练习:(1)求函数y=x2在x=1处的导数; 处的导数; 练习:(1)求函数 求函数 处的导数 1 (2)求函数 处的导数. (2)求函数 y = x + 在x=2处的导数. 处的导数 x
(1) 解: ∆y = (1+ ∆x)2 −12 = 2∆x + (∆x)2 ,
∆y 2∆x + (∆x)2 = = 2 + ∆x, ∆x ∆x ∆y ∴ 当 ∆x → 0时, → 2,∴ y ′ | x =1 = 2. ∆x ∆x
例 :已 知 函 数 y = 求 x0的 值.
解 :Q ∆ y =
∴ ∆y = ∆x =
1 x 在 x = x0处 附 近 有 定 义 , 且 y ' |x = x0 = , 2
x0 + ∆x − x0 ,
x0 + ∆x − x0 ( x0 + ∆x − x0 )( x0 + ∆x + x0 ) = ∆x ∆x ( x 0 + ∆ x + x 0 ) 1 . x 0 + ∆x + x 0
∆y (3) 求导数A ∆X →0时, → A ∆x
例1.求y=x2+2在点 在点x=1处的导数 1.求 在点 处的导数 解:∆y = [(1+ ∆x)2 + 2] − (12 + 2) = (∆x)2 + 2∆x
∆y 2∆x + (∆x)2 = = 2 + ∆x ∆x ∆x ∆y ∴当∆x →0时, →2 ∆x 变题. 在点x=a处的导数 变题.求y=x2+2在点 在点 处的导数 ∴y' |x=1= 2
1 2 物体作自由落体运动,运动方程为s = gt 其中位移单 例1:物体作自由落体运动,运动方程为: : 2 O 位是m,时间单位是s,g=10m/s m,时间单位是 位是m,时间单位是s,g=10m/s2.求: