留数理论及应用
- 格式:pptx
- 大小:1.02 MB
- 文档页数:34
留数定理在考研中应用
留数定理是复变函数理论中的重要定理,它在考研中的应用主要体现在以下几个方面:
1. 计算复积分:留数定理可以用于计算复积分,特别是围道积分。
通过找到被积函数在围道内的奇点,并计算出这些奇点的留数,可以将复积分转化为留数的求和,从而简化计算过程。
2. 求解微分方程:留数定理可以用于求解一些特殊的微分方程,如常微分方程的初值问题、线性微分方程的特解等。
通过将微分方程转化为复变函数的问题,并利用留数定理求解奇点的留数,可以得到微分方程的解析解。
3. 求解极限:留数定理可以用于求解一些复变函数的极限。
通过将复变函数转化为有理函数,并利用留数定理求解奇点的留数,可以得到复变函数在某些点处的极限值。
4. 解析函数的性质研究:留数定理可以用于研究解析函数的性质,如奇点的分类、奇点的留数与函数的性质之间的关系等。
通过计算奇点的留数,可以得到解析函数在奇点处的性质,进而推导出整个函数的性质。
总之,留数定理在考研中的应用非常广泛,涉及到复积分、微分方程、极限和解析函数的性质等多个方面。
掌握留数定理的应用,可以帮助我们更好地理解和应用复变函数理论。
第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):∫f(z)dz=2πi∑Res(f(z),a k)nk=1C2.(定理6.2):设a为f(z)的m阶极点,f(z)=φ(z) (z−a)n,其中φ(z)在点a解析,φ(a)≠0,则Res(f(z),a)=φ(n−1)(a) (n−1)!3.(推论6.3):设a为f(z)的一阶极点,φ(z)=(z−a)f(z),则Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点φ(z)=(z−a)2f(z)则Res(f(z),a)=φ′(a)5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:Res(f(z),∞)=12πi∫f(z)dzΓ−=−c−1即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1z这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。
8.计算留数的另一公式:Res (f (z ),∞)=−Res (f (1t )1t 2,0)§2.用留数定理计算实积分一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ注:注意偶函数二.∫P(x)Q(x)dx +∞−∞型积分1.(引理6.1 大弧引理):S R 上lim R→+∞zf (z )=λ则lim R→+∞∫f(z)dz S R=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)为互质多项式,且符合条件:(1)n-m ≥2;(2)Q(z)没有实零点于是有∫f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0+∞−∞注:lim R→R+∞∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且lim R→+∞g (z )=0在ΓR 上一致成立。
留数的求法及应用总结留数是一种在复变函数理论中用于计算复数函数在奇点处的残留的方法。
留数的计算方法有多种,例如通过直接计算留数公式、Laurent级数展开、辅助函数法、计算围道积分等。
留数的应用非常广泛,包括在计算复积分、求解微分方程、计算极限、求解物理问题等方面都有重要的应用。
首先,我们来看留数的求法。
在复变函数中,函数在奇点点处的留数可以通过以下方法求解:1. 直接计算留数公式:对于简单的函数,可以直接使用留数公式计算。
对于一阶奇点,留数可通过函数在该点的极限值计算:Res[f(z), z=a] = lim(z->a) [(z-a) * f(z)]。
对于高阶奇点,留数可以通过多次取导数再计算极限来求解。
2. Laurent级数展开:对于复变函数,在奇点附近可以进行Laurent级数展开。
然后通过观察Laurent级数的形式,可以读出相应奇点的留数。
3. 辅助函数法:对于一些复杂的函数,可以通过引入辅助函数来计算留数。
通过构造辅助函数,可以使得计算留数的过程变得更加简单。
4. 计算围道积分:复平面上的围道积分可以通过计算围道上的奇点处的留数之和来求解。
通过将围道逐步缩小,将围道上的奇点都计算在内,然后将结果相加即可得到围道积分值。
接下来,我们来看留数的应用。
1. 计算复积分:复积分可以通过计算围道上的奇点处的留数之和来进行计算。
通过围道积分的方法,可以将复积分转化为留数的求和问题,从而简化计算过程。
2. 求解微分方程:在微分方程的求解过程中,往往需要对复函数积分。
通过留数的方法,可以将复积分转化为留数的计算,从而简化问题的求解过程。
3. 计算极限:对于一些复杂的极限问题,可以通过计算极限点处的留数来进行求解。
通过将极限问题转化为留数问题,可以简化问题的求解过程。
4. 物理问题求解:在物理学中,通过留数的方法可以求解一些边界值问题、传热问题、电磁问题等。
通过将物理问题转化为留数问题,可以利用留数的性质来求解物理问题。
指导教师:论文题目:留数理论及其在计算实积分中的应用学院:专业:班级:学号:姓名:留数理论及其在计算实积分中的应用摘要:留数理论是复积分和复级数理论相结合的产物。
留数定理为某些类型积分的计算,提供了极为有效的方法。
在此主要探讨留数定理对实积分的计算。
把求实变函数的积分化为复变函数沿围线的积分,然后应用留数定理,使沿围线的积分计算,归结为留数计算。
本文主要介绍留数定义、留数定理定义、留数计算方法、利用留数定理计算实积分的方法。
关键词:留数,留数定理,实积分。
引言:留数的一个很重要的应用是计算一些特殊类型的实积分。
如,在研究阻尼振动时计算积分dx x x sin 0⎰∞;在研究光的衍射时,需要计算菲涅尔积分dx 2sinx 0⎰∞;在热学中需要计算积分⎰∞-0cos e bxdx ax (a>0,b 为任意实数)等。
如果用实函数分析中的方法来计算这些积分几乎是不可能的,即便能计算某些积分,过程也很繁琐且易出错。
因此,利用留数定理将实变函数的积分化为复变函数沿围线的积分来进行计算,就相对简单多了。
要使用留数计算,需要两个条件:一是被积函数与某个解析函数有关;其次,实积分可化为某个沿闭路的积分。
下面主要介绍留数及留数定理的定义和计算,还有利用留数定理计算类型为⎰πθθ20)sin ,(cos R ,dx e x Q x P dx x i a -)()(,Q(x )P(x )⎰⎰+∞∞-+∞∞(a>0)的实积分和积分路径上有奇点的积分。
另外还会介绍利用留数定理计算物理学中常用的实积分。
一、留数 1.1留数定义设0z 是解析函数f(z)的孤立奇点,我们把f(z)在0z 处的洛朗展开式中负一次幂项的系数1-C 称为f(z)在0z 处的留数。
记作Res[f(z),0z ],即 Res[f(z),0z ]=1-C 。
显然,留数1-C 就是积分⎰c dz z f )(i21π 的值,其中C 为解析函数f(z)在0z 的去心邻域内绕0z 的闭曲线。