差2厘米时的时间.【解答】解:(1)设乙蜡烛燃烧时,y与x之间的函数解析式y=mx+n,把(0,25)(2.5,0)代入得:,解得:,∴乙蜡烛燃烧时,y与x之间的函数解析式y=﹣10x+25;(2)由题意得:﹣10x+25=﹣15x+30,解得:x=1,答:燃烧1h时,甲、乙两根蜡烛剩余部分的高度一样;(3)当﹣15x+30﹣(﹣10x+25)=2时,解得:x=;当﹣10x+25﹣(﹣15x+30)=2时,解得:x=;甲的高度是0厘米,乙的高度是2厘米时,﹣10x+25=2,解得:x=;综上所述,当燃烧小时或小时或小时,甲、乙两根蜡烛的高度相差2厘米.【点评】本题考查了一次函数的应用,待定系数法求一次函数的解析式,同解方程,解答时根据函数的图象求出函数的解析式是关键.20.【分析】(1)先把甲的成绩由小到大排列,再根据中位数的定义求解;根据众数的定义得到乙的众数为90;然后根据频率的公式计算乙的频率;(2)通过表中数据比较平均数和中位数,然后根据计算结果比较众数和85分以上的次数,根据方差大小比较成绩的稳定性.【解答】解:(1)甲的成绩由小到大排列为:76,81,81,84,84,84,85,87,88,90,所以甲的中位数为(84+84)=84,乙的众数为90;乙中85分以上的次数为5;乙的频率==0.5;故答案为:84;90,0.5;(2)两个同学的平均数和中位数相同,乙的众数比甲班高,85分以上的次数乙要多;但甲的方差比乙要小,成绩更稳定.【点评】本题考查了方差:方差公式为s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数和众数.21.【分析】(1)根据旋转的性质得到CE=BC=AD=5,根据勾股定理即可得到结论;(2)①根据旋转的性质得到CE=BC,∠CEF=∠B=90°,求得∠AEC=90°,根据全等三角形的判定定理得到结论;②根据全等三角形的性质得到∠ACE=∠ACB,根据平行线的性质得到∠CAD=∠ACB,求得∠CAH=∠ACH,得到AH=CH,根据勾股定理即可得到结论;(3)根据旋转的性质得到∠BCD=∠CEF=90°,BC=CE,CD=EF,根据全等三角形的性质得到BD =CF,∠DBC=∠ECF,求得∠CBD=∠CEB,根据平行四边形的判定定理得到结论.【解答】(1)解:∵将矩形ABCD绕点C顺时针旋转,得到矩形FECG,∴CE=BC=AD=5,∵CD=AB=3,∠D=90°,∴DE===4,∴AE=AD﹣DE=1;(2)①证明:∵将矩形ABCD绕点C顺时针旋转,得到矩形FECG,∴CE=BC,∠CEF=∠B=90°,∴∠AEC=90°,在Rt△AEC与Rt△ABC中,,∴Rt△AEC≌Rt△ABC(HL);②解:∵Rt△AEC≌Rt△ABC,∴∠ACE=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAH=∠ACH,∴AH=CH,∵∠D=90°,∴CH2=CD2+DH2,∴AH2=32+(5﹣AH)2,∴AH=;(3)证明:∵将矩形ABCD绕点C顺时针旋转,得到矩形FECG,∴∠BCD=∠CEF=90°,BC=CE,CD=EF,∴△BCD≌△CEF(SAS),∴BD=CF,∠DBC=∠CED,∵BC=CE,∴∠CBD=∠CEB,∴∠CEB=∠ECF,∴BD∥CF,∴四边形BCFD是平行四边形.【点评】本题是四边形的综合题,主要考查了矩形的性质,旋转的性质,全等三角形的判定和性质,平行四边形的判定,勾股定理,熟练掌握各知识点是解题的关键.22.【分析】(1)解方程得到A(﹣4,0),B(0,3),设直线BC的解析式为y=kx+b,解方程组即可得到y=﹣x+3;(2)由直线PQ∥x轴,交直线BC于点Q,得到Q(﹣t,t+3),根据三角形的面积公式即可得到结论;(3)根据平行四边形的性质得到PQ=AO,列方程即可得到结论;(4)设M(n,t+3),根据菱形的性质即可得到结论.【解答】解:(1)∵直线与x轴、y轴分别交于A、B两点,∴A(﹣4,0),B(0,3),设直线BC的解析式为y=kx+b,∵直线BC与x轴交于点C(2,0),∴,∴,∴直线BC的解析式为y=﹣x+3;(2)∵P的横坐标为t,∴P(t,t+3),∵直线PQ∥x轴,交直线BC于点Q,∴Q(﹣t,t+3),+S△BOQ=×4×3+×3×(﹣t)=6﹣t(﹣4<t<0);∴S=S△AOB(3)∵PQ∥AO,四边形PAOQ是平行四边形,∴PQ=AO,∴﹣t﹣t=4,∴t=﹣,∴点P的坐标为(﹣,1);(4)设M(n,t+3),∵四边形MOQB 是菱形,∴MQ 垂直平分OB ,∵QM ∥OC ,∴点Q 是BC 的中点,∴t +3=,∴t =﹣2,∴Q (1,),∵OB 垂直平分MQ ,∴n =﹣1,∴M (﹣1,).【点评】本题是一次函数的综合题,考查了待定系数法求函数的解析式,菱形的性质,平行四边形的性质,三角形的面积的计算,正确地求出函数的解析式是解题的关键。
八年级(下)期中数学试卷一、选择题(共6小题,每小题3分,满分18分)1.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.3.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.54.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种二、填空题(共8小题,每小题3分,满分24分)7.用不等式表示:a+3大于﹣2:.8.如果等腰三角形的一个底角是80°,那么顶角是度.9.不等式2x﹣4≥0的解集是.10.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.11.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=°.12.如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.13.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是.14.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=度.三、解答题(共8小题,满分58分)15.解不等式5x+15>0,并将解集在数轴上表示出来.16.解不等式组.17.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).(1)写出A、B两点的坐标:A(,)、B(,);(2)画出△ABC绕点C旋转180°后得到的△A1B1C1;(3)写出A1、B1两点的坐标:A1(,)、B1(,).19.如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.20.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算.例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,求a的取值范围.21.如图,△ABC中,AB=AC,∠A=50°,DE是腰AB的垂直平分线,求∠DBC的度数.22.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?八年级(下)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤2【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式组解集的方法进行解答即可.【解答】解:由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.【点评】本题考查了在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B 是中心对称图形.故选:B.【点评】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.5【考点】等腰三角形的性质.【分析】根据等腰三角形的性质可得AB=AC,继而得出AC的长.【解答】解:∵∠B=∠C,∴AB=AC=5.故选D.【点评】本题考查了等腰三角形的性质,解答本题的关键是掌握等腰三角形的两腰相等,底边上的两底角相等.4.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【考点】坐标与图形变化-平移.【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【考点】旋转的性质.【专题】网格型;数形结合.【分析】△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.【点评】本题考查了旋转的性质,旋转前后对应角相等,本题也可通过两角互余的性质解答.6.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A.3种B.6种C.8种D.12种【考点】利用平移设计图案;三角形三边关系;勾股定理.【专题】压轴题.【分析】利用网格结合三角形三边关系得出只有通过平移ab,ad,bd可得到三角形,进而得出答案.【解答】解:由网格可知:a=,b=d=,c=2,则能组成三角形的只有:a,b,d可以分别通过平移ab,ad,bd得到三角形,平移其中两条线段方法有两种,即能组成三角形的不同平移方法有6种.故选:B.【点评】此题主要考查了利用平移设计图案以及勾股定理和三角形三边关系,得出各边长是解题关键.二、填空题(共8小题,每小题3分,满分24分)7.用不等式表示:a+3大于﹣2:a+3>﹣2.【考点】由实际问题抽象出一元一次不等式.【分析】由a+3大于﹣2即可列出不等式a+3>﹣2.【解答】解:由题意得a+3>﹣2.故答案为a+3>﹣2.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.8.如果等腰三角形的一个底角是80°,那么顶角是20度.【考点】等腰三角形的性质;三角形内角和定理.【分析】由已知等腰三角形的一个底角是80°,利用等腰三角形的性质得另一个底角也是80°,结合三角形内角和定理可求顶角的度数【解答】解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是80°,∴另一个底角也是80°,∴顶角的度数为180°﹣80°﹣80°=20°.故填20.【点评】本题考查了等腰三角形的性质及三角形内角和定理;借助三角形的内角定理求解有关角的度数问题是一种很重要的方法,要熟练掌握.9.不等式2x﹣4≥0的解集是x≥2.【考点】解一元一次不等式.【分析】先移项,再把x的系数化为1即可.【解答】解:移项得,2x≥4,x的系数化为1得,x≥2.故答案为:x≥2.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.10.若直角三角形的一个锐角为50°,则另一个锐角的度数是40度.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.【点评】本题利用直角三角形两锐角互余的性质.11.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=35°.【考点】角平分线的性质.【分析】根据到角的两边距离相等的点在角的平分线上判断OQ是∠AOB的平分线,然后根据角平分线的定义解答即可.【解答】解:∵QC⊥OA于C,QD⊥OB于D,QC=QD,∴OQ是∠AOB的平分线,∵∠AOB=70°,∴∠AOQ=∠A0B=×70°=35°.故答案为:35.【点评】本题考查了角平分线的判定以及角平分线的定义,根据到角的两边距离相等的点在角的平分线上判断OQ是∠AOB的平分线是解题的关键.12.如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.【考点】利用旋转设计图案.【分析】直接利用中心对称图形的性质得出涂阴影的位置.【解答】解:如图所示:.【点评】此题主要考查了利用旋转设计图案,正确掌握中心对称图形的性质是解题关键.13.一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是x >﹣2.【考点】一次函数与一元一次不等式.【分析】一次函数的y=kx+b图象经过点(﹣2,0),由函数表达式可得,kx+b>0其实就是一次函数的函数值y>0,结合图象可以看出答案.【解答】解:由图可知:当x>﹣2时,y>0,即kx+b>0;因此kx+b>0的解集为:x>﹣2.故答案为:x>﹣2【点评】本题考查了数形结合的数学思想,即学生利用图象解决问题的方法,这也是一元一次不等式与一次函数知识的具体应用.易错易混点:学生往往由于不理解不等式与一次函数的关系或者不会应用数形结合,盲目答题,造成错误.14.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.三、解答题(共8小题,满分58分)15.解不等式5x+15>0,并将解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】按照解一元一次不等式的方法,一步步的计算,再将解集在数轴上表示出来即可.【解答】解:移项,得5x>﹣15,两边同时除以5,得x>﹣3.将x>﹣3在数轴上表示出来如下图.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,解题的关键是解不等式得出x>﹣3.本题属于基础题,难度不大,解决该题型题目时,注意解集在数轴上表示时是用实心点还是用空心点.16.解不等式组.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤2,解②得x>﹣3.则不等式组的解集是:﹣3<x≤2.故答案是:﹣3<x≤2【点评】本题考查了一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.【考点】含30度角的直角三角形.【分析】根据直角三角形的性质可知BC=AB=×4=2,因为CD是△ABC的高,所以∠CDA=∠ACB=90°,∠B=∠B,故∠BCD=∠A=30°,BD=BC=×2=1.【解答】解:∵△ABC中,∠ACB=90°,∠A=30°,AB=4,∴BC=AB=×4=2,∵CD是△ABC的高,∴∠CDA=∠ACB=90°,∠B=∠B,故∠BCD=∠A=30°,∴在Rt△BCD中,BD=BC=×2=1,∴BD=1.【点评】此题很简单,考查的是直角三角形的性质,解题关键是利用30°角所对的直角边等于斜边的一半解决问题.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).(1)写出A、B两点的坐标:A(﹣1,2)、B(﹣3,1);(2)画出△ABC绕点C旋转180°后得到的△A1B1C1;(3)写出A1、B1两点的坐标:A1(1,﹣4)、B1(3,﹣3).【考点】作图-旋转变换.【分析】(1)根据网格结构写出点A、B的坐标;(2)根据网格结构找出点A、B关于点C的对称点A1、B1的位置,然后顺次连接即可,(3)结合图形可得出A1、B1的坐标.【解答】解:(1)A(﹣1,2)B(﹣3,1);(2)画出△ABC绕点C旋转180°后得到的△A1B1C1如图:(3)A1(1,﹣4)B1(3,﹣3);【点评】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.【考点】等腰三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】由MD⊥BC,且∠B=90°得AB∥MD,∠BAD=∠D,再利用AD为∠BAC的平分线得∠BAD=∠MAD,利用等量代换即可证明.【解答】证明:∵MD⊥BC,且∠B=90°,∴AB∥MD,∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD,∴∠D=∠MAD,∴MA=MD【点评】此题考查学生对等腰三角形的判定与性质和平行线段的判定与性质的理解和掌握,难度不大,是一道基础题.20.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算.例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,求a的取值范围.【考点】一元一次不等式组的整数解.【专题】新定义.【分析】根据新定义列出不等式组,根据一元一次不等式组的解法解出不等式组,根据题意求出a的取值范围.【解答】解:由题意得,a<2x﹣2﹣x+2<7,则a<x<7,∵解集中有两个整数解,∴4≤a<5,故答案为:4≤a<5.【点评】本题考查的是新定义和一元一次不等式的整数解,正确理解新定义、掌握一元一次不等式的解法是解题的关键.21.如图,△ABC中,AB=AC,∠A=50°,DE是腰AB的垂直平分线,求∠DBC的度数.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】已知∠A=50°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.【解答】解:∵∠A=50°,AB=AC,∴∠ABC=∠ACB=(180°﹣∠A)=65°又∵DE垂直且平分AB,∴DB=AD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°.即∠DBC的度数是15°.【点评】本题考查的是等腰三角形的性质以及线段垂直平分线的性质.垂直平分线上任意一点,到线段两端点的距离相等.22.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】应用题.【分析】(1)设购买1台平板电脑和1台学习机各需x元,y元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设购买平板电脑x台,学习机(100﹣x)台,根据“购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍”列出不等式组,求出不等式组的解集,即可得出购买方案,进而得出最省钱的方案.【解答】解:(1)设购买1台平板电脑和1台学习机各需x元,y元,根据题意得:,解得:,则购买1台平板电脑和1台学习机各需3000元,800元;(2)设购买平板电脑x台,学习机(100﹣x)台,根据题意得:,解得:37.03≤x≤40,正整数x的值为38,39,40,当x=38时,y=62;x=39时,y=61;x=40时,y=60,方案1:购买平板电脑38台,学习机62台,费用为114000+49600=163600(元);方案2:购买平板电脑39台,学习机61台,费用为117000+48800=165800(元);方案3:购买平板电脑40台,学习机60台,费用为120000+48000=168000(元),则方案1最省钱.【点评】此题考查了一元一次不等式组的应用,以及二元一次方程组的应用,找出题中的等量关系是解本题的关键.。