1 2 1 D. (a+b-c) 2
答案:C
【做一做 1-2】 在空间四边形 ABCD 中, ������������ =a-2c, ������������ = 5a+6b-8c,对角线 AC,BD 的中点分别是 E,F,则������������ = .
解析:如图所示,取 AD 的中点 P,连接 EF,EP,FP,结合图形用������������ 和������������表示������������ . ������������ = ������������ + ������������ = ������������ + ������������ = (5a+6b-8c) + (a-2c)=3a+3b-5c.
(2)①共面向量:平行于同一个平面的向量,叫做共面向量. ②如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件 是存在唯一的有序实数对(x,y),使p=xa+yb.
【做一做2-1】 下列说法正确的是( ) A.a(a≠0)与λa方向相同 ������ B.若 a=λb(b≠0),则 λ= ������ C.直线l的方向向量一定在直线l上 D.平行于同一平面的向量,叫做共面向量 解析:选项A中若λ<0,则λa与a反向; 选项B中,两向量不能作除法; 选项C中,方向向量与直线可能平行,不在同一直线上. 答案:D
【做一做2-2】 下列说法正确的是( ) A.在平面内共线的向量在空间不一定共线 B.在空间共线的向量在平面内不一定共线 C.在平面内共线的向量在空间一定不共线 D.在空间共线的向量在平面内一定共线 答案:D
1.向量共线的充要条件及其应用 剖析:(1)空间共线向量与平面共线向量的定义完全一样,当我们 说a,b共线时,表示a,b的两条有向线段所在的直线既可能是同一条 直线,也可能是平行直线;当我们说a∥b时,也具有同样的意义. (2)“共线”这个概念具有自反性,即a∥a;也具有对称性,即若a∥b, 则b∥a. (3)如果应用上述结论判断a,b所在的直线平行,那么还需说明 a(或b)上有一点不在b(或a)上. (4)用上述结论证明(或判断)三点 A,B,C 共线时,只需证明存在实 数 λ,使������������ = ������������������ (或������������ = ������������������ )即可;也可用“对空间任意一点 O,有 ������������ = ������������������ + (1 − ������)������������”来证明三点共线.