第三节 B-样条曲线与曲面
- 格式:ppt
- 大小:1.79 MB
- 文档页数:66
(4条消息)曲线曲面基本理论(二)一、Bezier曲线的生成生成一条Bezier 曲线实际上就是要求出曲线上的点。
下面介绍两种曲线生成的方法:1、根据定义直接生成 Bezier 曲线绘制Bezier曲线主要有以下步骤:2、Bezier 曲线的递推 (de Casteljau)算法根据 Bezier 曲线的定义确定的参数方程绘制 Bezier 曲线,因其计算量过大,不太适合在工程上使用。
de Casteljau 提出的递推算法则要简单得多。
Bezier 曲线上的任一个点(t),都是其它相邻线段的同等比例( t ) 点处的连线,再取同等比例( t ) 的点再连线,一直取到最后那条线段的同等比例 ( t )处,该点就是Beizer曲线上的点( t ) 。
以二次 Bezier 曲线为例,求曲线上t=1/3的点:当t 从0变到1时,它表示了由三顶点P0、P1、P2三点定义的一条二次Bezier曲线。
二次Bezier曲线P02可以定义为分别由前两个顶点(P0,P1)和后两个顶点(P1,P2)决定的一次Bezier曲线的线性组合。
由(n+1)个控制点Pi(i=0,1,...,n)定义的n次Bezier曲线P0n可被定义为分别由前、后n个控制点定义的两条(n-1)次Bezier曲线P0n-1与P1n-1的线性组合:这便是著名的de Casteljau算法。
用这一递推公式,在给定参数下,求Bezier曲线上一点P(t)非常有效。
de Casteljau算法稳定可靠,直观简便,可以编出十分简捷的程序,是计算Bezier曲线的基本算法和标准算法。
这一算法可用简单的几何作图来实现。
3、Bezier曲线的拼接几何设计中,一条Bezier曲线往往难以描述复杂的曲线形状。
这是由于增加特征多边形的顶点数,会引起Bezier曲线次数的提高,而高次多项式又会带来计算上的困难。
采用分段设计,然后将各段曲线相互连接起来,并在接合处保持一定的连续条件。
四、B 样条曲线与曲面Bezier 曲线具有很多优越性,但有二点不足:1)特征多边形顶点数决定了它的阶次数,当n 较大时,不仅计算量增大,稳定性降低,且控制顶点对曲线的形状控制减弱;2)不具有局部性,即修改一控制点对曲线产生全局性影响。
1972年Gordon 等用B 样条基代替Bernstein 基函数,从而改进上述缺点。
B样条曲线的数学表达式为:∑=+⋅=nk n k ki n i u N Pu P 0,,)()(在上式中,0 ≤ u ≤ 1; i= 0, 1, 2, …, m 所以可以看出:B样条曲线是分段定义的。
如果给定 m+n+1 个顶点 Pi ( i=0, 1, 2,…, m+n),则可定义 m+1 段 n 次的参数曲线。
在以上表达式中:N k,n (u) 为 n 次B 样条基函数,也称B样条分段混合函数。
其表达式为:∑-=+--+⋅⋅-=kn j nj n j n k j k n u C n u N 01,)()1(!1)(式中:0 ≤ u ≤1k = 0, 1, 2, …, n1.均匀B 样条曲线1一次均匀B 样条曲线的矩阵表示空间n+1个顶点i P (i = 0,1,…,n )定义n 段一次(k =0,1,n=1)均匀B 样条曲线,即每相邻两个点可构造一曲线段P i (u ),其定义表达为:[]10 ;,...,1 0111 1)(1≤≤=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-u n i u u P i i i P P=(1-u )P i -1 + u P i= N 0,1(u )P i -1 + N 1,1(u )P i第i 段曲线端点位置矢量:i i i i P P P P ==-)1(,)0(1,且一次均匀B 样条曲线就是控制多边形。
2 二次均匀B 样条曲线的空间n+1个顶点的位置矢量i P (i=0,1,…,n )定义n -1段二次(k =0,1,2, n=2)均匀B 样条曲线,每相邻三个点可构造一曲线段P i (u )(i=1,…,n -1),其定义表达为:[]10 ;1,...,1 011022121 121)(112≤≤-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-u n i u u u P i i i i P P P= !21(1 - 2 u + u 2)P i -1 + !21(1 + 2 u - 2u 2)P i + !21u 2 P i +1= N 0,2(u )P i -1 + N 1,2(u )P i + N 2,2(u )P i +1端点位置矢量:)(5.0)0(1i i i P P P +=-,)(5.0)1(1++=i i i P P P ,即曲线的起点和终点分别位于控制多边形P i-1P i 和P i P i+1的中点。
第二章三维形态基本建模方法第一节形体的空间定位及表示方法一、空间、物体和结构我们每天的生活发生在三维环境中,而且充满着三维物体,我们总是看到、感到三维。
当设计实体模型时,我们通常认为许多事情理所当然。
但在用计算机对三维场景模型化时,那么我们不得不熟悉大量的计算机软件工具,这些工具可用于模型化物体和环境。
在描述三维场景的三维模型化软件中使用的许多基本约定是基于各种行业中使用的传统约定。
例如,建筑师为了用一个简明的方法表达他们设计的空间,使用各种涉及测量、构图和定序的约定。
即使简单的矩形房间设计也要测量多次,以便于房间的所有构件放在被设计放置的地方。
此外,为了准确地按照设计师的图纸来建造,泥瓦工需要进行测量。
多年来泥瓦工和建筑师已形成约定,如何测量空间、建造物体、在结构中安装,它们的约定是精确、简洁的。
我们用类似的约定来描述用一个计算机程序模拟的三维空间中物体的尺寸、位置和次序。
让我们从定义空间或场景的边界开始三维空间的定义,最简单的方法是想象我们是在一个大立方体内工作。
可以将这个立方体当作我们的空间或环境。
在这个立方体中的物体是可见的,在其外部的物体是不可见的。
在这个空间中的主参考点称为主空间原点。
这个原点通常位于这个空间的中心。
根据模型需要和方案,该点也可放在或重新放在其他点上。
所有三维空间都有3个基本的维:宽度、高度和深度。
表达三维空间中这些维的普遍方法是使用箭头或轴。
通常用字母X表示标记三维空间宽度的轴;用Y表示标记三维空间高度的轴;用Z表示标记三维空间深度的轴。
这三个轴交叉的空间点就是主坐标原点。
直角坐标系可以用来定义三维空间中特定的位置,精确定位三维空间中物体的点。
René Descartes是一位18世纪法国的哲学家和数学家,他正式使用标记为X、Y、Z的3个轴表示三维空间中维的思想。
他推导出的坐标系称为笛卡尔坐标系,在该系统中每个轴被分成许多测量单位。
原理上,这些单位是抽象的值,它可表示不同的测量单位和维刻度。
第一章曲面设计概要1、曲面造型的数学概念:(1)、贝塞尔(Bezier)曲线与曲面:法国雷诺的Bezier在1962年提出的,是三次曲线的形成原理。
这是由四个位置矢量Q0、Q1、Q2、Q3定义的曲线。
通常将Q0,Q1,…,Qn组成的多边形折线称为Bezier控制多边形,多边形的第一条折线与最后一条折线代表曲线起点和终点的切线方向,其他折线用于定义曲线的阶次与形状。
(2)、B样条曲线与曲面:与Bezier曲线不同的是权函数不采用伯恩斯坦基函数,而采用B样条基函数。
(3)、非均匀有利B样条(NURBS)曲线与曲面:NURBS是Non-Uniform Rational B-Splines的缩写。
Non-Uniform(非统一)指一个控制顶点的影响力的范围能够改变。
当创建一个不规则曲面的时候,这一点非常有用。
同样,统一的曲线和曲面在透视投影下也不是无变化的,对于交互的3D建模来说,这是一个严重的缺陷。
Rational(有理)指每个NURBS物体都可以用数学表达式来定义。
B-Spline(B样条)指用路线来构建一条曲线,在一个或更多的点之间以内差值替换。
(4)NURBS曲面的特性及曲面连续性定义:NURBS曲面的特性:NURBS用数学方法来描述形体,采用解析几何图形,曲线或曲面上任何一点都有其对应的坐标(x,y,z),据有高度的精确性。
曲面G1与G2连续性定义:Gn表示两个几何对象间的实际连续程度。
●G0:两个对象相连或两个对象的位置是连续的。
●G1:两个对象光滑连接,一阶微分连续,或者是相切连续的。
●G2:两个对象光滑连接,二阶微分连续,或者两个对象的曲率是连续的。
●G3:两个对象光滑连接,三阶微分连续。
●Gn的连续性是独立于表示(参数化)的。
2、检查曲面光滑的方法:①、对构造的曲面进行渲染处理,可通过透视、透明度和多重光源等处理手段产生高清晰度的、逼真的彩色图像,再根据处理后的图像光亮度的分布规律来判断出曲面的光滑度。
上课内容
区间非零
次数p=2
顶点数n+1=4+1 M=n+p+1=4+2+1节点数m+1=8次数p=3
顶点数n+1=6+1
M=n+p+1=6+3+1
节点数m+1=11
9/17
11/17
例题:
三、NURBS 曲线形状的修改
(1)NURBS 曲线形状是由那些因素决定的?实际应用中,若要对NURBS 曲线作局部修改,一般可采取什么办法?
(2)如题图所示,由顶点V 0、V 1、V 2、V 3、V 4、V 5构造NURBS 曲线,改变顶点V 3所对应的权因子ω3得到的三条不同形状的曲线,B ,N ,B i 分别是ωi =0,ωi =1,ωi ≠{0,1}的对应曲线上的点。
1) 请写出ω3与点B ,N ,B i 及V 3四点之间的关系。
2) 定性分析ωi 对曲线形状的影响。
12/17圆锥曲线、圆弧及圆的NURBS 表示
CSF=ω2/ωω,
优弧、半圆可以利用重节点将两段、三段劣弧拼接组成。
内部重节点的一种给法:采用二重节点(端点仍为三重)
18/17。