湖北省武汉市第二中学2014-2015学年高二上学期期末考试数学(文)试题
- 格式:doc
- 大小:369.50 KB
- 文档页数:8
湖北省武汉市部分重点中学2014-2015学年高二数学下学期期末考试试题文湖北省武汉市部分重点中学2014-2015学年度下学期高二期末考试数 学 试 卷(文科)全卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1P x =∈N ≤x ≤}10,集合{}2|60Q x x x =∈+-=R ,则P ∩Q 等于A .{2}B .{3}C .{-2,3}D .{-3,2}2.下列命题中正确的是( ) A. “若a =b ,则ac =bc”的逆命题是真命题 B .命题“x∈R ,使得x 2-x >0”的否定是“x ∈R ,x 2-x <0”C .若点A(1,2),点B(-1,0),则AB =(2,2)D .“a<5”是“a<3”的必要不充分条件 3.函数()f x 的定义域为开区间(,)a b ,导函数()f x '在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( )A. 1个B.2个C.3个abxy)(x f y ?=OD.4个4.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1,1) B.(1,2) C.(2,2) D.(2,4)5.已知p :不等式12x x ++->m 的解集为R ;q :()f x =()52log m x-为减函数,则p 成立是q 成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为( ).A .1B .2C .4D .5 7.椭圆的右焦点为,椭圆与轴正半轴交于点,与轴正半轴交于,且,则椭圆的方程为( )A. B.C.D.8.曲线3()2f x x x 在p 处的切线平行于直线41yx ,则0p 点的坐标为( )A (1,0)B (1,0)和(1,4)--C (2,8)D (2,8)和(1,4)-- 9.已知抛物线()220ypx p =>上一点()()1,0M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是( )A.19B.125C.15D.1310.如图,在正四棱柱1111ABCD A B C D -中,E F,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( )A .EF 与1BB 垂直 B .EF 与BD 垂直C .EF 与CD 异面 D .EF 与11A C 异面11.定义在R上的奇函数()f x ,当x ≥时,))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x的函数()()F x f x a=-(01a <<)的所有零点之和为( ) A.1-2aB.21a - C.12a--D.21a--A BC1A 1C 1D 1B DEF12.如果双曲线的离心率215+=e ,则称此双曲线为黄金双曲线.有以下几个命题: ①双曲线115222=--y x 是黄金双曲线;②双曲线115222=+-x y 是黄金双曲线;③在双曲线22221x y a b -=中, F 1为左焦点, A 2为右顶点, B 1(0,b ),若∠F 1 B 1 A 290=︒,则该双曲线是黄金双曲线; ④在双曲线22221x y a b -=中,过焦点F 2作实轴的垂线交双曲线于M 、N 两点,O 为坐标原点,若∠MON 120=︒,则该双曲线是黄金双曲线. 其中正确命题的序号为( )A .①和②B .②和③C .③和④D .①和④第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.函数lg y x =的定义域为 。
湖北省武汉市第二中学2014-2015学年高二上学期期末考试数学(文)试题考试时间:2015年2月4日 上午9:00—11:00 试卷满分:150分一、选择题:本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1. 下列说法中正确的是 ( ) A. 若事件A 与事件B 是互斥事件, 则()()1P A P B +=; B. 若事件A 与事件B 满足条件: ()()()1P A B P A P B ⋃=+=, 则事件A 与事件B 是 对立事件;C. 一个人打靶时连续射击两次, 则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件;D. 把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人, 每人分得1张, 则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件.2. 用反证法证明命题: “a , b ∈N , 若ab 不能被5整除, 则 a 与b 都不能被5整除”时, 假设的内 容应为 ( ) A. a , b 都能被5整除 B. a , b 不都能被5整除 C. a , b 至少有一个能被5整除 D. a , b 至多有一个能被5整除3. (是虚数单位)则实数a =( )A. B. 2 C. -1 D. -2 4. 下列框图属于流程图的是( )A.B.C.D.5. 若双曲线1522=-mx y 的渐近线方程为35±=y , 则双曲线焦点F 到渐近线的距离为( ) A.2 B.3C.4D. 56. 已知x ,y 之间的一组数据:则y 与x 的线性回归方程ˆybx a =+必过点( )A. (20,16)B. (16,20)C. (4,5)D. (5,4)直线的斜率的取值范围是( )8. 已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点, 则l 的方程是( )A. x +2y +8=0B. x +2y -8=0C. x -2y -8=0D. x -2y +8=0 9. 下列说法中不正确的个数是( )①命题“∀x ∈R ,123+-xx ≤0”的否定是“∃0x ∈R , 12030+-x x >0”;②若“p ∧q ”为假命题, 则p 、q 均为假命题;③“三个互不相等的数a , b , c 成等比数列”是“b =ac ”的既不充分也不必要条件A. 0B. 1C. 2D. 310. 已知12,F F 是椭圆和双曲线的公共焦点, P 是他们的一个公共点, 则椭圆和双曲线的离心率的倒数之和的最大值为( )A.B.C. 3D. 2二、填空题(本大题共 7个小题 ,每小题 5分,共35分)11. 已知高一年级有学生450人, 高二年级有学生750人, 高三年级有学生600人.用分层抽样从该校的这三个年级中抽取一个容量为n 的样本, 且每个学生被抽到的概率为0.02, 则应从高二年级抽取的学生人数为 . 12. 在空间直角坐标系O -xyz 中,y 轴上有一点M 到已知点(4,3,2)A 和点(2,5,4)B 的距离相等, 则点M 的坐标是 . 13. 某学生5天的生活费(单位:元)分别为: x , y , 8, 9, 6. 已知这组数据的平均数为8, 方差为2,14. 如图所示的算法中, 3a e =, 3b π=,c e π=, 其中π是圆周率,2.71828e = 是自然对数的底数, 则输出的结果是 .15. 双曲线2288kx ky -=的一个焦点为(0,3), 则k 的值为___________, 双曲线的渐近线方程 为___________.16. 集合{1,2,3,,}(3)n n ≥中, 每两个相异数作乘积, 将所有这些乘积35++⨯+17. . 如图是双曲线:;②若ac b=2, 则该双曲线是黄金双曲线;③若21,F F 为左右焦点, 21,A A 为左右顶点, 1B (0, b),2B (0,﹣b )且021190=∠A B F , 则该双曲线是黄金双曲线;④若MN 经过右焦点2F 且21F F MN⊥, 090=∠MON ,则该双曲线是黄金双曲线.其中正确命题的序号为 .三、解答题(共5大题,共65分) 18. (12分)命题p :“0],2,1[2≥-∈∀a xx ”, 命题q :“022,0200=-++∈∃a ax x R x ”, 若“p 且q ”为假命题, 求实数a 的取值范围.19. (13分)已知三点P (5, 2)、F 1(-6, 0)、F 2(6, 0).(1) 求以F 1、F 2为焦点且过点P 的椭圆的标准方程;(2) 设点P 、F 1、F 2关于直线y =x 的对称点分别为12',','P FF , 求以12','F F 为焦点且过'P 点的双曲线的标准方程.20. (13分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏, 但可见部分如下,据此解答如下问题.(1) 求全班人数及分数在[)90,80之间的频数;(2) 估计该班的平均分数, 并计算频率分布直方图中[)90,80间的矩形的高;(3) 若要从分数在[80, 100]之间的试卷中任取两份分析学生失分情况, 在抽取的试卷中, 求至少有一份分数在[90, 100]之间的概率.21. (13分)如图, 在三棱柱111C B A ABC -中, 侧棱⊥1AA 底面ABC,AB BC⊥, D 为AC的中点,1 2.A A AB ==(1) 求证://1AB 平面D BC 1;(2) 过点B 作AC BE ⊥于点E ,求证: 直线⊥BE平面CC AA 11;(3) 若四棱锥D C AA B 11-的体积为3, 求BC 的长度.22. (14分)在平面直角坐标系xOy 中, 已知点A (-1, 1), P 是动点, 且△POA 的三边所在直线的斜率满足k OP +k OA =k P A .(1) 求点P 的轨迹C 的方程;(2) 若Q 是轨迹C 上异于点P 的一个点, 且PQ =λOA , 直线OP 与QA 交于点M , 问: 是否存在点P , 使得△PQA 和△P AM 的面积满足S △PQA =2S △P AM ? 若存在, 求出点P 的坐标; 若不存在, 说明理由.武汉二中2014——2015学年上学期高二年级期末考试数学(文科)试卷参考答案11. 1512. (0,4,0)M 13. 3 14. 3π15. -1; 16. 32217. ①②③④18. ),1()1,2(+∞-∈ a∴⊿=4a 2-4(2-a )≥0,即,a ≥1或a ≤-2, p 真q 也真时 ∴a ≤-2,或a =1 若“p 且q ”为假命题 , 即),1()1,2(+∞-∈ a . 考点: 全称命题与特称命题; 简易逻辑.19. (12【解析】试题分析: (1)根据椭圆的定义, 又6c =, 利用222ab c =+, 可求出c , 从而得出椭圆的标准方程, 本题要充分利用椭圆的定义.(2)由于F 1、F 2关于直线y x =的对称点在y 轴上, 且关于原点对称, 故所求双曲线方程为标准方程, 同样利用双曲线的定义有又6c =, 要注意的是双曲线中有222ab c +=, 故也能很快求出结论.试题解析:6c =,2a a ==3b =(2)点P (5, 2)、(-6, 0)、(6, 0)关于直线y =x 的对称点分别为:'(2,5)P , 1'(0,6)F -, 2'(0,6)F , 设2a a ==4b =,考点: (1)椭圆的标准方程; (2)双曲线的标准方程.20. 解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯全班人数为.2508.02=所以分数在[)90,80之间的频数为42107225=----(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分 为60×7+2+3+3+5+6+8+9=456;分数在[)80,70之间的总分数为70×10+1+2+3+3+4+5+6+7+8+9=747;分数在[)90,80 之间的总分约为85×4=340;分数在]100,90[之间的总分数为95+98=193;所以,该班的平均分数为.7425193340747456114=++++估计平均分时,以下解法也给分:分数在[)60,50之间的频率为2/25=0.08;分数在[)70,60之间的频率为7/25=0.28;分数在 [)80,70之间的频率为10/25=0.40;分数在[)90,80之间的频率为4/25=0.16分数在 ]100,90[之间的频率为2/25=0.08; 所以,该班的平均分约为8.7308.09516.08540.07528.06508.055=⨯+⨯+⨯+⨯+⨯频率分布直方图中[)90,80间的矩形的高为.016.010254=÷(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6, 在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6);(2,3),(2,4),(2,5),(2,6);(3,4),(3,5),(3,6),(4,5),(4,6);(5,6)共15个,其中,至少有一个在[90,100]之间的基本事件有9个,故至少有一份分数在[90,1000]之间的频率是6.0159=21. (1)证明:连接,1C B 设O BC C B =⋂11,连接,OD ………1分 11B BCC 是平行四边形, ∴点O 是C B 1的中点,D 是AC 的中点, ∴OD 是C AB 1∆的中位线,∴OD AB //1…………………………………………3分 又D BC D,BC 111平面平面⊂⊄OD AB∴ AB 1//平面BC 1D …………………………………………5分 (2) ABC,BE ABC,1平面平面⊂⊥A A∴BE,A 1⊥A ………………………………………7分,又A A A AC AC,BE 1=⋂⊥……………………9分∴直线BE ⊥平面C C AA 11………………………………………10分 (2)的解法2:ABC C C AA C,C AA A A ABC,111111平面平面平面平面⊥∴⊂⊥A A ……7分 ABC,BE AC,BE AC,ABC C C AA 11平面平面又平面⊂⊥=⋂ ∴直线BE ⊥平面C C AA 11………………………………………10分 (3) 3【解析】(1)连接B 1C ,设O BC C B =⋂11,连接,OD 证明OD AB //1即可. (2) 因为BE AC ⊥,再证1A BE A ⊥即可.(3) 再根据311AA C DV=建立关于x 的方程, 解出x 值.由(2)知BE 的长度是四棱锥B —AA 1C 1D 的体高1 2.A A AB ==分………………13分3BC 3,x =∴=∴ …………………………………………………14分 22. (1)y =x 2(x ≠0且x ≠-1)(2)(1, 1)【解析】(1)设点P (x , y )为所求轨迹上的任意一点, 则由k OP +k OA =k P A整理得轨迹C 的方程为y =x 2(x ≠0且x ≠-1).(2)设P (x 1,21x ), Q (x 2,22x , M (x 0, y 0),由PQ =λOA 可知直线PQ ∥OA , 则k PQ =k OA , 即x 2+x 1=-1, 由O 、M 、P 三点共线可知,OM=(x 0, y 0)与OP =(x 1,21x )共线,∴x 021x -x 1y 0=0, 由(1)知x 1≠0, 故y 0=x 0x 1,同理, 由AM =(x 0+1, y 0-1)与AQ =(x 2+1,22x -1)共线可知(x 0+1)(22x -1)-(x 2+1)(y 0-1)=0, 即(x 2+1)[(x 0+1)·(x 2-1)-(y 0-1)]=0,由(1)知x 2≠-1, 故(x 0+1)(x 2-1)-(y 0-1)=0,将y 0=x 0x 1, x 2=-1-x 1代入上式得(x 0+1)(-2-x 1)-(x 0x 1-1)=0,整理得-2x 0(x 1+1)=x 1+1, 由x 1≠-1得x 0由S △PQA =2S △P AM , 得到QA =2AM ,∵PQ ∥OA , ∴OP =2OM , ∴PO =2OM , ∴x 1=1, ∴P 的坐标为(1, 1)。
湖北省武汉市第二中学2014-2015学年高二上学期期末考试英语试题考试时间:2015年2月5日上午9:00~11:00 试卷满分:150分第一部分听力(共两节,满分30分)第一节(共5小题; 第小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man prefer to drink?A. Tea.B. Coffee.C. Cold water.2. What will the woman do at the weekend?A. Work at home.B. Finish her homework.C. Make a plan for a report.3. Where does the conversation probably take place?A. In a library.B. In a bookshop.C. In a museum.4. What is Alice now?A. An actress.B. A photographer.C. A journalist.5. What are the speakers mainly talking about?A. Clouds.B. Snakes.C. Earthquakes.第二节(共15小题; 每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟; 听完后,各小题将给出5秒钟的做答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至7题。
6. According to the man, what kind of people may like living in his hometown?A. The young.B. The middle-aged.C. The old.7. What does the man think of his hometown?A. It offers many job opportunities.B. It is quiet with only a few shops and cafés.C. It is small with a large population.听第7段材料,回答第8至9题。
湖北省武汉市第二中学2014-2015学年高二上学期期末考试英语试题考试时间:2015年2月5日上午9:00~11:00 试卷满分:150分第一部分听力(共两节,满分30分)第一节(共5小题; 第小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man prefer to drink?A. Tea.B. Coffee.C. Cold water.2. What will the woman do at the weekend?A. Work at home.B. Finish her homework.C. Make a plan for a report.3. Where does the conversation probably take place?A. In a library.B. In a bookshop.C. In a museum.4. What is Alice now?A. An actress.B. A photographer.C. A journalist.5. What are the speakers mainly talking about?A. Clouds.B. Snakes.C. Earthquakes.第二节(共15小题; 每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟; 听完后,各小题将给出5秒钟的做答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至7题。
6. According to the man, what kind of people may like living in his hometown?A. The young.B. The middle-aged.C. The old.7. What does the man think of his hometown?A. It offers many job opportunities.B. It is quiet with only a few shops and cafés.C. It is small with a large population.听第7段材料,回答第8至9题。
湖北省武汉市部分重点中学联考2014-2015学年高二上学期期中数学试卷(文科)一、选择题(50分)1.(5分)直线x+y+3=0的倾斜角是()A.B.C.D.2.(5分)以圆x2﹣2x+y2=0的圆心为圆心,半径为2的圆的方程()A.(x+1)2+y2=2 B.(x﹣1)2+y2=2 C.(x+1)2+y2=4 D.(x﹣1)2+y2=43.(5分)若P(A∪B)=P(A)+P(B)=1,则事件A与B的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.以上都不对4.(5分)已知x、y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=bx+a中a=50,猜想x=4时,y的值为()x 14 12 8 6y 22 25 35 38A.40 B.42 C.44 D.465.(5分)执行如图所示的程序框图,则输出的结果是()A.5B.7C.9D.116.(5分)在区间上随机取两个数x,y其中满足y≥2x的概率是()A.B.C.D.7.(5分)在下列各数中,最大的数是()A.85(9)B.200(6)C.68(11)D.708.(5分)用随机模拟方法,近似计算由曲线y=x2及直线y=1所围成部分的面积S.利用计算机产生N组数,每组数由区间上的两个均匀随机数a1=RAND,b=RAND组成,然后对a1进行变换a=2(a1﹣0.5),由此得到N个点(x i,y i)(i=1,2,…,N).再数出其中满足x i2≤y i≤1(i=1,2,…,N)的点数N1,那么由随机模拟方法可得到的近似值为()A.B.C.D.9.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则x0的取值范围是()A.B.C.D.10.(5分)平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,命题:①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k与b都是无理数,则直线y=kx+b不经过任何整点;③如果k与b都是有理数,则直线y=kx+b必经过无穷多个整点;④如果直线l经过两个不同的整点,则l必经过无穷多个整点;⑤存在恰经过一个整点的直线;其中的真命题的个数是()A.2B.3C.4D.5二、填空题(25分)11.(5分)在空间直角坐标系中,已知两点P1(﹣1,3,5),P2(2,4,﹣3),|P1P2|=.12.(5分)为研究某药物的疗效,选取若干志愿者进行临床研究所有志愿者舒张压数据(单位:kPa)的分组区13,14),15,16﹚,80,90)之间的人数,补齐频率分布直方图;(2)请由频率分布直方图估计平均成绩和该组数据的中位数.20.(13分)已知⊙C的圆心C(3,1),被x轴截得的弦长为4.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.21.(14分)如图,圆O:x2+y2=4与坐标轴交于点A,B,C.(1)求与直线AC垂直的圆的切线方程;(2)设点M是圆上任意一点(不在坐标轴上),直线CM交x轴于点D,直线BM交直线AC于点N,①若D点坐标为(2,0),求弦CM的长;②求证:2k ND﹣k MB为定值.湖北省武汉市部分重点中学联考2014-2015学年高二上学期期中数学试卷(文科)参考答案与试题解析一、选择题(50分)1.(5分)直线x+y+3=0的倾斜角是()A.B.C.D.考点:直线的倾斜角.专题:直线与圆.分析:求出直线的斜率,然后求出直线的倾斜角.解答:解:直线x+y+3=0的斜率为:﹣,倾斜角为α,所以tan,∴α=.故选:D.点评:本题考查直线的斜率与直线的倾斜角的关系,基本知识的考查.2.(5分)以圆x2﹣2x+y2=0的圆心为圆心,半径为2的圆的方程()A.(x+1)2+y2=2 B.(x﹣1)2+y2=2 C.(x+1)2+y2=4 D.(x﹣1)2+y2=4考点:圆的标准方程.专题:直线与圆.分析:圆x2﹣2x+y2=0的圆心为(1,0),由此能求出以圆x2﹣2x+y2=0的圆心为圆心,半径为2的圆的方程.解答:解:∵圆x2﹣2x+y2=0的圆心为(1,0),∴以圆x2﹣2x+y2=0的圆心为圆心,半径为2的圆的方程为(x﹣1)2+y2=4.故选:D.点评:本题考查圆的方程的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.3.(5分)若P(A∪B)=P(A)+P(B)=1,则事件A与B的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.以上都不对考点:概率的基本性质.专题:计算题.分析:通过举例子,得到满足P(A∪B)=P(A)+P(B)的两个事件不一定互斥也不一定对立.解答:解:设X是上的均匀分布而事件A={0≤X≤0.5}事件B={0.5≤X≤1}显然P(A)=P(B)=0.5而P(A∪B)=P(A)+P(B)=0.5+0.5=1但AB={0.5} 不是空集所以事件A和B不互斥而若事件A={0≤X<0.5}事件B={0.5<X≤1}显然P(A)=P(B)=0.5,而P(A∪B)=P(A)+P(B)=0.5+0.5=1,P(AB)=0显然事件A和B不对立,但AB是空集故选:D.点评:本题考查要说明一个命题为假命题,只需一个反例即可,属于基础题.4.(5分)已知x、y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=bx+a中a=50,猜想x=4时,y的值为()x 14 12 8 6y 22 25 35 38A.40 B.42 C.44 D.46考点:线性回归方程.专题:概率与统计.分析:利用回归直线方程经过样本中心求出b,代入x=4即可求出结果.解答:解:因为回归直线方程经过样本中心,所以==10.==30.=bx+a中a=50,可得30=10b+50,b=﹣2,∴回归直线方程为:=﹣2x+50,x=4时,y=42.故选:B.点评:本题考查回归直线方程的应用,回归直线方程经过样本中心是解题的关键.5.(5分)执行如图所示的程序框图,则输出的结果是()A.5B.7C.9D.11考点:程序框图.专题:空间位置关系与距离.分析:根据框图的流程依次计算运行的结果,直到不满足条件S<20,计算输出k的值.解答:解:由程序框图知:第一次运行S=1+2=3,k=1+2=3;第二次运行S=1+2+6=9.k=3+2=5;第三次运行S=1+2+6+10=19,k=5+2=7;第四次运行S=1+2+6+10+14=33,k=7+2=9;此时不满足条件S<20,程序运行终止,输出k=9.故选:C.点评:本题考查了循环结构的程序框图,根据框图的流程依次计算运行的结果是解答此类问题的常用方法.6.(5分)在区间上随机取两个数x,y其中满足y≥2x的概率是()A.B.C.D.考点:几何概型.专题:计算题;概率与统计.分析:该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.解答:解:在区间上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为=1,∴所求的概率为.故选:B.点评:本题主要考查了与面积有关的几何概率的求解,解题的关键是准确求出区域的面积,属于中档题.7.(5分)在下列各数中,最大的数是()A.85(9)B.200(6)C.68(11)D.70考点:进位制.专题:计算题.分析:欲找四个中最大的数,先将它们分别化成十进制数,后再比较它们的大小即可.解答:解:85(9)=8×91+5=77;200(6)=2×62=72;68(11)=6×111+8×110=74;70;故85(9)最大,故选:A.点评:本题考查的知识点是算法的概念,由n进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.8.(5分)用随机模拟方法,近似计算由曲线y=x2及直线y=1所围成部分的面积S.利用计算机产生N组数,每组数由区间上的两个均匀随机数a1=RAND,b=RAND组成,然后对a1进行变换a=2(a1﹣0.5),由此得到N个点(x i,y i)(i=1,2,…,N).再数出其中满足x i2≤y i≤1(i=1,2,…,N)的点数N1,那么由随机模拟方法可得到的近似值为()A.B.C.D.考点:随机数的含义与应用.专题:计算题;概率与统计.分析:先由计算器做模拟试验结果试验估计,即可得出结论.解答:解:由题意,对a1进行变换a=2(a1﹣0.5),由此得到N个点(x i,y i)(i=1,2,…,N).再数出其中满足x i2≤y i≤1(i=1,2,…,N)的点数N1,所以由随机模拟方法可得到的近似值为,故选:A.点评:本题考查随机数的含义与应用,考查学生分析解决问题的能力,比较基础.9.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则x0的取值范围是()A.B.C.D.考点:圆方程的综合应用.专题:直线与圆.分析:易知M点在直线y=1上,若设圆x2+y2=1与直线y=1的交点为T,显然假设存在点N,使得∠OMN=30°,则必有∠OMN≤∠OMT,所以只需∠OMT≥30°即可,借助于三角函数容易求出x0的范围.解答:解:易知M(x0,1)在直线y=1上,设圆x2+y2=1与直线y=1的交点为T,显然假设存在点N,使得∠OMN=30°,则必有∠OMN≤∠OMT,所以要是圆上存在点N,使得∠OMN=30°,只需∠OMT≥30°,因为T(0,1),所以只需在Rt△OMT中,tan∠OMT==≥tan30°=,解得,当x0=0时,显然满足题意,故x0∈.故答案选A点评:此题重点考查了利用数形结合的思想方法解题,关键是弄清楚M点所在的位置,能够找到∠OMN与∠OMT的大小关系,从而构造出关于x0的不等式.10.(5分)平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,命题:①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k与b都是无理数,则直线y=kx+b不经过任何整点;③如果k与b都是有理数,则直线y=kx+b必经过无穷多个整点;④如果直线l经过两个不同的整点,则l必经过无穷多个整点;⑤存在恰经过一个整点的直线;其中的真命题的个数是()A.2B.3C.4D.5考点:命题的真假判断与应用.专题:简易逻辑.分析:①,举一例子y=x+,即可说明本命题是真命题;②,举一反例,k=,b=,则直线y=x+经过(﹣1,0),即可说明本命题是假命题;③,举例说明,k=,b=,则直线y=x+不经过任何整点,可可说明本命题是假命题;④,假设直线l过两个不同的整点,设直线l为y=kx,把两整点的坐标代入直线l的方程,两式相减得到两整点的横纵坐标之差的那个点也为整点且在直线l上,利用同样的方法,得到直线l经过无穷多个整点,得到本命题为真命题;⑤,令直线y=x恰经过整点(0,0),可说明本命题为假命题.解答:解:对于①,令y=x+,既不与坐标轴平行又不经过任何整点,所以本命题正确;对于②,若k=,b=,则直线y=x+经过(﹣1,0),所以本命题错误;对于③,k=,b=,则直线y=x+不经过任何整点,所以本命题错误;对于④,设y=kx为过原点的直线,若此直线l过不同的整点(x1,y1)和(x2,y2),把两点代入直线l方程得:y1=kx1,y2=kx2,两式相减得:y1﹣y2=k(x1﹣x2),则(x1﹣x2,y1﹣y2)也在直线y=kx上且为整点,通过这种方法得到直线l经过无穷多个整点,所以本命题正确;对于⑤,令直线y=x恰经过整点(0,0),所以本命题正确.综上,命题正确的序号有:①④⑤.故选:B.点评:本题考查命题的真假判断与应用,着重考查构造函数思想与运算分析能力,属于中档题.二、填空题(25分)11.(5分)在空间直角坐标系中,已知两点P1(﹣1,3,5),P2(2,4,﹣3),|P1P2|=.考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:直接利用空间两点间的距离公式求解即可.解答:解:在空间直角坐标系中,已知两点P1(﹣1,3,5),P2(2,4,﹣3),|P1P2|==.故答案为:.点评:本题考查空间两点间的距离公式的应用,基本知识的考查.12.(5分)为研究某药物的疗效,选取若干志愿者进行临床研究所有志愿者舒张压数据(单位:kPa)的分组区13,14),15,16﹚,0,0,.(74﹣83)2+(82﹣83)2+(84﹣83)2+(85﹣83)2+(90﹣83)2(73﹣83)2+(75﹣83)2+(86﹣83)2+(90﹣83)2+(91﹣83)280,90)之间的人数,补齐频率分布直方图;(2)请由频率分布直方图估计平均成绩和该组数据的中位数.考点:频率分布直方图;众数、中位数、平均数.专题:概率与统计.分析:(1)由频率分布直方图得出成绩在内的人数,求出样本容量n以及各分数段内的人数,补齐频率分布直方图;(2)根据频率分布直方图求出数据的平均数与中位数即可.解答:解:(1)成绩在90,10080,90)之间的人数为25﹣(2+7+10+2)=4人;∴参加测试人数n=25,分数在60,70)内的频率为=0.28,在70,80)内的频率为=0.4;…(7分)平均成绩为0.08×55+0.28×65+0.4×75+0.16×85+0.08×95=73.8;…(9分)数据的中位数为x:0.008+0.28+(x﹣70)×0.04=0.5=73.5 (73或者74也算对)…11分即平均成绩为73.8,中位数为73.5(73或者74也算对).…12分点评:本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的应用问题,考查了画图能力,是基础题.20.(13分)已知⊙C的圆心C(3,1),被x轴截得的弦长为4.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.考点:圆的标准方程;直线与圆的位置关系.专题:直线与圆.分析:(Ⅰ)设⊙C的半径为r,由题意可知,由此能求出⊙C.(Ⅱ)设A(x1,y1),B(x2,y2),联立,得2x2+(2a﹣8)x+a2﹣2a+1=0.由此利用韦达定理、根的判别式,结合已知条件能求出a=﹣1.解答:解:(Ⅰ)设⊙C的半径为r,由题意可知,得r=3.所以⊙C的方程为(x﹣3)2+(y﹣1)2=9.…(4分)(Ⅱ)设A(x1,y1),B(x2,y2),联立,得2x2+(2a﹣8)x+a2﹣2a+1=0.…(6分)x1+x2=4﹣a,x1x2=由于OA⊥OB,可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以2x1x2+a(x1+x2)+a2=0所以2•=0解得a=﹣1,…(10分)判别式△=56﹣16a﹣4a2>0.…(12分)所以a=﹣1.…(13分)点评:本题考查圆的方程的求法,考查实数值的求法,解题时要认真审题,注意圆的性质的合理运用.21.(14分)如图,圆O:x2+y2=4与坐标轴交于点A,B,C.(1)求与直线AC垂直的圆的切线方程;(2)设点M是圆上任意一点(不在坐标轴上),直线CM交x轴于点D,直线BM交直线AC于点N,①若D点坐标为(2,0),求弦CM的长;②求证:2k ND﹣k MB为定值.考点:直线和圆的方程的应用.专题:综合题;直线与圆.分析:(1)先求直线AC的方程,设出切线方程,利用点线距离等于半径,即可求与直线AC垂直的圆的切线方程;(2)①求出CM的方程,圆心到直线CM的距离,即可求弦CM的长;②确定N,D的坐标,表示出2k ND﹣k MB,即可证明2k ND﹣k MB为定值.解答:解:(1)由题意,A(﹣2,0),B(2,0),C(0,2),∴直线AC:,即x﹣y+2=0,…(2分)设l:x+y+b=0,∴=2,则b=±2,∴l:x+y±2=0;…(5分)(2)①CM:x+y﹣2=0,圆心到直线CM的距离d==,∴弦CM的长为2=2 …(9分)②设M(x0,y0),则,直线,则,,直线,又l AC:y=x+2AC与BM交点,将,代入得,…(13分)所以,得为定值.…(16分)点评:本题考查直线方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.。
湖北省武汉市第二中学2014-2015学年高二上学期期中考试英语试题考试时间:2014年11月7日上午:9:00~11:00试卷满分:150分第一部分听力(共两节30分)做题时,先将答案划在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where does the conversation take place?A. On a train.B. On a plane.C. In a restaurant.2. Why does the woman ask the man to see her?A. To fire him.B. To ask him not to be late.C. To tell him the change of working hours.3. When will the woman stay at the hotel?A. From Feb. 2 to Feb. 16.B. From Feb. 13 to Feb. 15.C. From Feb. 2 to Feb. 12.4. What does the woman mean?A. She doesn't know which school to choose.B. She's already decided which major to choose.C. She's already been to the Academic Help Centre5. What is the woman doing?A. Having a wedding ceremony.B. Getting prepared to go to Canada.C. Making a plan for her honeymoon.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话。
湖北省武汉市第二中学2014-2015学年高二上学期期末考试英语试题考试时间:2015年2月5日上午9:00~11:00 试卷满分:150分第一部分听力(共两节,满分30分)第一节(共5小题; 第小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the man prefer to drink?A. Tea.B. Coffee.C. Cold water.2. What will the woman do at the weekend?A. Work at home.B. Finish her homework.C. Make a plan for a report.3. Where does the conversation probably take place?A. In a library.B. In a bookshop.C. In a museum.4. What is Alice now?A. An actress.B. A photographer.C. A journalist.5. What are the speakers mainly talking about?A. Clouds.B. Snakes.C. Earthquakes.第二节(共15小题; 每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟; 听完后,各小题将给出5秒钟的做答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至7题。
6. According to the man, what kind of people may like living in his hometown?A. The young.B. The middle-aged.C. The old.7. What does the man think of his hometown?A. It offers many job opportunities.B. It is quiet with only a few shops and cafés.C. It is small with a large population.听第7段材料,回答第8至9题。
湖北省武汉市第二中学2014-2015学年高二上学期期末考试数学(理)试题考试时间:2015年2月4日 上午 试卷满分:150分一、选择题:本大题共10小题, 每小题5分, 共50分.1.过椭圆221169x y +=的左焦点1F 的直线交椭圆于,A B 两点, 2F 是右焦点, 则2ABF ∆的周长是( ) .6A.8B .12C .16D2.抛物线24y x =的焦点坐标是( ) .(1,0)A.(2,0)B 1.(0,)16C 1.(0,)8D3.设随机变量ξ的分布列为1()(),1,2,33i P i a i ξ===, 则实数a 的值为( ) .1A9.13B 11.13C 27.13D 4.某服装加工厂某月生产甲、乙、丙三种产品共4000件, 为了保证产品质量, 进行抽样检验, 根据分层抽样的结果, 企业统计员制作了如下统计表格. 由于不小心, 表格甲、丙中产品的有关数据已被污染得看不清楚, 统计员记得甲产品的样本容量比丙产品的样本容量多10, 根据以上信息, 可得丙5.正四面体ABCD 中, M,N 分别是棱BC 、AD 的中点, 则异面直线,AM CN 所成角的余弦值为( )2.3A -1.4B2.3C 1.4D - 6.若251()(1)x a x+-的展开式中的常数项为1-, 则实数a 的值为( ).1A.99B .1-9C -或.19D 或 7.已知随机变量X 服从正态分布(3,1)N , 且(24)0.6826P x ≤≤=, 则(4)P x >=( ) .0.1588A.0.1587B .0.1586C .0.1585D8. 设抛物线22y x =的焦点为F , 过点的直线与抛物线相交于,B A 两点, 与抛物线的准线相交于C , ||2BF =, 则BCF ∆与ACF ∆的面积之比BCFACFS S ∆∆=( )4.5A 2B.34.7C 1.2D 9.若直线2y kx =+与双曲线226x y -=的右支交于不同的两点, 则实数k 的取值范围是( ).(A B C.( D.(1)- 10.已知直线12,l l 是经过椭圆34422y x +=1的中心且相互垂直的两条直线, 分别交椭圆于,C,B,D A , 则四边形BCD A 的面积的最小值是( ).2A B.4 二、填空题:本大题共5小题, 每小题5分, 共25分.11.假设要考查某企业生产的袋装牛奶质量是否达标, 现从500袋牛奶中抽取60袋进行检验, 利用随机数表抽样时, 先将500袋牛奶按000,001, , 499进行编号. 如果从随机数表第8行第4列的数开始三位数连续向右读取, 请你依次写出最先检测的5袋牛奶的编号 (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 12.双曲线2288kx ky -=的一个焦点为(0,3), 则实数k 的值为 .已知该大学某女大学生身高为165.25cm, 则预报其体重合理值为 kg.14.向等腰直角三角形BC A (其中C =BC A )内任意投一点M , 则AM 小于AC 的概率为 .15.平行六面体1111ABCD A B C D -中, 1160A AD A AB ∠=∠=, 90DAB ∠=, 13A A =, 2AB =,1AD =, 则其体对角线1AC 的长为 .三、解答题:本大题共6小题, 共75分.16. (12分)已知椭圆的两个焦点分别是(2,0),(2,0)-, 并且经过点53(,)22-, 求它的标准方程.17. (12分) 过双曲线22136x y -=的右焦点2F , 倾斜角为30的直线交双曲线于,A B 两点, 1F 为左焦点, 求(1)|AB|; (2)1AF B ∆的周长.18. (12分) 如图所示, 已知四棱锥P ABCD -的底面为直角梯形, //AB CD , 90,DAB PA ∠=⊥底面ABCD , 且1PA AD DC ===, 2AB =, M 是PB 的中点. (1)求证:平面PAD ⊥平面PCD .(2)求AC 与PB 所成角的余弦值. (3)求二面角A MC B --的余弦值.19. (12分)根据气象预报, 某地区近期有小洪水的概率为0.25, 有大洪水的概率为0.01.该地区某工地上有一台大型设备, 遇到大洪水时要损失60000元, 遇到小洪水时要损失10000元. 为保护设备, 有以下3种方案:方案1:运走设备, 搬运费为3800元.方案2:建保护围墙, 建设费为2000元, 但围墙只能防小洪水. 方案3:不采取措施. 试比较哪一种方案好.20. (13分)已知(13)nx -展开式中, 末三项的二项式系数的和等于121, 求展开式中系数最大的项的项数及二项式系数最大的项的项数.21. (14分)如图所示, 已知椭圆22C :14x y +=左、右端点分别为12,A A , 过定点(1,0)的动直线与椭圆C 交于,P Q 两点. 直线1P A 与2A Q 交于点S . (1)当直线斜率为1时, 求直线1A P 与2A Q 的方程.(2)试问:点S 是否恒在一条定直线上. 若是求出这条直线方程, 若不是请说明理由.武汉二中2014—2015学年上学期高二年级期末考试数学参考答案11.163,199,175,128,395 12.-1 13.54.5 14.4π3.解答题16.由椭圆定义知2a ==a ∴=2222,1046c b a c =∴=-=-=。
2014——2015学年上学期高二期中考试数学(理科)试题时间:120分钟 分值:150分第Ⅰ卷(50分)一、选择题:本大题共10个小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1. 用辗转相除法求459和357的最大公约数,需要做除法的次数是( )A.51B.2C.3D.42. 某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A. 10 B. 9C. 8D.73. 已知圆O : 222r y x =+,点),(b a P (0≠ab )是圆O 内一点,过点P 的圆O 的最短弦所在的直线为1l ,直线2l 的方程为02=++r by ax ,那么 ( ) A .12l l ∥,且2l 与圆O 相离 B .12l l ⊥,且2l 与圆O 相切 C .12l l ∥,且2l 与圆O 相交 D .12l l ⊥,且2l 与圆O 相离4.六件不同的奖品送给5个人, 每人至少一件,不同的分法种数是 ( )A. 45CB. 65 C .1556.A A D.5526A C 5.如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是( ) A .i ≤5 B .i ≤4 C .i >5 D .i >4第6题图6.为调查甲乙两个网络节目的受欢迎程度,随机选取了8天,统计上午8:00-10:00的点击量。
茎叶图如图,设甲、乙的中位数分别为12,x x ,方差分别为12,D D ,则( )A.1212,x x D D <<B.1212,x x D D >>C.1212,x x D D <> D.1212,x x D D ><7.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:饮料瓶数3根据上表可得回归方程y bx a =+中的b 为6,据此模型预测气温为30℃时销售饮料瓶数为( ) A. 141B. 191C. 211D. 2418. 高二年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )A.110 B.120 C.140 D.11209.下列命题中是错误命题的个数有( )①A、B 为两个事件,则P(A∪B)=P(A)+P(B); ②若事件A 、B 满足P(A)+P(B)=1,则A ,B 是对立事件 ③A、B 为两个事件,(|)(|)p A B P B A =④若A 、B 为相互独立事件,则()()()p AB P A P B = A .0B .1C .2D .310.已知函数2()43,f x x x =-+集合{(,)()()0}M x y f x f y =+≤,集合{(,)()()0}N x y f x f y =-≥,则若在集合M 所表示的区域内撒100颗黄豆,落在集合M N ⋂所表示的区域的黄豆约有多少( )A.12B.25C. 50D. 75第Ⅱ卷(100分)二.填空题:本大题共5小题,每小题5分,共25分。
湖北省普通高中联考2014-2015学年高二上学期期末数学试卷(文科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是()A.归纳推理B.演绎推理C.类比推理D.其它推理2.(5分)已知a是实数,是实数,则z=(2+i)(a﹣i)的共轭复数是()A.﹣3﹣i B.3+i C.1﹣3i D.﹣1+3i3.(5分)如图是某人按打中国联通客服热线10010,准备借助人工台咨询本手机的收费情况,他参照以下流程,拨完10010后,需按的键应该是()A.1 B.7 C.8 D.04.(5分)要从编号为01~50的50枚最新研制的某型号导弹中随机抽出5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,在选取的5枚导弹的编号可能是()A.05,10,15,20,25 B.03,13,23,33,43C.01,02,03,04,05 D.02,04,08,16,325.(5分)下面的程序运行的功能是()A.求1+++…+的值B.求1+++…+的值C.求1+1+++…+的值D.求1+1+++…+的值6.(5分)甲、乙两人在一次射击比赛中各射靶5次.两人成绩的统计表如甲表、乙表所示,则:()甲表:环数 4 5 6 7 8频数 1 1 1 1 1乙表:环数 5 6 9频数 3 1 1A.甲成绩的平均数小于乙成绩的平均数B.甲成绩的中位数小于乙成绩的中位数C.甲成绩的方差小于乙成绩的方差D.甲成绩的极差小于乙成绩的极差7.(5分)记曲线y=与x轴所围成的区域为D,若直线y=ax﹣a把D的面积分为1:2的两部分,则a的值为()A.±B.C.±D.8.(5分)在区间[3,5]上任取一个数m,则“函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点”的概率是()A.B.C.D.9.(5分)执行如图程序框图.若输入n=20,则输出的S值是()A.B.C.D.10.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(1﹣m,0),B(1+m,0),m>0,若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4二、填空题:本大题共7小题,每小题5分,共25分,把答案填在答题卷的横线上.. 11.(5分)某地区有600家商店,其中大型商店有60家,中型商店有150家.为了掌握各商店的营业情况.要从中抽取一个容量为40的样本.若采用分层抽样的方法,抽取的中型商店数是.12.(5分)若复数z=,则|z|=.13.(5分)下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则=.月份x 1 2 3 4用水量y 4.5 4 3 2.514.(5分)执行如图所示的程序框图,则输出的S的值为15.(5分)△ABC中,A(1,1),B(5,﹣5),C(0,﹣1).则AB边上的中线所在直线与AC边上的高所在直线的交点坐标为.16.(5分)从集合A={1,2,4,5,10}中任取两个不同的元素a,b,则(1)lga+lgb=1的概率为(2)b>2a的概率为.17.(5分)已知a n=()n,把数列{a n}的各项排列如图的三角形状,记A(m,n)表示第m行的第n个数,则(1)A(4,5)=(2)A(m,n)=.三、解答题:本大题共5小题,满分65分,解答应写出文字说明、证明过程或演算步骤18.(12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?19.(12分)已知圆C的圆心在直线y=x﹣1上,且A(2,0),B(,)在圆C上.(1)求圆C的方程;(2)若圆M:x2+(y﹣2)2=r2(r>0)与圆C相切.求直线y=x截圆M所得弦长.20.(13分)设x2+2ax+b2=0是关于x的一元二次方程.(1)若a是从0,1,2,3四个数个中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,3]上任取一个数,b是从区间[0,2]上任取一个数,求方程有实根的概率.21.(14分)先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证:a12+a22≥;证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2,f(x)=2x2﹣2(a1+a2)x+a12+a22=2x2﹣2x+a12+a22,因为对一切x∈R,恒有f(x)≥0,所以△=4﹣8(a12+a22)≤0,从而a12+a22≥.(1)已知a1,a2,…,a n∈R,a1+a2+…+a n=1,请写出上述结论的推广式;(2)参考上述证法,对你的推广的结论进行证明;(3)若++=1,求x+y+z的最大值.22.(14分)如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x﹣3)2+(y﹣4)2=1(1)若过点(﹣2,0)的直线l与圆C1交于A,B两点,且•=,求直线l的方程;(2)设动圆C同时平分圆C1的周长,圆C2的周长,①证明动圆圆心C在一条直线上运动;②动圆C是否过定点?若经过,求出定点的坐标;若不经过,请说明理由.湖北省普通高中联考2014-2015学年高二上学期期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是()A.归纳推理B.演绎推理C.类比推理D.其它推理考点:类比推理.专题:常规题型.分析:从直线想到平面,从圆想到球,即从平面类比到空间.解答:解:从直线类比到平面,从圆类比到球,即从平面类比到空间.用的是类比推理.故选C点评:本题主要考查学生的知识量和对知识的迁移类比的能力.2.(5分)已知a是实数,是实数,则z=(2+i)(a﹣i)的共轭复数是()A.﹣3﹣i B.3+i C.1﹣3i D.﹣1+3i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、虚数为实数的充要条件、共轭复数的定义即可得出.解答:解:∵a是实数,==是实数,则1+a=0,解得a=﹣1.∴z=(2+i)(a﹣i)=﹣(2+i)(1+i)=﹣(1+3i)=﹣1﹣3i的共轭复数是﹣1+3i.故选:D.点评:本题考查了复数的运算法则、虚数为实数的充要条件、共轭复数的定义,属于基础题.3.(5分)如图是某人按打中国联通客服热线10010,准备借助人工台咨询本手机的收费情况,他参照以下流程,拨完10010后,需按的键应该是()A.1 B.7 C.8 D.0考点:流程图的作用.专题:综合题;概率与统计.分析:根据流程图,因为准备借助人工台咨询本手机的收费情况,所以按0.解答:解:根据流程图,因为准备借助人工台咨询本手机的收费情况,所以按0.故选:D.点评:本题考查流程图的作用,正确读图是关键.4.(5分)要从编号为01~50的50枚最新研制的某型号导弹中随机抽出5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,在选取的5枚导弹的编号可能是()A.05,10,15,20,25 B.03,13,23,33,43C.01,02,03,04,05 D.02,04,08,16,32考点:系统抽样方法.专题:概率与统计.分析:根据系统抽样的定义,则抽样间隔相同即可得到结论.解答:解:若采用系统抽样,则抽样间隔为50÷5=10,故只有B满足条件,故选:B点评:本题主要考查系统抽样的应用,比较基础.5.(5分)下面的程序运行的功能是()A.求1+++…+的值B.求1+++…+的值C.求1+1+++…+的值D.求1+1+++…+的值考点:程序框图.专题:算法和程序框图.分析:模拟执行程序语句可知程序的功能是计算并输出S的值,i≤2014,S=1+1+….解答:解:模拟执行程序语句可得:i=1,S=1,控制循环的条件为i≤2014,按照算法最后得到的结果应该为计算并输出S的值.S=1+1+….故选:D.点评:本题主要考察了程序框图和算法,正确分析循环语句的功能是解题的关键,属于基础题.6.(5分)甲、乙两人在一次射击比赛中各射靶5次.两人成绩的统计表如甲表、乙表所示,则:()甲表:环数 4 5 6 7 8频数 1 1 1 1 1乙表:环数 5 6 9频数 3 1 1A.甲成绩的平均数小于乙成绩的平均数B.甲成绩的中位数小于乙成绩的中位数C.甲成绩的方差小于乙成绩的方差D.甲成绩的极差小于乙成绩的极差考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:根据表中数据,求出甲、乙的平均数,中位数,方差与极差,即可得出结论.解答:解:根据表中数据,得;甲的平均数是==6,乙的平均数是==6;甲的中位数是6,乙的中位数是5;甲的方差是=[(﹣2)2+(﹣1)2+02+12+22]=2,乙的方差是=[3×(﹣1)2+02+32]=2.4;甲的极差是8﹣4=4,乙的极差是9﹣5=4;由以上数据分析,符合题意的选项是C.故选:C.点评:本题考查了平均数、中位数、方差与极差的计算问题,是基础题目.7.(5分)记曲线y=与x轴所围成的区域为D,若直线y=ax﹣a把D的面积分为1:2的两部分,则a的值为()A.±B.C.±D.考点:直线与圆的位置关系.专题:直线与圆.分析:求出曲线的方程,利用直线过圆心确定直线的倾斜角即可得到结论.解答:解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而y=ax﹣a=a(x﹣1),过定点(1,0),即过圆心,若直线y=ax﹣a把D的面积分为1:2的两部分,则直线的倾斜角为60°或120°,∴当a=tan60°或a=tan120°,即a=±时,直线y=ax﹣a把D的面积分为1:2的两部分,故选:A.点评:本题主要考查直线和圆的位置关系的应用,根据直线过圆心的性质是解决本题的关键.8.(5分)在区间[3,5]上任取一个数m,则“函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点”的概率是()A.B.C.D.考点:几何概型.专题:计算题;概率与统计.分析:设g(x)=(x﹣2)2(﹣1≤x<4),函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点,可得y=g(x)的图象与直线y=m有两个交点,求出m的范围,即可得出概率.解答:解:f(x)=x2﹣4x﹣m+4=(x﹣2)2﹣m,设g(x)=(x﹣2)2(﹣1≤x<4),∵函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点,∴y=g(x)的图象与直线y=m有两个交点,∴m∈(0,4),∴在区间[3,5]上任取一个数m,“函数f(x)=x2﹣4x﹣m+4(﹣1≤x<4)有两个零点”的概率是=.故选:B.点评:本题是一个几何概型,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形得到结果.9.(5分)执行如图程序框图.若输入n=20,则输出的S值是()A.B.C.D.考点:循环结构.专题:点列、递归数列与数学归纳法;算法和程序框图.分析:模拟执行程序框图,可知该算法的功能是计算并输出数列{}的求10项和,由裂项法即可求值.解答:解:模拟执行程序框图,可知该算法的功能是计算并输出数列{}的求10项和.S=+++…+=+++…+=(1﹣+…﹣)=.故选:A.点评:本题主要考察了循环结构和裂项法求数列的前n项和,属于基础题.10.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(1﹣m,0),B(1+m,0),m>0,若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4考点:直线和圆的方程的应用.专题:计算题;直线与圆.分析:根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案解答:解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.点评:本题主要直线和圆的位置关系,求得圆C上的点到点O的距离的最大值为6,是解题的关键,属于中档题.二、填空题:本大题共7小题,每小题5分,共25分,把答案填在答题卷的横线上.. 11.(5分)某地区有600家商店,其中大型商店有60家,中型商店有150家.为了掌握各商店的营业情况.要从中抽取一个容量为40的样本.若采用分层抽样的方法,抽取的中型商店数是10.考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义建立比例关系即可.解答:解:设抽取的中型商店数为x,则,解得x=10,故答案为:10点评:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.12.(5分)若复数z=,则|z|=.考点:复数求模.专题:计算题.分析:先将复数z进行化简,再求出z的模即可.解答:解:z===﹣1+2i,∴|z|==,故答案为:.点评:本题考查了化简复数问题,考查了求复数的模,是一道基础题.13.(5分)下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则=5.25.月份x 1 2 3 4用水量y 4.5 4 3 2.5考点:线性回归方程.专题:计算题;应用题.分析:根据所给的数据,做出x,y的平均数,即得到样本中心点,根据所给的线性回归方程,把样本中心点代入,只有a一个变量,解方程得到结果.解答:解:∵=3.5∴=﹣=3.5+0.7×2.5=5.25.故答案为:5.25点评:本题考查线性回归方程,考查样本中心点的性质,考查线性回归方程系数的求法,是一个基础题,本题运算量不大,是这一部分的简单题目.14.(5分)执行如图所示的程序框图,则输出的S的值为﹣3考点:程序框图.专题:算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的i,s的值,当i=2016时,不满足条件i<2015,退出循环,输出S的值为﹣3.解答:解:模拟执行程序框图,可得i=0,S=2满足条件i<2015,i=2,S=满足条件i<2015,i=4,S=﹣满足条件i<2015,i=6,S=﹣3满足条件i<2015,i=8,S=2满足条件i<2015,i=10,S=…观察规律可知S的取值以4为周期,由2014=503*4+2满足条件i<2015,i=2014,S=﹣满足条件i<2015,i=2016,S=﹣3不满足条件i<2015,退出循环,输出S的值为﹣3.故答案为:﹣3.点评:本题主要考察了程序框图和算法,正确写出每次循环得到的i,s的值是解题的关键,属于基础题.15.(5分)△ABC中,A(1,1),B(5,﹣5),C(0,﹣1).则AB边上的中线所在直线与AC边上的高所在直线的交点坐标为(﹣9,2).考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:利用中点坐标公式可得:线段AB的中点为(3,﹣2),再利用点斜式可得AB边上的中线所在直线方程为y+1=.利用斜率计算公式可得k AC==2,即可得出AC边上的高所在直线的方程为,联立解出即可.解答:解:线段AB的中点为(3,﹣2),∴AB边上的中线所在直线方程为y+1=,化为x+3y+3=0.∵k AC==2,∴AC边上的高所在直线的方程为,化为x+2y+5=0.联立,解得.∴AB边上的中线所在直线与AC边上的高所在直线的交点坐标为(﹣9,2).故答案为:(﹣9,2).点评:本题考查了中点坐标公式、相互垂直的直线斜率之间的关系、点斜式、直线的交点,考查了计算能力,属于基础题.16.(5分)从集合A={1,2,4,5,10}中任取两个不同的元素a,b,则(1)lga+lgb=1的概率为(2)b>2a的概率为.考点:列举法计算基本事件数及事件发生的概率;对数的运算性质.专题:概率与统计.分析:所有的取法共有20种方法,用列举法求得其中,分别求出满足条件的取法,由此求得所求事件的概率.解答:解:从集合A={1,2,4,5,10}中任取两个不同的元素a,b,所有的基本事件为(1,2),(1,4),(1,5),(1,10),(2,1),(2.4),(2,5),(2,10),(4,1),(4,2),(4,5),(4,10),(5,1),(5,2),(5,4),(5,10),(10,1),(10,2),(10,4),(10,5),共20种,(1)∵lga+lgb=1,∴ab=10,∴满足lga+lgb=1的有(1,10),(10,1),(2,5),(5,2)共4种,∴lga+lgb=1的概率为=(2)b>2a的基本事件有(1,4),(1,5),(1,10),(2,5),(2,10),(4,10),共6种,∴b>2a的概率为=故答案为:,点评:本题考查古典概型及其概率计算公式的应用,属于基础题.17.(5分)已知a n=()n,把数列{a n}的各项排列如图的三角形状,记A(m,n)表示第m 行的第n个数,则(1)A(4,5)=()14(2)A(m,n)=.考点:归纳推理.专题:综合题;推理和证明.分析:通过观察给出图形的特点,得到图形中的每一行所占数列{a n}的项的个数构成以1为首项,以2为公差的等差数列,然后运用等差数列前n项和公式,则问题得到解决.解答:解:由三角形状图可知,图中的第一行、第二行、第三行、…分别占了数列{a n}的1项、3项、5项、…,每一行的项数构成了以1为首项,以2为公差的等差数列,设A(m,n)是数列{a n}的第k项,则(1)A(4,5)是数列{a n}的第1+3+5+5=14项,所以A(4,5)=()14,(2)A(m,n)是数列{a n}的第1+3+5+…+(2m﹣3)+n=(m﹣1)2+n项,故A(m,n)=.故答案为:()14,点评:本题考查了等差数列的定义及通项公式,考查了学生的读图能力,考查了数学转化思想方法,解答此题的关键是求解A(m,n)是数列{a n}的第1+3+5+…+(2m﹣3)+n=(m ﹣1)2+n项,此题是中档题.三、解答题:本大题共5小题,满分65分,解答应写出文字说明、证明过程或演算步骤18.(12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?考点:频率分布直方图.专题:计算题.分析:(1)利用高之比等于频率之比,根据第三组的频率建立等量关系,求出样本容量即可.(2)矩形高最高的就是上交作品数最多的,根据第四组的频率建立等量关系,即可求得频数.(3)先求出第四组和第六组的作品数,再根据第四组和第六组的作品获奖数求出获奖概率,比较大小即可.解答:解:(1)因为所以本次活动共有60件作品参加评比.(4分)(2)因为所以第四组上交的作品数量最多,共有18件.(8分)(3)因为所以,所以第六组获奖率高.点评:本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的高等于每一组的频率/组距,它们与频数成正比,小矩形的面积等于这一组的频率.对于开放性问题的回答,要选择适当的数据特征进行考查,根据数据特征分析得出实际问题的结论.19.(12分)已知圆C的圆心在直线y=x﹣1上,且A(2,0),B(,)在圆C上.(1)求圆C的方程;(2)若圆M:x2+(y﹣2)2=r2(r>0)与圆C相切.求直线y=x截圆M所得弦长.考点:直线与圆的位置关系.专题:直线与圆.分析:(1)设出圆的一般方程,利用待定系数法即可求圆C的方程;(2)根据圆与圆相切的条件,结合直线和圆心相交的弦长公式即可得到结论.解答:解:(1)设圆的一般方程为x2+y2+Dx+Ey+F=0,∵圆心在直线y=x﹣1上,且A(2,0),B(,)在圆C上,∴,解得,即圆C的方程为x2+y2﹣2x=0;(2)∵圆M:x2+(y﹣2)2=r2(r>0)与圆C相切.∴圆心M坐标为(0,2),圆C的标准方程为(x﹣1)2+y2=1,圆心C坐标为(1,0),半径R=1,当两圆外切时,|CM|=3=1+r,解得r=2,当两圆内切时,|CM|=3=r﹣1,解得r=4,∵M当直线y=x的距离d=,∴当r=2时,直线y=x截圆M所得弦长l=,∴当r=4时,直线y=x截圆M所得弦长l=.点评:本题主要考查圆的方程的求解,以及直线弦长公式的应用,利用两圆相切的等价条件求出圆的半径是解决本题的关键.20.(13分)设x2+2ax+b2=0是关于x的一元二次方程.(1)若a是从0,1,2,3四个数个中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,3]上任取一个数,b是从区间[0,2]上任取一个数,求方程有实根的概率.考点:几何概型;列举法计算基本事件数及事件发生的概率.专题:计算题.分析:由题意可得方程有实根的充要条件为:△=(2a)2﹣4b2≥0,即a2≥b2.(1)基本事件共有12个,其中(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),代入几何概率的求解公式可求(2 )试验的全部结果构成的区域为{(a,b)|0≤a≤3,0≤b≤2},满足题意的区域为:{(a,b)|0≤a≤3,0≤b≤2,a≥b},分别求解区域的面积,可求解答:解:方程有实根的充要条件为:△=(2a)2﹣4b2≥0,即a2≥b2.(1)基本事件共有12个,其中(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)满足条件,则.(2 )试验的全部结果构成的区域为{(a,b)|0≤a≤3,0≤b≤2},满足题意的区域为:{(a,b)|0≤a≤3,0≤b≤2,a≥b},所以,所求概率为.…(12分)点评:本题主要考查了古典概率的求解及与面积有关的几何概率的求解,属于基本方法的简单应用21.(14分)先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证:a12+a22≥;证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2,f(x)=2x2﹣2(a1+a2)x+a12+a22=2x2﹣2x+a12+a22,因为对一切x∈R,恒有f(x)≥0,所以△=4﹣8(a12+a22)≤0,从而a12+a22≥.(1)已知a1,a2,…,a n∈R,a1+a2+…+a n=1,请写出上述结论的推广式;(2)参考上述证法,对你的推广的结论进行证明;(3)若++=1,求x+y+z的最大值.考点:归纳推理;不等式的证明.专题:综合题;推理和证明.分析:(1)由已知中已知a1,a2∈R,a1+a2=1,求证a12+a22≥及整个式子的证明过程,我们根据归纳推理可以得到一个一般性的公式,若a1,a2,…,a n∈R,a1+a2+…+a n=1,则a12+a22+…+a n2≥;(2)观察已知中的证明过程,我们可以类比对此公式进行证明;(3)由(2)知,a 1+a2+a3=1,a12+a22+a32≥,令a1=+=,a2=,a3=,则1﹣x+2﹣y+3﹣z≥,即可求出x+y+z的最大值.解答:解:(1)若a1,a2,…,a n∈R,a1+a2+…+a n=1,求证:a12+a22+…+a n2≥(2)证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2+…+(x﹣a n)2=nx2﹣2(a1+a2+…+a n)x+a12+a22+…+a n2=nx2﹣2x+a12+a22+…+a n2因为对一切x∈R,都有f(x)≥0,所以△=4﹣4n(a12+a22+…+a n2)≤0从而证得:a12+a22+…+a n2≥;(3)由(2)知,a1+a2+a3=1,a12+a22+a32≥,令a 1=,a2=,a3=,则1﹣x+2﹣y+3﹣z≥,∴x+y+z≤,当且仅当x=,y=,z=时,x+y+z的最大值为.点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).(3)对归纳得到的一般性结论进行证明.22.(14分)如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x﹣3)2+(y﹣4)2=1(1)若过点(﹣2,0)的直线l与圆C1交于A,B两点,且•=,求直线l的方程;(2)设动圆C同时平分圆C1的周长,圆C2的周长,①证明动圆圆心C在一条直线上运动;②动圆C是否过定点?若经过,求出定点的坐标;若不经过,请说明理由.考点:直线和圆的方程的应用;平面向量数量积的运算.专题:综合题;平面向量及应用;直线与圆.分析:(1)设出直线l的方程,代入圆C1的方程,得出A、B两点的坐标关系,计算•的值,从而求出l的方程;(2)①设出圆心C的坐标,由题意得CC1=CC2,列出方程,得出动圆圆心C的轨迹方程;②动圆C过定点,设出C(m,3﹣m),写出动圆C的方程,与直线C1C2的方程组成方程组,求出定点的坐标.解答:解:(1)设直线l的方程为y=k(x+2),代入(x+1)2+y2=1,得(1+k2)x2+(4k2+2)x+4k2=0;设A(x1,y1),B(x2,y2),则x1x2=;∵点(﹣2,0)在C1上,不妨设A(﹣2,0),则•=x1x2+y1y2=x1x2==;解得k2=2k=±;∴l的方程为y=±(x+2);(2)①设圆心C(x,y),由题意,得CC1=CC2;即=;化简得x+y﹣3=0;即动圆圆心C在定直线x+y﹣3=0上运动;②圆C过定点,设C(m,3﹣m),则动圆C的半径为=,∴动圆C的方程为(x﹣m)2+(y﹣3+m)2=1+(m+1)2+(3﹣m)2,整理,得x2+y2﹣6y﹣2﹣2m(x﹣y+1)=0;与直线C1C2的方程组成方程组,解得,或;∴定点的坐标为(1﹣,2﹣),(1+,2+).点评:本题考查了平面向量数量积的应用问题,也考查了直线与平面的综合应用问题,考查了求点的轨迹的应用问题,是综合性题目.。
湖北省武汉市第二中学2014-2015学年高二上学期期末考试数学(文)试题考试时间:2015年2月4日 上午9:00—11:00 试卷满分:150分一、选择题:本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 只有一项是符合题目要求的. 1. 下列说法中正确的是 ( ) A. 若事件A 与事件B 是互斥事件, 则()()1P A P B +=; B. 若事件A 与事件B 满足条件: ()()()1P A B P A P B ⋃=+=, 则事件A 与事件B 是 对立事件; C. 一个人打靶时连续射击两次, 则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件;D. 把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人, 每人分得1张, 则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件.2. 用反证法证明命题: “a , b ∈N , 若ab 不能被5整除, 则 a 与b 都不能被5整除”时, 假设的内 容应为 ( ) A. a , b 都能被5整除 B. a , b 不都能被5整除 C. a , b 至少有一个能被5整除 D. a , b 至多有一个能被5整除3. (是虚数单位)则实数a =( )A. B. 2 C. -1 D. -2 4. 下列框图属于流程图的是( )A.B.C.D.5. 若双曲线1522=-mx y 的渐近线方程为35±=y , 则双曲线焦点F 到渐近线的距离为( ) A.2 B.3C.4D. 56. 已知x ,y 之间的一组数据:则y 与x 的线性回归方程ˆybx a =+必过点( )A. (20,16)B. (16,20)C. (4,5)D. (5,4)7. F , 若过点F 的直线与双曲线的右支有且只有一个交点, 则此直线的斜率的取值范围是( )8. 已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点, 则l 的方程是( )A. x +2y +8=0B. x +2y -8=0C. x -2y -8=0D. x -2y +8=0 9. 下列说法中不正确的个数是( )①命题“∀x ∈R ,123+-x x ≤0”的否定是“∃0x ∈R ,12030+-x x >0”;②若“p ∧q ”为假命题, 则p 、q 均为假命题;③“三个互不相等的数a , b , c 成等比数列”是“b =ac ”的既不充分也不必要条件A. 0B. 1C. 2D. 310. 已知12,F F 是椭圆和双曲线的公共焦点, P 是他们的一个公共点, 则椭圆和双曲线的离心率的倒数之和的最大值为( )A.B.C. 3D. 2二、填空题(本大题共 7个小题 ,每小题 5分,共35分)11. 已知高一年级有学生450人, 高二年级有学生750人, 高三年级有学生600人.用分层抽样从该校的这三个年级中抽取一个容量为n 的样本, 且每个学生被抽到的概率为0.02, 则应从高二年级抽取的学生人数为 .12. 在空间直角坐标系O -xyz 中, y 轴上有一点M 到已知点(4,3,2)A 和 点(2,5,4)B 的距离相等, 则点M 的坐标是 . 13. 某学生5天的生活费(单位:元)分别为: x ,y , 8, 9, 6.已知这组数据的平均数为8, 方差为2,14. 如图所示的算法中, 3a e =, 3b π=,c e π=, 其中π是圆周率,2.71828e = 是自然对数的底数, 则输出的结果是 .15. 双曲线2288kx ky -=的一个焦点为(0,3), 则k 的值为___________, 双曲线的渐近线方程 为___________.16. 集合{1,2,3,,}(3)n n ≥中, 每两个相异数作乘积, 将所有这些乘积35++⨯+17. 称为黄金双曲线. 如图是双曲线:;②若ac b=2, 则该双曲线是黄金双曲线;③若21,F F 为左右焦点, 21,A A 为左右顶点,1B (0, b),2B (0,﹣b )且021190=∠A B F , 则该双曲线是黄金双曲线;④若MN 经过右焦点2F 且21F F MN⊥, 090=∠MON ,则该双曲线是黄金双曲线.其中正确命题的序号为 .三、解答题(共5大题,共65分) 18. (12分)命题p :“0],2,1[2≥-∈∀a xx ”, 命题q :“022,0200=-++∈∃a ax x R x ”, 若“p 且q ”为假命题,求实数a 的取值范围.19. (13分)已知三点P (5, 2)、F 1(-6, 0)、F 2(6, 0).(1) 求以F 1、F 2为焦点且过点P 的椭圆的标准方程;(2) 设点P 、F 1、F 2关于直线y =x 的对称点分别为12',','P FF , 求以12','F F 为焦点且过'P 点的双曲线的标准方程.20. (13分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏, 但可见部分如下, 据此解答如下问题.(1) 求全班人数及分数在[)90,80之间的频数;(2) 估计该班的平均分数, 并计算频率分布直方图中[)90,80间的矩形的高;(3) 若要从分数在[80, 100]之间的试卷中任取两份分析学生失分情况, 在抽取的试卷中, 求至少有一份分数在[90, 100]之间的概率.21. (13分)如图, 在三棱柱111C B A ABC -中, 侧棱⊥1AA 底面ABC,AB BC⊥, D 为AC的中点,1 2.A A AB ==(1) 求证://1AB 平面D BC 1;(2) 过点B 作AC BE ⊥于点E ,求证: 直线⊥BE 平面C C AA 11;(3) 若四棱锥D C AA B 11-的体积为3, 求BC 的长度.22. (14分)在平面直角坐标系xOy 中, 已知点A (-1, 1), P 是动点, 且△POA 的三边所在直线的斜率满足k OP+k OA =k P A .(1) 求点P 的轨迹C 的方程;(2) 若Q 是轨迹C 上异于点P 的一个点, 且PQ =λOA , 直线OP 与QA 交于点M , 问: 是否存在点P , 使得△PQA 和△P AM 的面积满足S △PQA =2S △P AM ? 若存在, 求出点P 的坐标; 若不存在, 说明理由.武汉二中2014——2015学年上学期高二年级期末考试数学(文科)试卷参考答案11. 1512. (0,4,0)M 13. 3 14. 3π15. -1; 16. 32217. ①②③④18. ),1()1,2(+∞-∈ a∴⊿=4a 2-4(2-a )≥0,即,a ≥1或a ≤-2, p 真q 也真时 ∴a ≤-2,或a =1 若“p 且q ”为假命题 , 即),1()1,2(+∞-∈ a . 考点: 全称命题与特称命题; 简易逻辑.19. (12【解析】试题分析: (1)根据椭圆的定义, 又6c =, 利用222ab c =+, 可求出c , 从而得出椭圆的标准方程, 本题要充分利用椭圆的定义.(2)由于F 1、F 2关于直线y x =的对称点在y 轴上, 且关于原点对称, 故所求双曲线方程为标准方程, 又6c =, 要注意的是双曲线中有222ab c +=, 故也能很快求出结论.试题解析: , 其半焦距6c =,2a a ==3b =(2)点P (5, 2)、(-6, 0)、(6, 0)关于直线y =x 的对称点分别为:'(2,5)P , 1'(0,6)F -, 2'(0,6)F , 设所2a a ==4b =,考点: (1)椭圆的标准方程; (2)双曲线的标准方程.20. 解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯全班人数为.2508.02=所以分数在[)90,80之间的频数为42107225=----(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分 为60×7+2+3+3+5+6+8+9=456;分数在[)80,70之间的总分数为70×10+1+2+3+3+4+5+6+7+8+9=747;分数在[)90,80 之间的总分约为85×4=340;分数在]100,90[之间的总分数为95+98=193;所以,该班的平均分数为.7425193340747456114=++++估计平均分时,以下解法也给分:分数在[)60,50之间的频率为2/25=0.08;分数在[)70,60之间的频率为7/25=0.28;分数在 [)80,70之间的频率为10/25=0.40;分数在[)90,80之间的频率为4/25=0.16分数在 ]100,90[之间的频率为2/25=0.08; 所以,该班的平均分约为8.7308.09516.08540.07528.06508.055=⨯+⨯+⨯+⨯+⨯频率分布直方图中[)90,80间的矩形的高为.016.010254=÷(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6, 在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6);(2,3),(2,4),(2,5), (2,6);(3,4),(3,5),(3,6),(4,5),(4,6);(5,6)共15个,其中,至少有一个在[90,100]之间的基本事件有9个,故至少有一份分数在[90,1000]之间的频率是6.0159=21. (1)证明:连接,1C B 设O BC C B =⋂11,连接,OD ………1分 11B BCC 是平行四边形, ∴点O 是C B 1的中点,D 是AC 的中点, ∴OD 是C AB 1∆的中位线,∴OD AB //1…………………………………………3分又D BC D,BC 111平面平面⊂⊄OD AB∴ AB 1//平面BC 1D …………………………………………5分 (2) ABC,BE ABC,1平面平面⊂⊥A A∴BE,A 1⊥A ………………………………………7分,又A A A AC AC,BE 1=⋂⊥……………………9分∴直线BE ⊥平面C C AA 11………………………………………10分 (2)的解法2:ABC C C AA C,C AA A A ABC,111111平面平面平面平面⊥∴⊂⊥A A ……7分 ABC,BE AC,BE AC,ABC C C AA 11平面平面又平面⊂⊥=⋂ ∴直线BE ⊥平面C C AA 11………………………………………10分 (3) 3【解析】(1)连接B 1C ,设O BC C B =⋂11,连接,OD 证明OD AB //1即可. (2) 因为BE AC ⊥,再证1A BE A ⊥即可.(3)再根据311AA C DV=建立关于x 的方程, 解出x 值.由(2)知BE 的长度是四棱锥B —AA 1C 1D 的体高1 2.A A AB ==分……………12分………………13分3BC 3,x =∴=∴ …………………………………………………14分 22. (1)y =x 2(x ≠0且x ≠-1)(2)(1, 1)【解析】(1)设点P (x , y )为所求轨迹上的任意一点, 则由k OP +k OA=k P A整理得轨迹C 的方程为y =x 2(x ≠0且x ≠-1).(2)设P (x 1,21x ), Q (x 2,22x , M (x 0, y 0),由PQ =λOA 可知直线PQ∥OA , 则k PQ =k OA , 即x 2+x 1=-1, 由O 、M 、P 三点共线可知,OM=(x 0, y 0)与OP =(x 1,21x )共线,∴x 021x -x 1y 0=0, 由(1)知x 1≠0, 故y 0=x 0x 1,同理, 由AM =(x 0+1, y 0-1)与AQ =(x 2+1,22x -1)共线可知(x 0+1)(22x -1)-(x 2+1)(y 0-1)=0, 即(x 2+1)[(x 0+1)·(x 2-1)-(y 0-1)]=0,由(1)知x 2≠-1, 故(x 0+1)(x 2-1)-(y 0-1)=0,将y 0=x 0x 1, x 2=-1-x 1代入上式得(x 0+1)(-2-x 1)-(x 0x 1-1)=0,整理得-2x 0(x 1+1)=x 1+1, 由x 1≠-1得x 0由S △PQA =2S △P AM , 得到QA =2AM ,∵PQ ∥OA , ∴OP =2OM , ∴PO =2OM , ∴x 1=1, ∴P 的坐标为(1, 1)。