6、反比例(5)
- 格式:ppt
- 大小:374.00 KB
- 文档页数:18
六年级反比例教案5篇六年级反比例教案5篇六年级反比例教案篇1教学目标:1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;教学难点:正确判断两种相关联的量是否成反比例;教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)每次拿的支数105421拿的次数总支数教学过程:一、复习1、什么叫做“成正比例的量”?2、判断两种量是否成正比例关键是什么?3、练习:课本表中的两种量是不是成正比例?为什么?二、小组协作概括“成反比例的量”的意义(一)活动??师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。
看哪个组完成的又快又好!1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?3、师:你能根据表格,写出这三个量的关系式吗?4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?(二)活动二:(例3)1、课件出示例3,指名读题,学生独立完成2、总结归纳出正比例和反比例的相同点和不同点三、强化练习发展提高1判定两个量是否成反比例,主要看它们的()是否一定。
2全班人数一定,每组的人数和组数。
()和()是相关联的量。
每组的人数×组数=全班人数(一定)所以()和()是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
1.百米赛跑,路程100米不变,速度和时间是反比例;
2.排队做操,总人数不变,排队的行数和每行的人数是反比例;
3.做纸盒子,总个数一定,每人做的个数和人数;
4.买东西(实际就用文具用品),总钱数一定,它的单价和数量是反比例;
5.长方形的面积一定,长和宽是反比例;
6.长方体的体积一定,底面积和高是反比例.
7.等分一块蛋糕,每人分到的蛋糕与人数成反比例.
8.总价一定,单价与数量成反比例.
9.长方体体积一定,底面积与高成反比例
10.总纸盒一定,每人做的个数与人数成反比例
11一辆汽车匀速行驶,路程与时间成正比例.
12路程一定,时间和速度成反比例
13总价一定,单价和数量成反比例
14总页数一定,平均每天看的页数和看完书的天数成反比例
15总字数一定,打字速度和所用时间成反比例
16果汁总量一定,分的杯数和每杯果汁量成反比例
17总人数一定,排队的行数和每行的人数是反比例.
18 煤的总量一定,每天的烧煤量和烧的天数成反比
19树的总棵数一定,每行种的棵数与行数成反比
20一堆货物一定,运出的和剩下的成反比
21煤的总量一定,每天的烧煤量和烧的天数成反比
22树的总棵数一定,每行种的棵数与行数成反比
23工作总量一定,工效和时间成反比例。
六年级数学下册教案6 正比例和反比例(5)苏教版教案:六年级数学下册教案6 正比例和反比例(5)苏教版一、教学内容今天我们要学习的是苏教版六年级数学下册的第六章,主要内容是正比例和反比例。
我们将通过例题和练习来深入理解这两个概念。
二、教学目标通过本节课的学习,学生能够理解正比例和反比例的定义,能够识别生活中的正比例和反比例关系,并能够运用正比例和反比例的知识解决实际问题。
三、教学难点与重点本节课的重点是让学生理解正比例和反比例的概念,难点是让学生能够运用正比例和反比例的知识解决实际问题。
四、教具与学具准备为了帮助学生更好地理解正比例和反比例,我准备了一些图片和生活中的实例,以及一些练习题。
五、教学过程1. 导入:我会通过展示一些生活中的图片,如速度和时间的图表,让学生观察并引导学生思考这两个量之间的关系。
2. 讲解:接着,我会给出正比例和反比例的定义,并通过例题来解释这两个概念。
我会让学生一起跟我来解决这些例题,确保他们理解了正比例和反比例的运用。
3. 练习:在讲解完正比例和反比例后,我会给学生一些练习题,让他们自己来运用正比例和反比例的知识。
我会逐一讲解他们的答案,确保他们掌握了这个概念。
六、板书设计七、作业设计为了让学生能够巩固今天所学的知识,我会布置一些有关正比例和反比例的练习题,包括计算题和应用题。
我会确保这些题目能够覆盖我们今天所学的所有内容。
八、课后反思及拓展延伸课后,我会反思这节课的教学效果,看看学生们是否掌握了正比例和反比例的概念,以及他们是否能够运用这些知识解决实际问题。
对于那些还没有掌握的学生,我会考虑如何个别辅导他们。
同时,我也会寻找一些相关的拓展材料,让学生们能够更深入地了解正比例和反比例的应用。
这就是我今天要分享的教案。
希望通过这个教案,学生们能够理解和掌握正比例和反比例的概念,并能够运用这些知识解决实际问题。
谢谢大家的聆听。
重点和难点解析在上述教案中,有几个重点和难点是我需要特别关注的。
反比例函数取值范围问题1、若点(-2,1y )、(-1,2y )、(2,3y )在反比例函数xy 100-=的图象上,则1y ,2y ,3y 的大小关系是 .(从小到大排列) 2、反比例函数xy 1=的图象上有两点),(11y x A 、),(22y x B 且021<<x x ,那么1y 与2y 之间的大小关系为 . (从大到小排列) 3.设反比例函数xky == (k ≠0)的图象经过点(x 1,y 1)和(x 2,y 2),且当x 1<x 2时,y 1>y 2,则k 的取值范围是______ 。
4、设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 5.若A(a,y1)、B(b,y2)、C(c,y3)在函数)0(>=k xky 的图象上,且a <b <0 <c 。
则y1、y2和y3的大小关系是 ( ) A 、1y >2y >3y B 、2y >1y >3y C 、3y >1y >2y D 、3y >2y >1y 6、反比例函数xy 1=的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么1y 与2y 之间的大小关系为( ) A 、21y y < B 、 21y y > C 、 21y y = D 、不能确定 7、已知正比例函数y= - 3x 和反比例函数的图象xky =都过点A (1,m ), (1)求此反比例函数解析式及另一交点的坐标.(2)点(2,a )、(-1,b)、(-2,c )都在这个反比例函数图象上,比较a 、b 、c 的大小.8、正比例函数y=x 的图象与反比例函数y=kx的图象有一个交点的纵坐标是2, 求(1)x=-3时反比例函数y 的值;(2)当-3<x< - 1时,反比例函数y 的取值范围. (3)当x>2时,反比例函数y 的取值范围.(4)当x< -4时,反比例函数y 的取值范围. (5)当2<y<6时,反比例函数y 的取值范围.(6)当y<4时,反比例函数y 的取值范围.在函数1y x =的图象上有三个点的坐标分别为(1,1y )、(12,2y )、(3-,3y ),函数值y 1、y 2、y 3的大小关系是( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c >B .b c <C .b c =D .无法判断如图,一次函数y 1=x -1与反比例函数y 2=x2的图像交于点A (2,1),B (-1,-2),则使y 1>y 2的x 的取值范围是( )A. x>2B. x>2或-1<x<0C.-1<x<2D. x>2或x<-11.若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足______时,1y >2y . 2.在反比例函数12my x-=的图象上有两点1122()()A x y B x y ,,,,当120x x <<时,有12y y <,则m 的取值范围是( )A .0m <B .0m >C .12m <D .12m >。
正反比例知识点正反比例是数学中常见的概念,用来描述两个变量之间的关系。
在正反比例中,当一个变量的值增加时,另一个变量的值相应地减少;反之亦然。
下面是关于正反比例的相关知识点:1. 正比例:正比例是指两个变量之间的关系是一种直线关系,当一个变量的值增加时,另一个变量的值也相应增加;当一个变量的值减少时,另一个变量的值也相应减少。
2. 反比例:反比例是指两个变量之间的关系是一种反比关系,当一个变量的值增加时,另一个变量的值相应减少;当一个变量的值减少时,另一个变量的值相应增加。
3. 正比例常数:在正比例中,两个变量之间的关系可以用一个常数来表示。
这个常数被称为正比例常数,通常用字母k表示。
正比例常数表示了两个变量之间的增长或减少的比例关系。
4. 反比例常数:在反比例中,两个变量之间的关系可以用一个常数来表示。
这个常数被称为反比例常数,通常用字母k表示。
反比例常数表示了两个变量之间的变化趋势。
5. 正比例图表:正比例关系可以通过绘制图表来表示。
图表中的数据点呈一条直线,斜率代表了正比例常数的值。
通常我们可以通过计算两个变量的比值来确定斜率。
6. 反比例图表:反比例关系也可以通过绘制图表来表示。
图表中的数据点呈一条曲线,而且曲线与x轴和y轴都不会相交。
通常我们可以通过计算两个变量的积来确定反比例关系。
7. 正反比例的应用:正反比例关系在日常生活中有着广泛的应用。
例如,速度和时间之间的关系可以用正比例来描述;面积和边长之间的关系可以用反比例来描述。
了解正反比例的概念可以帮助我们解决实际问题。
总结:正反比例是数学中的重要概念,用来描述两个变量之间的关系。
正比例关系是一种直线关系,而反比例关系是一种反比关系。
通过了解正反比例的知识点,我们可以更好地理解和应用数学。
完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
反比例函数基本知识点题型梳理知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①xky =(0k ≠); ②1kx y -=(0k ≠); ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x的反比例函数时,x 也是y 的反比例函数。
注:(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数x ky =中的两个变量必成反比例关系。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
注意:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k > 0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x 的增大而减小。
六年级正比例和反比例知识点总结(共10篇) 反比例正比例知识点正比例和反比例判断正比例反比例的题正比例反比例应用题篇一:六年级下册正比例和反比例的知识点知识点:1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A÷B=K(一定)除法关系A=K(一定) B3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇二:六年级下册正比例和反比例的知识点六年级下册第二单元知识点1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A÷B=K(一定)除法关系3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离A=K(一定) B7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇三:正比例和反比例的意义知识点总结加典型例题正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。