2020年高考数学真题汇编 1:集合与简易逻辑 理
- 格式:doc
- 大小:600.50 KB
- 文档页数:5
2020年高考数学试题分类汇编——集合(8)(2020安徽理科)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且S B Z ≠I 的集合S 为(A )57 (B )56 (C )49 (D )8 (8)【答案】B【命题意图】本题考查集合间的基本关系,考查集合的基本运算,考查子集问题,考查组合知识.属中等难度题.【解析】集合A 的所有子集共有6264=个,其中不含4,5,6,7的子集有328=个,所以集合S 共有56个.故选B.(2)(2020安徽文科)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U ⋂等于 B(A )}{,,,1456(B ) }{,15(C ) }{4(D ) }{,,,,123451.(2020北京理科)已知集合P={x ︱x 2≤1},M={a }.若P∪M=P,则a 的取值范围是 C A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) (1)(2020北京文科)已知全集U=R ,集合{}21P x x =≤,那么U C P =DA. (),1-∞-B. ()1,+∞C. ()1,1-D. ()(),11,-∞-+∞U1. (2020福建理科)i 是虚数单位,若集合S=}{1.0.1-,则 BA.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 1. (2020福建文科) 若集合M={-1,0,1},N={0,1,2},则M ∩N 等于A A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 2.(2020广东理科)已知集合(){,A x y =∣,x y 为实数,且}221x y +=,(){,B x y =,x y为实数,且}y x =,则A B ⋂的元素个数为 C A.0 B.1 C.2 D.3 2.(2020广东文科)已知集合(){,|A x y x y =、为实数,且}221x y +=,(){,|B x y x y=、为实数,且}1x y +=,则A B I 的元素个数为( C )A .4B .3C .2D .12. (2020湖南理科)设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 答案:A解析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。
历年(2020‐2023)全国高考数学真题分类(集合与常用逻辑用语)汇编【2023年真题】1.(2023·新课标I 卷 第1题) 已知集合{2,1,0,1,2}M =--,2{|60}N x x x =--…,则M N ⋂=( ) A. {2,1,0,1}--B. {0,1,2}C. {2}-D. {2}2. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件3.(2023·新课标II 卷 第2题)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =( ) A. 2B. 1C.23D. 1-【2022年真题】4.(2022·新高考I 卷 第1题)若集合{4}M x =<,{|31}N x x =…,则M N ⋂=( ) A. {|02}x x <…B. 1{|2}3x x <…C. {|316}x x <…D. 1{|16}3x x <…5.(2022·新高考II 卷 第1题)已知集合{1,1,2,4}A =-,{||1|1}B x x =-…,则A B ⋂=( ) A. {1,2}-B. {1,2}C. {1,4}D. {1,4}-【2021年真题】6.(2021·新高考I 卷 第1题)设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B ⋂=( ) A. {2}B. {2,3}C. {3,4}D. {2,3,4}7.(2021·新高考II 卷 第2题)设集合{1,2,3,4,5,6},U = {1,3,6},{2,3,4}A B ==,则()U A B ⋂=ð( ) A. {3}B. {1,6}C. {5,6}D. {1,3}【2020年真题】8.(2020·新高考I 卷 第1题)设集合{|13}A x x =剟,{|24}B x x =<<,则A B ⋃=( ) A. {|23}x x <…B. {|23}x x 剟C. {|14}x x <…D. {|14}x x <<9.(2020·新高考II 卷 第2题)设集合{2,3,5,7}A =,{1,2,3,5,8}B =,则A B ⋂=( ) A. {1,3,5,7} B. {2,3} C. {2,3,5} D. {1,2,3,5,7,8}参考答案1.(2023·新课标I 卷 第1题)解:(,2][3,)N =-∞-⋃+∞,所以{2};M N ⋂=-故选.C 2. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d -=+,111222n S n d da d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n为等差数列,即甲是乙的充分条件. 反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C3.(2023·新课标II 卷 第2题)解:A B ⊆,则220a -=,1a =,{0,1}A =-,{1,1,0}B =-,满足,选.B 4.(2022·新高考I 卷 第1题)解:因为{|016}M x x =<…,1{|}3N x x =…, 故1{|16}.3M N x x ⋂=<… 5.(2022·新高考II 卷 第1题)解:方法一:通过解不等式可得集合{|02}B x x =剟,则{1,2}A B ⋂=,故B 正确. 法二:代入排除法.1x =-代入集合{||1|1}B x x =-…,可得|1||11|21x -=--=>,1x =-,不满足,排除A 、;4D x =代入集合{||1|1}B x x =-…,可得|1||41|31x -=-=>,4x =,不满足,排除 C ,故B 正确.6.(2021·新高考I 卷 第1题)解:因为集合{}{}24,2,3,4,5A x x B =-<<=,所以{2,3}.A B ⋂= 故选.B7.(2021·新高考II 卷 第2题) 解:由题设可得U {1,5,6}B =ð, 故U (){1,6}.A B ⋂=ð 故选.B8.(2020·新高考I 卷 第1题)解:因为集合{|13}A x x =剟,{|24}B x x =<<, ={|14}.A B x x ⋃<…故选.C9.(2020·新高考II 卷 第2题)解:因为集合A ,B 的公共元素为:2,3,5 故{2,3,5}.A B ⋂= 故选:.C。
2021高|考真题分类汇编:集合与简易逻辑1.【2021高|考真题浙江理1】设集合A ={x|1<x <4} ,集合B ={x|2x -2x -3≤0}, 那么A ∩ (C R B ) =A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪ (3,4 ) 【答案】B【解析】B ={x|2x -2x -3≤0} =}31|{≤≤-x x ,A ∩ (C R B ) ={x|1<x <4} }3,1|{>-<x x x 或 =}43|{<<x x .应选B.2.【2021高|考真题新课标理1】集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,那么B 中所含元素的个数为 ( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时 ,y 可是1 ,2 ,3 ,4.当4=x 时 ,y 可是 1 ,2 ,3.当3=x 时 ,y 可是1 ,2.当2=x 时 ,y 可是1 ,综上共有10个 ,选D.3.【2021高|考真题陕西理1】集合{|lg 0}M x x => ,2{|4}N x x =≤ ,那么M N =( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,应选C.4.【2021高|考真题山东理2】全集{}0,1,2,3,4U = ,集合{}{}1,2,3,2,4A B == ,那么U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2021高|考真题辽宁理1】全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,那么)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9} .应选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素 ,所剩的元素形成的集合 ,由此可快速得到答案 ,选B【点评】此题主要考查集合的交集、补集运算 ,属于容易题 .采用解析二能够更快地得到答案 . 6.【2021高|考真题辽宁理4】命题p :∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0 ,那么⌝p 是 (A) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题 ,所以其否认⌝p 应是特称命题 ,又(f (x 2)-f (x 1))(x 2-x 1)≥0否认为(f (x 2)-f (x 1))(x 2-x 1)<0 ,应选C【点评】此题主要考查含有量词的命题的否认 ,属于容易题 .7.【2021高|考真题江西理1】假设集合A ={ -1 ,1} ,B ={0 ,2} ,那么集合{z ︱z =x +y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C 【答案】C【命题立意】此题考查集合的概念和表示 .【解析】因为B y A x ∈∈, ,所以当1-=x 时 ,2,0=y ,此时1,1-=+=y x z .当1=x 时 ,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素 ,选C. 8.【2021高|考真题江西理5】以下命题中 ,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .假设,x y ∈R ,且2,x y +>那么,x y 至|少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数【答案】B【命题立意】此题考查命题的真假判断 .【解析】对于B,假设21,z z 为共轭复数 ,不妨设bi a z bi a z -=+=21, ,那么a z z 221=+ ,为实数 .设di c z bi a z +=+=21, ,那么i d b c a z z )()(21+++=+ ,假设21z z +为实数 ,那么有0=+d b ,当c a ,没有关系 ,所以B 为假命题 ,选B.9.【2021高|考真题湖南理1】设集合M ={ -1,0,1} ,N ={x|x 2≤x} ,那么M ∩N = A.{0} B.{0,1} C.{ -1,1} D.{ -1,0,0} 【答案】B 【解析】{}0,1N = M ={ -1,0,1} ∴M ∩N ={0,1}.【点评】此题考查了{}0,1N =,再利用交集定义得出M ∩N. 10.【2021高|考真题湖南理2】命题 "假设α =4π,那么tan α =1”的逆否命题是 α≠4π ,那么tan α≠1 B. 假设α =4π,那么tan α≠1 C. 假设tan α≠1 ,那么α≠4π D. 假设tan α≠1 ,那么α =4π【答案】C【解析】因为 "假设p ,那么q 〞的逆否命题为 "假设p ⌝ ,那么q ⌝〞 ,所以 "假设α =4π ,那么tan α =1”的逆否命题是 "假设tan α≠1 ,那么α≠4π〞. 【点评】此题考查了 "假设p ,那么q 〞形式的命题的逆命题、否命题与逆否命题 ,考查分析问题的能力.11.【2021高|考真题湖北理2】命题 "0x ∃∈R Q ,30x ∈Q 〞的否认是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否认知 ,是把谓词取否认 ,然后把结论否认 .因此选D 12.【2021高|考真题广东理2】设集合U ={1,2,3,4,5,6} , M ={1,2,4 } ,那么CuM = A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,应选C.13.【2021高|考真题福建理3】以下命题中 ,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a +b =0的充要条件是ab= -1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多项选择用筛选法 ,因为0>xe 对任意R x ∈恒成立 ,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义 ,所以选项C 错误;应选D.14.【2021高|考真题北京理1】集合A ={x ∈R|3x +2>0} B ={x ∈R| (x +1 )(x -3)>0} 那么A ∩B = A ( -∞ , -1 )B ( -1 , -23 ) C ( -23,3 )D (3, +∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .应选D .15.【2021高|考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内 ,直线b 在平面β内 ,且b m ⊥ ,那么 "αβ⊥〞是 "a b ⊥〞的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】此题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ,②如果//a m ,那么a b ⊥与b m ⊥条件相同.16.【2021高|考真题全国卷理2】集合A ={1.3.} ,B ={1 ,m} ,A B =A, 那么m =A 0B 0或3C 1D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.假设3=m ,那么}3,1{},3,3,1{==B A ,满足A B A = .假设m m = ,解得0=m 或1=m .假设0=m ,那么}0,3,1{},0,3,1{==B A ,满足A B A = .假设1=m ,}1,1{},1,3,1{==B A 显然不成立 ,综上0=m 或3=m ,选B..17【2021高|考真题四川理13】设全集{,,,}U a b c d = ,集合{,}A a b = ,{,,}B b c d = ,那么B C A C U U ___________ .【答案】{},,a c d【命题立意】此题考查集合的根本运算法那么 ,难度较小. 【解析】},{d c A C U = ,}{a B C U = ,},,{d c a B C A C U U =∴18.【2021高|考真题上海理2】假设集合}012|{>+=x x A ,}2|1||{<-=x x B ,那么=B A .【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(- .19.【2021高|考真题天津理11】集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 那么m =__________ ,n =__________. 【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根 ,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n .20.【2021高|考江苏1】 (5分 )集合{124}A =,, ,{246}B =,, ,那么A B = ▲ .【答案】{}1,2,4,6 . 【考点】集合的概念和运算 . 【分析】由集合的并集意义得{}1,2,4,6AB = .21.【2021高|考江苏26】 (10分 )设集合{12}n P n =,,,… ,*N n ∈.记()f n 为同时满足以下条件的集合A 的个数:①n A P ⊆;②假设x A ∈ ,那么2x A ∉;③假设A C x n p ∈ ,那么A C x np ∉2 .(1 )求(4)f ;(2 )求()f n 的解析式 (用n 表示 ).【答案】解: (1 )当=4n 时 ,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,, , ∴ (4)f =4 .( 2 )任取偶数n x P ∈ ,将x 除以2 ,假设商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m .于是=2k x m ,其中m 为奇数*k N ∈ .由条件知.假设m A ∈那么x A k ∈⇔为偶数;假设m A ∉ ,那么x A k ∈⇔为奇数 .于是x 是否属于A ,由m 是否属于A 确定 .设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数 . 当n 为偶数〔 或奇数 )时 ,n P 中奇数的个数是2n (12n + ) . ∴()()2122()=2nn n f n n +⎧⎪⎨⎪⎩为偶数为奇数. 【考点】集合的概念和运算 ,计数原理 .【解析】 (1 )找出=4n 时 ,符合条件的集合个数即可 . (2 )由题设 ,根据计数原理进行求解 .22.【2021高|考真题陕西理18】 (本小题总分值12分 )(1 )如图 ,证明命题 "a 是平面π内的一条直线 ,b 是π外的一条直线 (b 不垂直于π ) ,c 是直线b 在π上的投影 ,假设a b ⊥ ,那么a c ⊥〞为真 . (2 )写出上述命题的逆命题 ,并判断其真假 (不需要证明 )【答案】。
第一章 集合与常用逻辑用语第一节 集合题型1 集合的基本概念——暂无题型2 集合间的基本关系——暂无题型3 集合的运算1.(2017江苏01)已知集合{}1,2A =,{}2,3B a a =+,若{}1AB =,则实数a 的值为 . 解析 由题意233a +…,故由{}1A B =,得1a =.故填1.2.(2017天津理1)设集合{}1,2,6A =,{}2,4B =,{}|15C x x =∈-R 剟,则()A B C =( ).A.{}2B.{}1,2,4C.{}1,2,4,6D.{}|15x x ∈-R 剟解析 因为{1,2,6},{2,4}A B ==,所以{1,2,6}{2,4}{1,2,4,6}AB ==, 从而(){1,2,4,6}[1,5]{1,2,4}A BC =-=.故选B .3.(2017北京理1)若集合{}–2<1A x x =<,{}–13B x x x =<>或,则AB =( ). A.{}–2<1x x <- B.{}–2<3x x <C.{}–1<1x x <D.{}1<3x x <解析 画出数轴图如图所示,则{}21A B x x =-<<-.故选A.31-1-2 4.(2017全国1理1)已知集合{}1A x x =<,{}31x B x =<,则( ).A. {}0A B x x =<B. A B =RC. {}1A B x x =>D. A B =∅解析{}1A x x =<,{}{}310x B x x x =<=<,所以{}0AB x x =<,{}1A B x x =<.故选A. 5.2017全国2理2)设集合{}1,2,4A =,{}240B x x x m =-+=.若1A B =,则B =( ).A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 解析 由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.6.(2017全国3理1)已知集合A ={}22(,)1x y x y +=,{}(,)B x y y x ==,则A B 中元素的个数为( ).A .3B .2C .1D .0 解析 集合A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,如图所示,所以AB 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2.故选B.7.(2017山东理1)设函数y =A ,函数()ln 1y x =-的定义域为B ,则A B =( ).A.()1,2B.(]1,2C.()2,1-D.[)2,1-解析 由240x -…,解得22x -剟,所以[]22A =-,.由10x ->,解得1x <,所以(),1B =-∞.从而{}{}{}=|22|1|21A B x x x x x x -<=-<剟?.故选D. 8.(2017浙江理1)已知集合{}11P x x =-<<,{}02Q x x =<<,那么P Q =( ).A.()1,2-B.()01,C.()1,0-D.()1,2解析 P Q 是取,P Q 集合的所有元素,即12x -<<.故选A .第二节 命题及其关系、充分条件与必要条件题型4 四种命题及真假关系1.(2017山东理3)已知命题:p 0x ∀>,()ln 10x +>;命题:q 若a >b ,则22a b >,下列命题为真命题的是( ).A.p q ∧B.p q ∧⌝C.p q ⌝∧D.p q ⌝∧⌝解析 由011x x >⇒+>,所以ln(1)0x +>恒成立,故p 为真命题;令1a =,2b =-,验证可知,命题q 为假.故选B.题型5 充分条件、必要条件、充要条件的判断1.(2017天津理4)设θ∈R ,则“ππ1212θ-<”是“1sin 2θ<”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 ππ10sin 121262θθθπ-<⇔<<⇒<.但0θ=,1sin 2θ<,不满足ππ1212θ-<,所以“ππ1212θ-<”是“1sin 2θ<”的充分不必要条件.故选A. 2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ).A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦,方向并不一定相反,故不一定存在.故选A.3.(2017浙江理6)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件解析 46111466151021S S a d a d a d +=+++=+,5121020S a d =+. 当0d >时,有4652S S S +>,当4652S S S +>时,有0d >.故选C .题型6 充分条件、必要条件中的含参问题——暂无第三节 简单的逻辑联结词、全称量词与存在量词题型7 判断含逻辑联结词的命题的真假——暂无题型8 全(特)称命题——暂无题型9 根据命题真假求参数的范围——暂无。
一、高考考试要求:有关集合的高考试题考查重点是集合与集合之间的关系近年试题加强了对集合的计算化简的考查并向无限集发展多以小題形式出现也会渗透在解答题之中相对独立。
具体理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z= {整数}(√) Z ={全体整数} (×)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N; A=,则CsA= {0})③空集的补集是全集.④若集合A=集合B,则CBA = , CAB = CS(CAB)= D(注:CAB = ).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.常用结论(1)非常规性表示常用数集:如{x|x=2(n-1)n∈Z}为偶数集{x|x=4n±1n∈Z}为奇数集等.(2)①一个集合的真子集必是其子集一个集合的子集不一定是其真子集;②任何一个集合是它本身的子集;③对于集合ABC若A⊆BB⊆C则A⊆C(真子集也满足);④若A⊆B则有A=⌀和A≠⌀两种可能.(3)集合子集的个数:集合A中有n个元素则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.集合元素个数:card(A∪B)=card(A)+card(B)-card(A∩B)(常用在实际问题中).1.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.0-1律:等幂律:求补律:A∩CUA=φ A∪CUA=U ðCUU=φ ðCUφ=U反演律:CU(A∩B)= (CUA)∪(CUB) CU(A∪B)= (C UA)∩(CUB)题组一常识题1.若集合A={-101},B={y|y=x2,x∈A},则A∩B=()A.{0}B.{1}C.{01} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={01},所以A∩B={01}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=集合则。
2022年高考数学尖子生强基计划专题1集合与简易逻辑 一、真题特点分析:1. 突出对思维能力的考查。
例1.【2020年武汉大学9】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( ) A. 32B. 56C. 72D. 84答案:B 进行分类讨论例2.【2020 年清华大学】已知集合{},,1,2,3,,2020A B C ⊆,且A B C ⊆⊆,则有序集合组(),,A B C 的个数是( ).A .20202B .20203C .20204D .20205答案:C例3.【北大】已知()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ⎛⎫∑ni ≤∑ni ⎛⎫≤∑1nn i i n n +⎛⎫≤+=∑∑,即)1≤,即))1n ni ix ≤∏法二:由11.ni ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n ni i i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x ⎫+≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2.注重和解题技巧,考查学生应用知识解决问题的能力。
例4.【北大】10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根. 【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.二、应试和准备策略1. 注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。
2020年高考数学十年高考真题精解(全国卷I)专题1 集合、复数、算法、命题与简易逻辑十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一:集合(2019新课标I 卷T1理科)已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019新课标I 卷T2文科)已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩∁U A =( )A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【答案】C【分析】先求出∁U A,然后再求B∩∁U A即可求解【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.【点评】本题主要考查集合的交集与补集的求解,属于基础试题.(2018新课标I卷T2理科)已知集合A={x|x2−x−2>0},则∁R A=A. {x|−1<x<2}B. {x|−1≤x≤2}C. {x|x<−1}∪{x|x>2}D. {x|x≤−1}∪{x|x≥2}【答案】B【解析】分析:首先利用一元二次不等式的解法,求出x2−x−2>0的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式x2−x−2>0得x<−1或x>2,所以A={x|x<−1或x>2},所以可以求得C R A={x|−1≤x≤2},故选B.【点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.(2017新课标I卷T1文科)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R【答案】A【分析】解不等式求出集合B ,结合集合交集和并集的定义,可得结论. 【解析】解:∵集合A={x|x <2},B={x|3﹣2x >0}={x|x <},∴A∩B={x|x <},故A 正确,B 错误;A ∪B={x||x <2},故C ,D 错误; 故选:A .【点睛】本题考查的知识点集合的交集和并集运算,难度不大,属于基础题.(2016新课标I 卷T1理科)设集合{}2430A x x x =-+<,{}230x x ->,则A B =I(A )33,2⎛⎫--⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】,. 故.故选D .(2017新课标I 卷T1理科)已知集合A={x|x <1},B={x|3x <1},则( ) A .A∩B={x|x <0} B .A ∪B=R C .A ∪B={x|x >1} D .A∩B=∅【答案】 A{}{}243013A x x x x x =-+<=<<{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭332A B x x ⎧⎫=<<⎨⎬⎩⎭I【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解析】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点睛】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用(2016新课标I卷T1文科)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5} C.{5,7} D.{1,7}【答案】B【解析】取A,B中共有的元素是{3,5},故选B(2015新课标I卷T1文科)已知集合{|32==+,}A x x n∈,{6B=,8,10,12,14},则集合n NI中元素的个数为()A BA.5B.4C.3D.2【答案】D【解析】解:{|32∈=,5,8,11,14,17,}n NA x x n==+,}{2⋯,I,14},则{8A B=I中元素的个数为2个,故集合A B故选:D.(2014新课标Ⅰ卷T1理科)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A .[﹣2,﹣1] B .[﹣1,2) C .[﹣1,1] D .[1,2)【答案】A【解析】A={x|x 2﹣2x ﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x <2}, 则A∩B={x|﹣2≤x≤﹣1}, 故选:A(2013新课标Ⅰ卷T1理科)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B【解析】:∵x (x -2)>0,∴x <0或x >2. ∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.(2013新课标I 卷T1文科)已知集合A ={1,2,3,4}}4,3,2,1{=A ,},|{2A n n x xB ∈==,则=B A I ( ).A .}4,1{B .}3,2{C .}16,9{D .}2,1{ 【答案】A【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.(2012新课标I 卷T1文科)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ̹B (B )B ̹A (C )A=B (D )A∩B=【答案】B【解析】A=(−1,2),故B ̹A ,故选B. (2011新课标I 卷T1文科)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N ,则P 的子集共有( ) A .2个B .4个C .6个D .8个【答案】B【分析】利用集合的交集的定义求出集合P ;利用集合的子集的个数公式求出P 的子集个数. 【解答】解:∵M={0,1,2,3,4},N={1,3,5}, ∴P=M∩N={1,3} ∴P 的子集共有22=4 故选:B .【点睛】本题考查利用集合的交集的定义求交集、考查一个集合含n 个元素,则其子集的个数是2n(2010新课标I 卷T2文科)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 【答案】C【分析】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5一、集合的基本概念1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅. 4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义. 5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系集合A ,B 中元素相同或集合A ,B 互为子集空集是任何集合的子集,是任何非空集合的真子集注意:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n -个非空子集,有21n -个真子集,有22n -个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆.三、集合的基本运算 1.集合的基本运算}B}B}2.集合运算的相关结论 AAU*集合间的基本关系在高考中时有出现,常考查求子集、真子集的个数及利用集合关系求参数的取值范围问题,主要以选择题的形式出现,且主要有以下几种命题角度: (1)求子集的个数;(2)由集合间的关系求参数的取值范围.在此题型中,我们常通过数轴来表示集合之间的关系,那么如何利用数轴来求解集合间的关系?涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域。
专题一 集合与常用逻辑用语【真题典例】(201B 江孰 仏5幷)U 知集合张心1*2.那 ㈣1•札即去心TK 毎广头UiW J"P* it H 1 怙品礼❶垓心考点❹解答过理❽易错警示H 贈谊初交优的址筈可斛门閃1斗 (1)交疑是、牛年a❷能力要求❻方法总结121 iJKT 的无當都呈两m 舍的卷共嗯魁怎裏合5和1疔此 !/烦求 (1)奁整的运幽11辰[由已1氐亡同 茹* HIH 虽Ewiar*丙霞含奁拡的方it(2 )交議的运摞隹胚仙门为匚山机C 足忌【3)交集中包舍「楷集會的埶坐共无翕, ❸思路分析即若址HftrE 艮則一定用岂111弗 m 左棄的宦丈戒利用节思图直橫求梆.11.1 集合 挖命题 【考情探究】分析解读集合在高考中的考查一般以基础小题呈现.考查的方式如下一是考查集合本身的内容即集合的概念,集合与集合之间的关系,元素与集合之间的关系;二是把集合作为工具,在考查其他内容时加以应 用,用集合语言加以叙述;三是考查有关集合的运算,有时会涉及函数的定义域、函数的值域、 方程、不等式 等有关知识;四是新定义问题,定义一个新的概念或运算,考查阅读理解能力及推理能力.破考点【考点集训】考点一集合的含义与表示1. 已知集合A={0,1,x 2-5X},若-4 4则实数x= ___________ .答案1或42. (2018江苏启东中学高三检测)已知a W1时,集合{x|a $P-a}中有且只有3个整数,则a的取值范围是________ .答案-1<a O考点二集合的关系1. 已知集合A={x|4 <2x W6},B=[a,b], 若A? B,则a-b的取值范围是__________.答案(-3-2]2. (2019届江苏南师附中检测)已知集合A={1,5,9},若非空集合B满足:B中各元素加4或减4后构成的集合均是A的子集,则集合B= ________ .答案{5}考点三集合的运算1. (2018江苏苏州高三暑假测试)已知集合A={x|-2vx<1},B={-1,0,1}, 则APB= ___________ .答案{-1,0}2. 设集合A={0,1},B={x|(x+2)(x-1)<0,x 2},贝U ALB= ______ .M 答案{-1,0,1}炼技法【方法集训】方法一与集合中的元素有关问题的求解策略1. (2019届江苏南通一中检测)已知集合A是由0,m,m2-3m+2三个元素组成的,且2 A则实数m的值为________ .答案32. (2018课标全国U理改编,2,5分)已知集合A={(x,y)|x 2+y2<3,x €Z,y €Z},则A中元素的个数为________ .答案9方法二集合基本运算的求解策略1. (2018 江苏南京、盐城一模)已知集合A={x|x(x-4)<0},B={0,1,5}, 则AfB= .答案{1}2. (2018江苏苏北四市期末)已知集合A={x|x 2-x=0},B={-1,0}, 则ALB= .答案{-1,0,1}方法三新定义问题的解题策略1. (2019届江苏海门实验中学检测)设P和Q是两个集合,定义集合P-Q={x|x甲,且x?Q},如果P={x|log 2x<1},Q={x||x-2|<1}, 那么P-Q= .答案{x|0<x <1}2. 已知集合M={1,2,3,4},A ? M.集合A中所有元素的乘积称为集合A的累积值”且规定:当集合A只有一个元素时,其累积值即为该元素的数值,空集的累积值为0.当集合A的累积值是奇数时,这样的集合A共有_ 个.答案3过专题【五年高考】A组自主命题江苏卷题组1. (2017江苏,1,5分)已知集合A={1,2},B={a,a 2+3}.若AfB={1},则实数a的值为____________ .答案12. (2016 江苏,1,5 分)已知集合A={-1,2,3,6},B={x|-2<x<3}, 则ACB ___________ .答案{-1,2}3. (2015江苏,1,5分)已知集合A={1,2,3},B={2,4,5}, 则集合ALB中元素的个数为____________ .答案 54. (2014 江苏,1,5 分)已知集合A={-2,-1,3,4},B={-1,2,3}, 则AfB= ___________ .答案{-1,3}B组统一命题、省(区、市)卷题组考点集合的运算1. (2018课标全国I理改编,2,5分)已知集合A={x|x 2-X-2>0},则.答案{x|-1夸€}2. (2018 北京理改编,1,5 分)已知集合A={x||x|<2},B={-2,0,1,2}, 则APB ____________ .答案{0,1}3. (2018 天津文改编,1,5 分)设集合A={1,2,3,4},B={-1,0,2,3},C={x 駅卜1 $<2},则(A LB)A C _____ . 答案{-1,0,1}4. (2018 浙江改编,1,4 分)已知全集U={1,2,3,4,5},A={1,3}, 则?u A ______ .答案{2,4,5}5. (2018课标全国山理改编,1,5分)已知集合A={x|x-1 ^},B={0,1,2}, 则APB= .答案{1,2}6. (2018 天津理改编,1,5 分)设全集为R,集合A={x|0vx<2},B={x|x 绍},则A A?R B)= __________ .答案{x|0<x<1}7. (2017 课标全国H 文改编,1,5 分)设集合A={1,2,3},B={2,3,4}, 则ALB __________ .答案{1,2,3,4}8. (2017课标全国山文改编,1,5分)已知集合A={1,2,3,4},B={2,4,6,8}, 则APB中元素的个数为________ .答案 29. (2016 课标全国山改编,1,5 分)设集合A={0,2,4,6,8,10},B={4,8}, 则?A B _______ .答案{0,2,6,10}10. (2017 课标全国I 文改编,1,5 分)已知集合A={x|x<2},B={x|3-2x>0}, 则APB= __________ .答案-11. (2015课标I文改编,1,5分)已知集合A={x|x=3n+2,n €N},B={6,8,10,12,14},则集合APB中元素的个数为________ .答案 212. (2016 课标全国U 理改编,2,5 分)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x 之},则ALB= _______ .答案 -答案{1,2}snr= .答案 (0,2]也,+16.(2017 课标全国 I 理改编,2,5 分)设集合 A={1,2,4},B={x|x 2-4x+m=0}.若 AfB={1},则 B= .答案{1,3}C 组教师专用题组1. (2016 山东改编,1,5 分)设集合 U={1,2,3,4,5,6},A={1,3,5},B={3,4,5}, 则?U (A LB )= _____ .答案{2,6}2. (2013 辽宁理改编,2,5 分)已知集合 A={x|0<log 4X<1},B={x|x €}, _则 APB= _________ . 答案(1,2]3. (2015福建改编,1,5分)若集合A={i,i 2,i 3,i 4}(i 是虚数单位),B={1,-1}, 则APB 等于______________ . 答案{1,-1}4. (2013湖北理改编,2,5分)已知全集为R,集合A= -,B={x|x 2-6x+8 O},则A Q?R B J .答案{x|0 $<2 或 x>4}5. (2015 湖北改编,9,5 分)已知集合 A={(x,y )|x 2+y 2<1,x,y ®},B={(x,y )||x| 电|y| <2,x,y 曰,定义集合A ® B={(x 1+X 2,y 1+y 2)|(x 1,y 1) 3,(x 2,y 2) €B},则 A®B 中元素的个数为 ____ . 答案 45【三年模拟】答案{0,1,2,3}13.(2016课标全国I 理改编,1,5 2分)设集合 A={x|x -4x+3<0},B={x|2x-3>0},则 AfB=14.(2016课标全国II 文改编,1,5分)已知集合 A={1,2,3},B={x|x2<9},则 APB=15.(2016课标全国山理改编,1,5 分)设集合 S={x|(x-2)(x-3) %},T={x|x>0},则一、填空题(每小题5分,共55分)1. __________________________________________________________________ (2018 江苏南京学情调研)若集合P={-1,0,1,2},Q={0,2,3}, 则PHQ= ____________________________________ .答案{0,2} 2.(2018江苏南通、扬州、淮安、宿迁、泰州、徐州六市第二次调研)已知集合U={-1,0,1,2,3},A={-1,0,2},则?U A= ________ . 答案{1,3}3. (2018江苏南通、泰州第一次调研)已知集合A={-1,0,a},B={0, 一}.若B?A,则实数a 的值为答案14. (2018江苏无锡期末)已知集合A={1,3},B={1,2,m}, 若ALB=B,则实数m __________ . 答案 35.(2017江苏扬州中学高三开学考试,5)设函数f (x )=图中阴影部分表示的集合为 __________________答案[-5,0)L(3,4]答案{1,2,3} 7.(2019届江苏南京一中检测)已知集合 A={x|x<a},B={x|1<x<2}, 且AL (?R B )=R,则实数a 的取值范围是 ________ . 答案[2,+ 8.(2019届江苏淮阴中学检测)当a 满足答案 3<a 詬9. (2019 届江苏昆山中学检测)已知 M={y|y=x 2},N={y|x 2+y 2=2}, _则 MTN= ______ . 答案[0,"]10. (2019届江苏清江中学检测)已知集合A={x|x 2-3x+2=0,x (JR},B={x|0<x<5,x 讯},则满足条件 A? C? B 的集合C 的个数为 ________ . 答案 411. (2019届江苏高邮一中检测)已知全集U={a“a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下集合 A={x|y=f(x)},B={y|y=f(x)},则6.(2019届江苏常熟中学检测)设全集 U={x (N *|x 甸},集合 A={1,4},B={2,4},则?U (A fB)=时,集合A={x|3x-a<0,x €N}表示单元集列三个条件:①若a1◎,则日 2 ②右日3? A,则a2?A;③右a3 €A,则a4?A.则集合A= .(用列举法表示)答案{a 2,a 3}、解答题(共10分)12. (2018 江苏金陵中学月考)已知A= 一- ,B={x|x2-4x+4-m2o,m>0}.⑴若m=3,求AfB;⑵若ALB=B,求实数m的取值范围.解析⑴易知A=(2,7),-m=3,. • B=[ -1,5],/•A fB=(2,5].(2) T m>0,「.B=[2 -m,2+m].又AUB=B, /.?B,• •- • *m m^5,故实数m的取值范围为[5,+ g ).。
集合运算、简易逻辑【两年真题重温】1.【2020⋅新课标全国】已知集合{||2} A x R x=∈≤},{|4}B x Z x=∈≤,则A B=I(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2}【答案】D【解析】命题意图:本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.{||2,}{22}A x R x x R x=∈≤=∈-≤≤,{|4}{016}B x Z x x Z x=∈≤=∈≤≤故{0,1,2}A B=I.应选D.2.【2020⋅新课标全国】已知ar与br均为单位向量,其夹角为θ,有下列四个命题:1p:2||1[0,)3a bπθ+>⇔∈r r;2p:2||1(,]3a bπθπ+>⇔∈r r;3p:||1[0,)3a bπθ->⇔∈r r;4p:||1(,]3a bπθπ->⇔∈r r.其中的真命题是( )A.1p,4pB.1p,3pC.2p,3pD.2p,4p【命题意图猜想】1.高考对集合问题的考查,主要以考查概念和计算为主,考查两个集合的交集、并集、补集运算;从考查形式上看,主要以小题形式出现,常联系不等式的解集与不等关系,试题难度较低,一般出现在前三道题中,常考查数形结合、分类讨论等数学思想方法.预测2020年高考题中集合的概念作为小题出现的几率比较大,考查学生对基本知识的掌握程度.2.命题及其关系,此部分知识在高考命题中多以选择题和填空题的形式出现,主要考查基本概念,四种命题中互为等价的命题是考查的重点.常以本节知识作为载体考查函数、立体几何、解析几何等内容;以逻辑推理知识为命题背景的解答题也会出现.预测2020年高考题中单独考查命题之间的关系不会出现,还是以其它的知识为载体考查命题的真假。
3.充要条件是每年高考的重要内容,试题以选择题、填空题为主,考查的知识面非常广泛,如:数列、向量、三角函数、立体几何、解析几何等基本概念的考查都能以充要条件的形式出现预测2020年高考仍将以充要条件,命题及其关系作为主要考点,重点考查考生对基础知识的掌握及应用能力.4.以上三个热点,从近年高考题来看,多数“三选一”的命题思路,并且试题难度的设置也不尽相同,集合问题为基础题目,试题难度较低;命题和充要条件很少单独考查基本的概念,多为以其他知识为载体考查,试题难度多为中等难度。
高考试卷分类汇编集合与简易逻辑一、选择题•(安徽理)集合A -R|y=lgx,x 1, B =「-2, -1,1,2?则下列结论正确的是()•AnB-「-2,—1? •G R A)U B=(」:,0)•A[JB =(0, =)•(e R A)n B・._2,-1解:A m y R y0 ?, 6 A) = { y | y 岂0},又B—-2,-1,1,2}••• (e R A)PlB J—2,-1 ?,选。
.(安徽理文)a :0是方程ax2 2x ^0至少有一个负数根的()•必要不充分条件•充分不必要条件•充分必要条件•既不充分也不必要条件2 1解:当,=2…4a_0,得a_1时方程有根。
<时,X1X2 0,方程有负根,又时,方程根为ax = -1,所以选•(安徽文)若A为位全体正实数的集合,B_-2,-1,1,2?则下列结论正确的是()APl B = :-2,-1 f •G R A) U B =(-〜0)•AUB =(0,二)•(e R A)n^f.-2^1 /解:e R A是全体非正数的集合即负数和,所以(€R A)p]B =「-2,-1•(北京理)已知全集U = R,集合A,x| -2 < x< 3 , B=「x|x :::-1或x - 4,那么集合A「| $B 等于()•'x| -2 < x 4• x | x < 3或x > 4』•「x| -2 < x :-1 • 1x|—1W x < 3?解: U [, ], AR e u B = 'x| -1 < x < 3?•(北京理)“函数f(x)(x・R)存在反函数”是“函数f(x)在R上为增函数”的()•充分而不必要条件•必要而不充分条件•充分必要条件•既不充分也不必要条件解:函数f(x)(x・R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必有条件显然成立。
2020年高考数学(理)总复习:集合与常用逻辑用语题型一 集合的概念、基本关系与基本运算 【题型要点】解答集合的概念、关系及运算问题的一般思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义. (2)根据集合中元素的性质化简集合.(3)依据元素的不同属性采用不同的方法求解,此时常用到以下技巧: ①若已知的集合是不等式的解集,用数轴求解; ②若已知的集合是点集,用数形结合法求解; ③若已知的集合是抽象集合,用Venn 图求解. 易错提醒:注意元素的互异性及空集的特殊性.【例1】已知集合A =⎭⎬⎫⎩⎨⎧≤+-021x x x,B ={x |y =lg(-x 2+4x +5)},则A ∩(∁R B )=( )A .(-2,-1]B .[-2,-1)C .(-1,1)D .[-1,1]【例2】.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)【例3】.已知集合A =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛121x x ,B ={x |x 2-2x -8≤0},则A ∩B =( )A .{x |-2≤x ≤0}B .{x |2≤x ≤4}C .{x |0≤x ≤4}D .{x |x ≤-2}题组训练一 集合的概念、基本关系与基本运算1.若全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )2.设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .2B .4C .8D .163.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R }有且仅有两个子集,则实数a 的值为________.题型二 命题真假的判断与否定 【题型要点】 命题真假的判定方法(1)一般命题p 的真假由涉及的相关知识辨别.(2)四种命题真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律.(3)形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定. (4)全称命题与特称(存在性)命题的真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;②特称(存在性)命题:要判定一个特称(存在性)命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可;否则,这一特称(存在性)命题就是假命题.【例4】已知命题p :若复数z 满足(z -i)(-i)=5,则z =6i ;命题q :复数1+i1+2i 的虚部为-15i ,则下列为真命题的是( )A .(綈p )∧(綈q )B .(綈p )∧qC .p ∧(綈q )D .p ∧q【例5】.下列说法错误的是( )A .对于命题p :∀x ∈R ,x 2+x +1>0,则綈p :∃x 0∈R ,x 20+x 0+1≤0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .若命题p ∧q 为假命题,则p ,q 都是假命题D .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”【例6】.已知:命题p :若函数f (x )=x 2+|x -a |是偶函数,则a =0.命题:q ∶∀m ∈(0,+∞),关于x 的方程mx 2-2x +1=0有解.在①p ∨q ;②p ∧q ;③(綈p )∧q ;④(綈p )∨(綈q )中为真命题的是( )A .②③B .②④C .③④D .①④题组训练二 命题真假的判断与否定1.已知命题p :若a ,b 是实数,则a >b 是a 2>b 2的充分不必要条件;命题q :“∃x ∈R ,x 2+2>3x ” 的否定是“∀x ∈R ,x 2+2<3x ”,则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈p )D .(綈p )∧(綈q ) 2.已知命题P :对任意的x ∈[1,2],x 2-a ≥0,命题Q :存在x ∈R ,x 2+2ax +2-a =0,若命题“P 且Q ”是真命题,则实数a 的取值范围是________.题型三 充分必要条件的判断 【题型要点】判断充分、必要条件时应关注三点(1)要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .(2)要善于举出反例:当从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.(3)要注意转化:綈p 是綈q 的必要不充分条件⇔p 是q 的充分不必要条件;綈p 是綈q 的充要条件⇔p 是q 的充要条件.【例7】设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【例8】.“m ≤-12”是“∀x >0,使得x 2+12x -32>m 是真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例9】已知e 是自然对数的底数,函数f (x )=e x -e -x +lg(x +x 2+1),a ,b 都是实数,若p :a +b <0,q :f (a )+f (b )<0,则p 是q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件题组训练三 充分必要条件的判断1.设θ∈R ,则“1212ππθ<-”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.给出下列命题:①已知a ,b ∈R ,“a >1且b >1”是“ab >1”的充分条件; ②已知平面向量a ,b ,“|a |>1,|b |>1”是“|a +b |>1”的必要不充分条件; ③已知a ,b ∈R ,“a 2+b 2≥1”是“|a |+|b |≥1”的充分不必要条件;④命题P :“∃x 0∈R ,使e x 0≥x 0+1且ln x 0≤x 0-1”的否定为綈p :“∀x ∈R ,都有e x <x +1且ln x >x -1”.其中正确命题的个数是( )A .0B .1C .2D .33.已知a 、b 都是实数,命题p :a +b =2;命题q :直线x +y =0与圆(x -a )2+(y -b )2=2相切,则p 是q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件题型四 全称特称命题的否定 【题型要点】 全(特)称命题的否定全称命题的否定是将全称量词改为存在量词,并把结论否定;特称命题的否定是将存在量词改为全称量词,并把结论否定.【例10】已知命题:p ∶∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0, C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0【例11】.命题“存在x 0>1,x 20+(m -3)x 0+3-m <0”为假命题.则m 的取值范围是________.题组训练四 全称特称命题的否定1.若命题p ∶∀x ∈⎪⎭⎫⎝⎛-2,2ππ,tan x >sin x ,则命题綈p 为( ) A .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≥sin x 0 B .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≥sin x 0 C .∃x 0∈⎪⎭⎫⎝⎛-2,2ππ,tan x 0≤sin x 0 D .∃x 0∈⎪⎭⎫⎝⎛-∞-2,π∪⎪⎭⎫⎝⎛+∞,2π,tan x 0>sin x 0 2.命题“存在x 0>-1,x 20+x 0-2019>0”的否定是________.【专题训练】 一、选择题1.设集合A ={1,2,3,4},B ={3,4,5},全集U =A ∪B ,则集合∁U (A ∩B )的元素个数有( ) A .1个 B .2个 C .3个C .4个2.已知集合A ={x |x 2<1},B ={x |2x >2},则A ∩B =( )A.⎪⎭⎫⎝⎛-21,21 B.⎪⎭⎫ ⎝⎛21,0C.⎪⎭⎫ ⎝⎛1,21D.⎪⎭⎫⎝⎛-1,21 3.给出下列四个结论:①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素; ④集合B =⎭⎬⎫⎩⎨⎧∈∈N x Qx 6是有限集. 其中正确结论的个数是( ) A .0 B .1 C .2D .34.已知方程(x 2-6x +b 1)(x 2-6x +b 2)(x 2-6x +b 3)=0的所有解都为自然数,其组成的解集为A ={x 1,x 2,x 3,x 4,x 5},则b 1+b 2+b 3的值不可能为( )A .13B .14C .17D .225.“x >0,y >0”是“y x +xy ≥2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知数列{a n },{b n }满足b n =a n +a n +1,则“数列{a n }为等差数列”是“数列{b n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知命题p 1:∀x ∈(0,+∞),有3x >2x ,p 2:∃θ∈R ,sin θ+cos θ=32,则在命题q 1:p 1∨p 2;q 2:p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 48.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,p :A 、B 的体积不相等,q :A 、B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.对于下列说法正确的是( ) A .若f (x )是奇函数,则f (x )是单调函数B .命题“若x 2-x -2=0,则x =1”的逆否命题是“若x ≠1,则x 2-x -2=0”C .命题p :∀x ∈R,2x >1024,则綈p :∃x 0∈R ,2x 0<1024D .命题“∃x ∈(-∞,0),2x <x 2”是真命题 10.给出下列五个结论:①回归直线y ∧=b ∧x +a ∧一定过样本中心点(x ,y );②命题“∀x ∈R ,均有x 2-3x -2>0”的否定是“∃x 0∈R ,使得x 20-3x 0-2≤0”; ③将函数y =3cos x +sin x (x ∈R )的图象向右平移π6后,所得到的图象关于y 轴对称;④∃m ∈R ,使f (x )=(m -1)·xm 2-4m +1是幂函数,且在(0,+∞)上递增;⑤函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ·|log 2x |-1,x >0恰好有三个零点.其中正确的结论为( ) A .①②④ B .①②⑤ C .④⑤D .②③⑤11.已知f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,x 2-1,x >0,则“f (f (a ))=1”是“a =1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.关于函数f (x )=x 2(ln x -a )+a ,给出以下4个结论:①∃a >0,∀x >0,f (x )≥0;②∃a >0,∃x >0,f (x )≤0;③∀a >0,∀x >0,f (x )≥0;④∀a >0,∃x >0,f (x )≤0.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题13.已知命题p ∶m ∈R ,且m +1≤0;命题q ∶∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题,则m 的取值范围是__________.14.设有两个命题,p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0};q :函数y =lg(ax 2-x +a )的定义域为R .如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是________.15.将集合M ={1,2,3,...,15}表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为________;请写出满足上述条件的集合M 的5个三元子集__________(只写出一组)。
2020年高考数学试题分项版——集合与简易逻辑(解析版)一、选择题1.(2020·全国Ⅰ理,2)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a 等于( )A .-4B .-2C .2D .4答案 B解析 A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由A ∩B ={x |-2≤x ≤1},知-a 2=1, 所以a =-2.2.(2020·全国Ⅱ理,1)已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B )等于( )A .{-2,3}B .{-2,2,3}C .{-2,-1,0,3}D .{-2,-1,0,2,3}答案 A解析 ∵A ={-1,0,1},B ={1,2},∴A ∪B ={-1,0,1,2}.又U ={-2,-1,0,1,2,3},∴∁U (A ∪B )={-2,3}.3.(2020·全国Ⅲ理,1)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素.4.(2020·新高考全国Ⅰ,1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B 等于( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4} 答案 C解析 A ∪B ={x |1≤x ≤3}∪{x |2<x <4}={x |1≤x <4}.5.(2020·新高考全国Ⅰ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%答案 C解析用Venn图表示该中学喜欢足球和游泳的学生所占的比例之间的关系如图,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x,则(60%-x)+(82%-x)+x=96%,解得x=46%.6.(2020·新高考全国Ⅱ,1)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B等于() A.{1,8} B.{2,5}C.{2,3,5} D.{1,2,3,5,8}答案 C解析A∩B={2,3,5,7}∩{1,2,3,5,8}={2,3,5}.7.(2020·新高考全国Ⅱ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%答案 C解析用Venn图表示该中学喜欢足球和游泳的学生所占的比例之间的关系如图,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x,则(60%-x)+(82%-x)+x=96%,解得x=46%.8.(2020·北京,1)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B等于()A.{-1,0,1} B.{0,1}C.{-1,1,2} D.{1,2}答案 D解析∵-1∉B,0∉B,1∈B,2∈B,∴A∩B={1,2}.9.(2020·天津,1)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(∁U B)等于()A.{-3,3} B.{0,2}C.{-1,1} D.{-3,-2,-1,1,3}答案 C解析由题意,得∁U B={-2,-1,1},∴A∩(∁U B)={-1,1}.10.(2020·天津,2)设a ∈R ,则“a >1”是“a 2>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由a 2>a ,得a 2-a >0,解得a >1或a <0,∴“a >1”是“a 2>a ”的充分不必要条件.11.(2020·浙江,1)已知集合P ={x |1<x <4},Q ={x |2<x <3},则P ∩Q 等于( )A .{x |1<x ≤2}B .{x |2<x <3}C .{x |3≤x <4}D .{x |1<x <4} 答案 B解析 由题意得⎩⎪⎨⎪⎧1<x <4,2<x <3,解得2<x <3, 所以P ∩Q ={x |2<x <3}.12.(2020·浙江,10)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y ∈S ,若x ≠y ,都有xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S . 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素答案 A解析 由题意,①令S ={1,2,4},则T ={2,4,8},此时,S ∪T ={1,2,4,8},有4个元素;②令S ={2,4,8},则T ={8,16,32},此时S ∪T ={2,4,8,16,32},有5个元素;③令S ={2,4,8,16},则T ={8,16,32,64,128},此时,S ∪T ={2,4,8,16,32,64,128},有7个元素.综合①②,S 有3个元素时,S ∪T 可能有4个元素,也可能有5个元素,可排除C ,D ; 由③可知A 正确.13.(2020·全国Ⅰ文,1)已知集合A ={x |x 2-3x -4<0},B ={-4,1,3,5},则A ∩B 等于( )A.{-4,1} B.{1,5} C.{3,5} D.{1,3}答案 D解析∵A={x|x2-3x-4<0}={x|(x+1)(x-4)<0}={x|-1<x<4},B={-4,1,3,5},∴A∩B={1,3}.14.(2020·全国Ⅱ文,1)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B等于()A.∅B.{-3,-2,2,3}C.{-2,0,2} D.{-2,2}答案 D解析集合A={x|-3<x<3,x∈Z}={-2,-1,0,1,2},将这五个值逐一代入集合B验证,只有-2和2符合题意,所以A∩B={-2,2}.15.(2020·全国Ⅲ文,1)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2 B.3 C.4 D.5答案 B解析因为A∩B={5,7,11},所以A∩B中元素的个数为3.二、填空题1.(2020·江苏,1)已知集合A={-1,0,1,2},B={0,2,3},则A∩B=________.答案{0,2}解析A∩B={-1,0,1,2}∩{0,2,3}={0,2}.。
专题1 集合,常用逻辑用语1.集合的运算.高考对集合基本运算的考查,集合由描述法呈现,转向由离散元素呈现.解决这类问题的关键在于正确理解集合中元素所具有属性的,明确集合中含有的元素,进一步进行交、并、补等运算.常见选择题.2. 充要条件.高考对命题及其关系和充分条件、必要条件的考查,主要命题形式是选择题.由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定.3.关于存在性命题与全称命题,一般考查命题的否定. 预测2020年将保持稳定,必考且难度不会太大.一、单选题1.(2020届山东省潍坊市高三上期中)已知集合{}220A x x x =-≥,{}03B x x =<<,则A B =I ( )A .()1,3-B .(]0,2C .[)2,3D .()2,3【答案】C 【解析】{|0A x x =≤Q 或2}x ≥,{|03}B x x =<<, [2,3)A B ∴⋂=.故选:C.2.(2020届山东省烟台市高三上期末)命题“2x ,10R x x ∀∈-+>”的否定是( )A .2x ,10R x x ∀∈-+≤B .2x ,10R x x ∀∈-+<C .2000x ,10R x x ∃∈-+≤D .2000x ,10R x x ∃∈-+<【答案】C 【解析】全称命题的否定“20,10x R x x ∃∈-+≤”,故选C.3.(2020届山东省日照市高三上期末联考)若集合 A={﹣2,﹣1,0,1,2},B={x|x 2>1},则 A∩B=( ) A .{x|x <﹣1或x >1}B .{﹣2,2} C .{2}D .{0}【答案】B 【解析】由B 中不等式解得:x >1或x <﹣1,即B={x|x >1或x <﹣1}, ∵A={﹣2,﹣1,0,1,2}, ∴A∩B={﹣2,2}, 故选B .4.(2020届山东省枣庄市高三上学期统考)已知集合{}04A x Z x =∈<<,()(){}120B x x x =+-<,则A B =I ( ) A .()0,2 B .()1,2-C .{}0,1D .{}1【答案】D 【解析】由题意,集合{}{}041,2,3A x Z x =∈<<=, ()(){}{}12012B x x x x x =+-<=-<<, 所以{}1A B ⋂=. 故选D .5.(2020·云南省玉溪第一中学高二期末(理))“1x =”是“2210x x -+=”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 【答案】A 【解析】1x =时,2210x x -+=成立,故是充分的,又当2210x x -+=时,即2(1)0x -=,1x =,故是必要的的,因此是充要条件.故选A .6.(2020届山东省泰安市高三上期末)若全集U =R ,集合2{|16}A x Z x =∈<,{|10}B x x =-≤,则()U A B ⋂=ð( ) A .{|14}x x <„ B .{|14}x x << C .{1,2,3} D .{2,3}【答案】D 【解析】{|44}{3,2,1,0,1,2,3}A x x =∈-<<=---Z , {|1}U B x x =>ð,(){2,3}U A B =I ð.故选:D7.(2020届山东省烟台市高三上期末)已知集合{}2|20A x x x =--≤,{|B x y ==,则A B =U ( )A .{}1|2x x -≤≤B .{}|02x x ≤≤C .{}1|x x ≥-D .{}|0x x ≥【答案】C 【解析】由题,因为220x x --≤,则()()210x x -+≤,解得12x -≤≤,即{}|12A x x =-≤≤; 因为0x ≥,则{}|0B x x =≥, 所以{}|1A B x x ⋃=≥- 故选:C8.(2020届山东省潍坊市高三上期中)m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】//m α,则存在l α⊂有//m l .而由//m n 可得//n l ,从而有//n α.反之则不一定成立,,m n 可能相交,平行或异面.所以//m n 是//n α的充分不必要条件,故选A9.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】必要性:设()sin 1f x a x =+,当0a >时,()[]1,1f x a a ∈-+,所以10a -<,即1a >;当0a <时,()[]1,1f x a a ∈+-,所以10a +<,即1a <-.故1a >或1a <-. 充分性:取02x π=,当1a <-时,0sin 10a x +<成立.答案选A10.(2020届山东省枣庄、滕州市高三上期末)已知集合{|11}A x x =-≤≤,则A N ⋂=( ) A .{1} B .{0,1} C .{}1- D .{0,1}-【答案】B 【解析】由题意{0,1}A N =I . 故选:B.11.(2020届山东省九校高三上学期联考)已知集合{}|21xA x =≤,(){}|lg 1B x y x ==-,则()R A C B =I ( ) A .∅ B .(0,1) C .(,1]-∞ D .(,0]-∞【答案】D 【解析】由题:{|21}{0}xA x x x =≤=≤,(){|lg 1}{|1}B x y x x x ==-=>, {1}RC B x x =≤,()(,0]R A C B =-∞I故选:D12.(2020届山东省日照市高三上期末联考)设,a b r r 是非零向量,则2a b =r r是a a bb =r r rr 成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =v v 可知:a b v v , 方向相同,a b a bvv v v , 表示 a b v v , 方向上的单位向量所以a ba b=v v v v 成立;反之不成立.故选B13.(2020届山东省德州市高三上期末)已知全集U =R ,{}2|9A x x =<,{}|24B x x =-<<,则()R A B I ð等于( )A .{}|32x x -<<-B .{}|34x x <<C .{}|23x x -<<D .{}|32x x -<≤-【答案】D 【解析】{}{}2933A x x x x =<=-<<Q ,{}24B x x =-<<,则{2U B x x =≤-ð或}4x ≥,因此,(){}32R A B x x ⋂=-<≤-ð. 故选:D.14.(2020届山东省滨州市三校高三上学期联考)设集合{2,1,0,1,2}P =--,{}2|20Q x x x =+-<,P Q =I ( )A .{1,0}-B .{1,0,1}-C .{0,1}D .{0,1,2}【答案】C 【解析】{}{}2|20|21Q x x x x x =+-<=-<<,所以P Q =I {0,1}, 故选:C.15.(2020·全国高三专题练习(文))“[]1,2x ∀∈,210ax +≤”为真命题的充分必要条件是( ) A .1a ≤- B .14a -≤ C .2a ≤- D .0a ≤【答案】A 【解析】Q “[]1,2x ∀∈,210ax +≤”为真命题,21a x ∴≤-对任意的[]1,2x ∈恒成立,由于函数21y x=-在区间[]1,2上单调递增,则min 1y =-,1a ∴≤-. 故选:A.16.(2020届山东省滨州市三校高三上学期联考)命题“对任意x ∈R ,都有221x x +<”的否定是( ) A .对任意x ∈R ,都有221x x +> B .对任意x ∈R ,都有221x x +≥ C .存在x ∈R ,使得221x x +> D .存在x ∈R ,使得221x x +≥【答案】D 【解析】命题“对任意x ∈R ,都有221x x +<”的否定是存在x ∈R ,使得221x x +≥. 故选:D.17.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .18.(2020届山东师范大学附中高三月考)已知集合{}2230A x x x =--<,{}22B x x =-<<,若A B =I ( )A .(2,2)-B .(2,1)-C .(1,3)-D .(1,2)-【答案】D 【解析】由(3)(1)0x x -+<得13x -<<,(1,3)A ∴=-,又(2,2)B =-Q ,(1,2)A B ∴=-I , 故选:D.19.(2020届山东师范大学附中高三月考)已知命题:p “,10x x R e x ∃∈--≤”,则命题:p ⌝( )A .,10x x R e x ∀∈-->B .,10x x R e x ∀∉-->C .,10x x R e x ∀∈--≥D .,10x x R e x ∃∈-->【答案】A 【解析】因为命题“,p q ∃”的否定为:,p q ∀⌝,因此命题:p “,10xx R e x ∃∈--≤”的否定为:,10xx R e x ∀∈-->,选A.20.(2020届山东师范大学附中高三月考)函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是( ) A .102a <<B .01a <<C .1a >D .24a <<【答案】D 【解析】∵1a >时,()log (0,1)a f x x a a =>≠是增函数,∴函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是(1,)∈+∞a 的一个子集,又(2,4)(1,)⊂+∞,故选:D.21.(2020届山东省潍坊市高三上期末)已知集合{}{}2230,21A x x x B x x x Z =--≤=-≤<∈且,则A B =I ( )A .{}2,1--B .{}1,0-C .{}2,0-D .{}1,1-【答案】B 【解析】2230x x --≤解得:13x -≤≤ ,{}13A x x ∴=-≤≤,{}2,1,0B =--, {}1,0A B ∴=-I .故选:B22.(2020·山东省淄博实验中学高三上期末)已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =I ,则实数a 的取值范围为( )A .(),0-∞B .(],0-∞C .()1,+∞D .[)1,+∞ 【答案】A 【解析】(){}|1001A x x x x =-≤⇒≤≤ (){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A23.(2020届山东省济宁市高三上期末)设集合{|11}M x x =-≤≤,{|124}xN x =<<,则M N =IA .{|10}x x -≤<B .{|01}x x <≤C .{|12}x x ≤<D .{|12}x x -≤<【答案】B 【解析】因为{|11}M x x =-≤≤,{}|124{|02}xN x x x =<<=<<,所以{|01}M N x x ⋂=<≤,故选B.24.(2020届山东省枣庄、滕州市高三上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】∵,x R ∀∈2210ax ax ++>,∴0a =或2440a a a >⎧⎨∆=-<⎩,即0a =或01a <<,∴01a ≤<.∴“01a <<”是“,x R ∀∈2210ax ax ++>”的充分不必要条件. 故选:A.25.(2020届山东省临沂市高三上期末)设集合()(){}160A x x x =-->,{}20B x x =->,则A B =I ( ) A .{}6x x > B .{}12x x <<C .{}1x x <D .{}26x x <<【答案】C【解析】()(){}{1601A x x x x x =-->=<Q 或}6x >,{}{}202B x x x x =->=<,因此,{}1A B x x ⋂=<. 故选:C.26.(2020届山东省潍坊市高三上学期统考)设集合{}|1A x x =<,(){}|30B x x x =-<,则A B =U ( ) A .()1,0- B .()0,1C .()1,3D .()1,3-【答案】D 【解析】集合A ={x||x|<1}={x|﹣1<x <1}, B ={x|x (x ﹣3)<0}={x|0<x <3}, 则A ∪B ={x|﹣1<x <3}=(﹣1,3). 故选:D .27.(2020届山东省滨州市高三上期末)已知{}|13A x x =-≤<,{}0,2,4,6B =,则A B =I ( ) A .{}0,2 B .{}1,0,2-C .{}|02x x ≤≤D .{}1|2x x -≤≤【答案】A 【解析】因为{}|13A x x =-≤<,{}0,2,4,6B =, 所以{}0,2A B =I . 故选:A.28.(2020届山东省临沂市高三上期末)“游客甲在烟台市”是“游客甲在山东省”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】因为烟台是山东省的一个地级市,所以如果甲在烟台市,那么甲必在山东省,反之不成立,故“游客甲在烟台市”是“游客甲在山东省”的充分不必要条件 故选:A .29.(2020届山东实验中学高三上期中)命题:“(),0,34xxx ∀∈-∞≥”的否定为( )A .[)0000,,34xx x ∃∈+∞<B .[)0000,,34xx x ∃∈+∞≤C .()000,0,34xx x ∃∈-∞<D .()000,0,34xxx ∃∈-∞≤【答案】C 【解析】命题“(),0,34xxx ∀∈-∞≥”是全称命题,则命题的否定是特称命题即()000,0,34xxx ∃∈-∞<,故选:C .30.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.31.(2020届山东省济宁市高三上期末)已知A ,B ,C 为不共线的三点,则“AB AC AB AC +=-u u u r u u u r u u u r u u u r”是“ABC∆为直角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若AB AC AB AC +=-u u u r u u u r u u u r u u u r ,两边平方得到222222AB AC AB AC AB AC AB AC ++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,0AB AC ∴⋅=u u u r u u u r ,即AB AC ⊥u u u r u u u r 故ABC ∆为直角三角形,充分性;若ABC ∆为直角三角形,当B Ð或C ∠为直角时,AB AC AB AC +≠-u u u r u u u r u u u r u u u r ,不必要;故选:A32.(2020届山东实验中学高三上期中)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集个数有A .2B .3C .4D .8【答案】D【解析】 {}2|8150{3,5}A x x x =-+==,因为A B B =I ,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 二、多选题33.(2020届山东省济宁市高三上期末)下列命题中的真命题是( )A .1,20x x R -∀∈>B .()2,10x N x *∀∈->C .00,lg 1x R x ∃∈<D .00,tan 2x R x ∃∈= 【答案】ACD【解析】A. 1,20x x R -∀∈>,根据指数函数值域知A 正确;B. ()2,10x N x *∀∈->,取1x =,计算知()210x -=,B 错误;C. 00,lg 1x R x ∃∈<,取01x =,计算0lg 01x =<,故C 正确;D. 00,tan 2x R x ∃∈=,tan y x =的值域为R ,故D 正确;故选:ACD34.(2020届山东省潍坊市高三上学期统考)下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件.【答案】ABCD【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立.若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β.∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对;故选:ABCD .35.(2019·山东高三月考)下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件.【答案】ABCD【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立.若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β.∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对;故选:ABCD .三、填空题36.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.【答案】1-【解析】由“x R ∃∈,220x x a --<”为假命题,可知,“x R ∀∈,220x x a --≥”为真命题,22a x x ∴≤-恒成立,由二次函数的性质可知,221x x -≥-,则实数1a ≤-,即a 的最大值为1-.故答案为:1-.37.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________. 【答案】10,2⎡⎤⎢⎥⎣⎦【解析】 由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<,由()()2:2110q x a x a a -+++?,解得1a x a ≤≤+,即:1q a x a ≤≤+,要使得p 是q 的充分不必要条件,则11{12a a +≥≤,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 四、解答题38.(2020届山东省枣庄市高三上学期统考)非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<(Ⅰ)当3a =时,求A B I ;(Ⅱ)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.【答案】(I ){}|38A B x x =<<I ;(Ⅱ)(]1,11,22⎡⎫⎪⎢⎣⎭U【解析】(I )当3a =时,{}2|10160A x x x =-+<()(){}|280x x x =--< {}|28x x =<<;{}2|14330B x x x =-+<()(){}|3110x x x =--<{}|311x x =<<;故{}|38A B x x =<<I .(Ⅱ)()(){}|2310A x x x a =---<⎡⎤⎣⎦.()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦. ∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+.∵q 是p 的必要条件,∴A B ⊆.①当1a =时,312a -=,A =∅,不符合题意;②当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,需要212312a a a a >⎧⎪≤⎨⎪-≤+⎩∴12a <≤.③当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,需要213122a a a a <⎧⎪≤-⎨⎪≤+⎩ ∴112a ≤<.综上所述,实数a 的范围是(]1,11,22⎡⎫⎪⎢⎣⎭U .。
2020高考真题分类汇编:集合与简易逻辑
1.【2020高考真题浙江理1】设集合A={x|1<x <4},集合B ={x|2
x -2x-3≤0}, 则A ∩(C R B )=
A .(1,4)
B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B 2.
【
2020
高
考
真
题
新
课
标
理
1
】
已
知
集
合
{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素
的个数为( )
()A 3 ()B 6 ()C 8 ()D 10
【答案】D
3.【2020高考真题陕西理1】集合{|lg 0}M x x =>,2
{|4}N x x =≤,则M N =( )
A. (1,2)
B. [1,2)
C. (1,2]
D. [1,2] 【答案】C.
4.【2020高考真题山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则
U C A
B 为
(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C
5.【2020高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为
(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B
【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
6.【2020高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是
(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0
(B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C
【点评】本题主要考查含有量词的命题的否定,属于容易题。
7.【2020高考真题江西理1】若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中的元素的个数为
A .5 B.4 C.3 D.2 【答案】C
【命题立意】本题考查集合的概念和表示。
8.【2020高考真题江西理5】下列命题中,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1
D .对于任意01,n n n n n N C C C ∈++
+都是偶数
【答案】B
9.【2020高考真题湖南理1】设集合M={-1,0,1},N={x|x 2
≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0} 【答案】B
【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M ∩N.
10.【2020高考真题湖南理2】命题“若α=4
π
,则tan α=1”的逆否命题是 A.若α≠
4π,则tan α≠1 B. 若α=4
π
,则tan α≠1 C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4
π
【答案】C
【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.
11.【2020高考真题湖北理2】命题“0x ∃∈R Q ,30x ∈Q ”的否定是
A .0x ∃∉R Q ,30x ∈Q
B .0x ∃∈R Q ,30x ∉Q
C .x ∀∉R Q ,3x ∈Q
D .x ∀∈R Q ,3x ∉Q
【答案】D
12.【2020高考真题广东理2】设集合U={1,2,3,4,5,6}, M={1,2,4 },则CuM= A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}
【答案】C
13.【2020高考真题福建理3】下列命题中,真命题是 A. 0,0
0≤∈∃x e
R x
B. 2
2,x R x x >∈∀ C.a+b=0的充要条件是
a
b
=-1 D.a>1,b>1是ab>1的充分条件 【答案】D.
14.【2020高考真题北京理1】已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=
A (-∞,-1)
B (-1,-23)
C (-2
3
,3)D (3,+∞)
【答案】D
15.【2020高考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )
()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件
【答案】A
【命题立意】本题借助线面位置关系考查条件的判断
16.【2020高考真题全国卷理2】已知集合A =,B ={1,m} ,A B =A, 则m=
A 0或3 C 1或3
【答案】B
17【2020高考真题四川理13】设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则
B C A C U U ___________。
【答案】{},,a c d
【命题立意】本题考查集合的基本运算法则,难度较小.
18.【2020高考真题上海理2】若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则
=B A 。
【答案】)3,2
1
(-
19.【2020高考真题天津理11】已知集合},32|{<+∈=x R x A 集合
},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.
【答案】1,1-
20.【2020高考江苏1】(5分)已知集合{124}A =,,,{246}B =,,,则A B = ▲ .
【答案】{}1,2,4,6。
【考点】集合的概念和运算。
21.【2020高考江苏26】(10分)设集合{12}n P n =,,,…,*N n ∈.记()f n 为同时满足下列条件的集合A 的个数:
①n A P ⊆;②若x A ∈,则2x A ∉;③若A C x n p ∈,则A C x n
p ∉2。
(1)求(4)f ;
(2)求()f n 的解析式(用n 表示).
【答案】解:(1)当=4n 时,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,,, ∴ (4)f =4。
( 2 )任取偶数n x P ∈,将x 除以2 ,若商仍为偶数.再除以2 ,··· 经
过k 次以后.商必为奇数.此时记商为m 。
于是=2k x m ,其中m 为奇数*k N ∈。
由条件知.若m A ∈则x A k ∈⇔为偶数;若m A ∉,则x A k ∈⇔为奇
数。
于是x 是否属于A ,由m 是否属于A 确定。
设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数。
当n 为偶数〔 或奇数)时,n P 中奇数的个数是
2n (1
2
n +)。
∴()()2
122()=2n
n n f n n +⎧⎪⎨⎪⎩
为偶数为奇数。
【考点】集合的概念和运算,计数原理。
【解析】(1)找出=4n 时,符合条件的集合个数即可。
(2)由题设,根据计数原理进行求解。
22.【2020高考真题陕西理18】(本小题满分12分)
(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c
是直线b 在π上的投影,若a b ⊥,则a c ⊥”为真。
(2)写出上述命题的逆命题,并判断其真假(不需要证明)
【答案】。