空间向量的数乘运算
- 格式:ppt
- 大小:888.50 KB
- 文档页数:4
8. 6 空间向量及其加减、数乘和数量积运算1.空间向量的有关概念(1) ___________________________________ 空间向量:在空间,我们把具有和的量叫做空间向量.(2) _________________________ 零向量:规定的向量叫做零向量.(3) __________________ 单位向量:的向量称为单位向量.(4) ___________________________________ 相反向量:与向量a 的向量,称为a 的相反向量,记为-a.(5) _________________________ 相等向量:的向量称为相等向量.(6) 空间向量的加法运算满足交换律及结合律:a+ b=__________ ;(a + b) + c = _______________ .2.空间向量的数乘运算⑴向量的数乘:实数入与空间向量a的乘积?a仍然是一个向量,称为向量的数乘.①当X _ 0时,入a与向量a方向相同;当X __ 0时,入a与向量a方向相反.②入a的长度是向量a的长度的________ 倍.(2) 空间向量的数乘运算满足分配律及结合律:①分配律:X(a+b)= __________ .②结合律:X宙)= _________ .(3) 共线向量:如果表示空间向量的有向线段所在的直线_____________________ ,则这些向量叫做共线向量或平行向量.⑷共线向量定理:对空间任意两个向量a, b(b z 0), a // b的充要条件是______________________ .⑸空间直线I的方向向量:和直线I _________ 的非零向量a叫做直线I的方向向量.⑹空间直线的向量表示:I为经过已知点A且平行于已知非零向量a的直线,对空间任意一点0,点P在直线I上的充要条件是___________________________________ ,特别地,如果 a = AB,则上式可以化为OP = 0A + tAB,或_________________ ,这也是空间三点A, B, P共线的充要条件.(7) 共面向量: _______________ 的向量叫做共面向量.(8) 空间共面向量定理:如果两个向量a, b 不共线,那么向量p 与向量a, b 共面的充要条件是推论:对空间任意一点0和不共线的三点A, B, C,满足向量关系式 _______________________________ ,其中__________ ,则点P 与点A, B, C 共面.3.空间向量的数量积运算(1) 空间向量的数量积:已知两个非零向量a, b,则 ___________________ 叫做a, b的数量积,记作a b,通常规定,0w〈a, b〉w n对于两个非零向量a, b, a丄b? ____________ .(2) 空间零向量与任何向量的数量积为.(3) a a = |a||a|cos〈 a, a>= ______ .(4) 空间向量的数量积满足如下的运算律:①(X) • b= __________ ;②ab= __________ (交换律);③ a (b+ c) = ________________ (分配律).自查自纠1. (1)大小方向⑵长度为0 (3)模为1⑷长度相等而方向相反⑸方向相同且模相等(6)b+ a a + (b+ c)2. (1)①〉v ②|入| (2)① 扫+?b ②(入卩)a(3) 互相平行或重合(4)存在实数入使a= ^bO)P= (i-t)oA+to)B (7)平行于同一个平面3. (1)|a||b|cos〈a, b> a b= 0 (2)0⑶|a|1 2 3 (4)① «a b) ② b a ③a b+ a cO 在长方体ABCD-A1BQ1D1 中,BA + Be + D D1=( )A. D1B1B.D1BD.B D1~--> —> —> —> —> —>解:BA+ BC+ DD1=CD + BC + DD1 =BD + DD1=BD1,故选D.电平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若A B = a, AD = b, A A1 =等的是()11 11A . - 2a + 2b+ c B. 2a + ?b—c1 1 1 1C. —?a+ ?b—cD. —2 a—? b+ c解:BlM = B?B + BM = —c+ 1BD = —c+ 2(b—a) = —*a + 2b—c,故选C.nOB = OC,且/ AOB = Z AOC =三贝U cos〈3⑸平行⑹存在实数t,使齐=O +1aC.(8)存在惟一的有序实数对—> —> —> —>OP = xOA + yOB +(x, y),使p= x a + y bx+ y+ z= 1C.DB1c,则下列式子中与B1M相©如图所示,已知空间四边形OABC, ,BC >的值为()o解:设0A = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c 〉= n 且 |b |= |c |, OA • BC = a (c — b )= a c — a b 3 11 f f=2|a ||c |— 2|a ||b |= 0,所以 cos 〈OA , BC 〉= 0•故选 A.已知空间四边形 OABC ,点M , N 分别是OA , BC 的中点,且OA = a , OB = b , OC = c ,用a , b , c 表示向 量 MN = ________ .解:如图所示,MN = *(MB + MC)= *[(OB — OM)+ (OC — OM)] = ^(OB + OC — 2O)M)= g(OB + OC — OA)=g(b + c —a ).故填 2(b + c — a ).(2017鞍山市育英中学月考)已知在正方体 ABCD-A i B i C i D i 中,侧面CCQ i D 的中心是F ,若A F = A D + mAB + nAA r ,贝H m = ________ , n = ________ .解:因为A F = A D + D F = A D + ^(D C + D D i )=A D +2(AB + A ^i ) = A D + ~A B + ^A X I ,所以 m = n =*.故填2; 4 5.类型一空间向量的运算GE (20i7枣阳市鹿头中学月考)如图所示,在空间几何体 ABCD-A i B i C i D i 中,各面为平行四边形, 设AA i = a , AB = b , AD = c , M , N , P 分别是AA i , BC , CQ i 的中点,试用 a , b , c 表示以下各向量:4 AP ;5 MP + NC i .解:(i)因为 P 是 C i D i 的中点,所以 AP = AA i + A i D i + D i P = a + AD + 2D i C i = a + c +?AB = a + c +^b. ⑵因为M 是AA i 的中点, 所以 IMP = MA + A P =苏》+A P =—a + a + c + 丁 b = 2a + ;b + c .-f f f i -f f i -f f又 NG = NC + CC i =尹c + AA i = 2AD + AA i方类解析1=2。
空间向量乘法计算公式空间向量乘法是向量计算中的一种非常重要的计算方法。
它可以用来求解向量的点积、叉积、以及其他的一些运算,对于解决物理、工程和计算机科学中的一些重要问题非常有帮助。
在本文中,我们将向大家介绍空间向量乘法的计算公式及其应用。
空间向量乘法基本公式:对于三维空间中的两个向量a和b(均为三维向量),它们的乘积可以表示为:a×b=(a2b3-a3b2)i+(a3b1-a1b3)j+(a1b2-a2b1)k其中,i、j、k分别表示坐标系中的三个方向向量。
这个公式也叫做叉积公式,可以帮助我们计算任意两个向量之间的角度、面积以及法向量等。
这个公式的原理是,叉积的结果是一个垂直于a和b所在的平面上的向量。
这个向量的大小等于a和b所在平面的面积,方向由右手定则给出。
具体来说,将右手的大拇指伸向a,食指伸向b,那么叉积的方向就由中指指向。
空间向量乘法的应用1. 计算平面或立体图形的面积对于平面或者立体图形,可以使用向量乘积公式来计算其面积或者体积。
例如,对于一个由三个顶点A、B和C组成的三角形ABC,可以使用向量AB和向量AC叉积的大小得到其面积。
2. 计算物体的运动在计算机图形学中,空间向量乘积常用于计算物体的运动。
可以使用向量的叉积来计算旋转的角度和轴线方向,以及物体在三维空间中的位置。
3. 计算电磁场中的力在物理学和工程学中,向量乘积还可以用来计算电磁场中的力。
例如,在一组恒定电流通过的磁场中,可以使用向量乘积来计算电荷所受的力。
总结空间向量乘法是一个非常重要的向量计算方法,它可以帮助我们计算两个向量的点积、叉积以及其他的一些运算。
它在物理、工程和计算机科学中都有着广泛的应用。
通过向量乘积的计算,我们可以更好地理解和应用三维空间中的数学和物理概念。
空间向量的数乘运算
在线性代数中,空间向量的数乘运算是指将一个向量与一个实数(标量)相乘的操作。
数乘是向量运算中最基本的运算之一。
设向量为 v = [x1, x2, ..., xn],标量为 a。
向量 v 乘以标量 a 的数乘结果记作 av,计算方法如下:
av = [ax1, ax2, ..., a*xn]
即将向量 v 的每个分量与标量 a 相乘得到新的向量 av。
数乘运算改变了向量的长度和方向,当 a > 0 时,数乘会拉长向量的长度,并保持方向不变;当 a < 0 时,数乘会拉长向量的长度,同时改变向量的方向;当 a = 0 时,数乘结果为零向量。
例如,对于向量 v = [2, -3, 4],标量 a = 3 进行数乘运算:
av = [32, 3(-3), 3*4]
= [6, -9, 12]
因此,数乘运算的结果是 av = [6, -9, 12]。
数乘运算在线性代数中广泛应用,它可以用于调整向量的大小、实现向量的平行移动等操作,同时也是计算矩阵乘法、向量内积、向量投影等许多重要运算的基础。
《空间向量的数乘运算》教案第一章:引言1.1 课程背景在高中数学中,向量是描述物理运动、几何图形等方面的重要工具。
数乘运算作为向量运算的基础,对于学生理解和掌握向量的性质和运算规律具有重要意义。
1.2 教学目标通过本章学习,使学生了解数乘运算的概念,掌握数乘运算的性质和运算规律,能够运用数乘运算解决实际问题。
第二章:数乘运算的定义及性质2.1 数乘运算的定义定义:对于向量a和实数λ,数乘运算定义为λa,记作λa。
2.2 数乘运算的性质性质1:交换律对于任意实数λ和μ,有λa = μa。
性质2:结合律对于任意实数λ、μ和向量a,有(λμ)a = λ(μa)。
性质3:分配律对于任意实数λ、μ和向量a、b,有(λ+ μ)a = λa + μa,以及λ(a + b) = λa + λb。
第三章:数乘运算的运算规律3.1 数乘运算与向量长度的关系数乘运算不改变向量的长度,即|λa| = |a|。
数乘运算不改变向量的方向,即λa与a同向或反向。
第四章:数乘运算的应用4.1 数乘运算在几何中的应用数乘运算可以用来放大或缩小向量,例如,在几何作图中,可以通过数乘运算来构造特定长度的向量。
4.2 数乘运算在物理中的应用在物理学中,数乘运算可以用来表示向量的速度、加速度等物理量的倍数。
第五章:小结与练习5.1 数乘运算的概念和性质本章学习了数乘运算的定义及性质,包括交换律、结合律和分配律。
5.2 数乘运算的运算规律本章学习了数乘运算与向量长度和方向的关系。
5.3 数乘运算的应用本章学习了数乘运算在几何和物理中的应用。
1. 判断下列命题的正确性:(1) 对于任意向量a和实数λ,λa = μa。
(2) 对于任意实数λ、μ和向量a,有(λμ)a = λ(μa)。
(3) 对于任意实数λ、μ和向量a、b,有(λ+ μ)a = λa + μa,以及λ(a + b) = λa + λb。
2. 判断下列命题的正确性:(1) 数乘运算会改变向量的长度。