高考数学填空题限时练四
- 格式:docx
- 大小:64.44 KB
- 文档页数:6
卜人入州八九几市潮王学校牌中高三选择填空限时训练四〔45分钟〕一、选择题:本大题一一共10小题,每一小题5分,一共50分。
在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
1、全集U =R ,集合}2{2x x y x A -==,}R ,2{∈==x y y B x ,那么=B A C R )(〔〕A .{}2x x >B .{}01x x <≤C .{12}x x <≤D .{}0x x <2、复数2izx i+=-为纯虚数,其中i 虚数单位,那么实数x 的值是 〔〕〔A 〕-12〔B 〕12〔C 〕2〔D 〕1 3、2≠x 或者3≠y 5≠+y x ,那么甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分条件也不必要条件 4、如右图,是一程序框图,那么输出结果为〔〕〔A)94(B 〕1110〔C 〕136〔D 〕115 5、等差数列n a n 的前}{项和为m S a a a m S m m m m n 则且若,38,0,1,12211==-+>-+-等于〔〕A .10B .20C .38D .9 6、假设函数3cos(2)y x ϕ=+的图象关于点4(,0)3π中心对称,那么||ϕ的最小值为 〔〕A .6πB .4π C .3π D .2π 7、用8个数字1,1,2,2,3,3,4,4可以组成不同的四位数个数是〔〕 A .168B.180 C.204D.4568、双曲线M :22221x y a b -=和双曲线:22221y x a b-=,其中b >a >0,且双曲线M 与N 的交点在两坐标轴上的射影恰好是两双曲线的焦点,那么双曲线M 的离心率为〔〕A 、215+B 、215-C 、235+D 、253- 9、O 是锐角ABC ∆内一点,满足||||||OC OB OA ==,且 30=∠A OA m AC BCAB C B 2sin cos sin cos =, 那么实数=mA .23-B .23C .21-D .3〔〕10、定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,假设函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有三个零点,那么a 的取值范围是〔〕A .)22,0(B .)33,0(C .)55,0(D .)66,0( 二、填空题:本大题一一共7小题,每一小题4分,一共28分。
高中数学专题复习
《平面解析几何三角形、圆相关》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.如图, 弦AB 与CD 相交于
O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE =_____. (汇编年高考陕西卷(理))B. (几
何证明选做题) E
D O
P A B C
2.如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(几何证明选讲选做题)
3.(选修4—1:几何证明选讲)
如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O .
A
E D
C
B
O 第15题。
数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。
高中数学专题复习《平面解析几何三角形、圆相关》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.如图,在ABC 中,090C ∠=, 060,20A AB ∠==,过C 作ABC 的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为__________(汇编年普通高等学校招生统一考试重庆数学(理)试题(含答案))2.如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm .(几何证明选讲选做题)评卷人得分二、解答题3.选修4—1 几何证明选讲P OAB C D图3如图,已知⊙O 的半径为1,MN 是⊙O 的直径,过M 点作⊙O 的切线AM ,C 是AM 的中点,AN 交⊙O 于B 点,若四边形BCON 是平行四边形.求AM 的长;4.如图,圆1O 与圆2O 内切于点A ,其半径分别为1r 与212()r r r >, 圆1O 的弦AB 交圆2O 于点C (1O 不在AB 上), 求证::AB AC 为定值。
证明:由弦切角定理可得11212,O B r AB AO CAO B AC O C r∴== 5.过圆O 外一点A 作圆O 的两条切线AT 、AS ,切点分别为T 、S ,过点A 作圆O 的割线APN ,证明:22AT PT PSAN NT NS=.[来源:学科网ZXXK] (汇编年3月苏、锡、常、镇四市高三数学教学情况调查一) 证明:AT 是圆O 的切线,∠ATP =∠ANT ,又∠TAP =∠NAT ,∴三角形ATP 与三角形ANT ,∴AT PT AN TN =同理AS PSAN NS= 两等式相乘222,AT AS PT PSAT PT PS AT AS AN NT NSAN NT NS∙∙∙==∴=∙∙. 6.已知:如图,在△ABC 中,∠ABC =90°,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于点E,与21-A 第图AC 切于点D ,连结DB 、DE 、OC 。
高三二轮复习选填满分“8+4+4”小题强化训练(4)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|320}A x x x =-+-≤,3{|log (2)1}B x x =+<,则A B = ()A.∅B.{1x x ≤或}2x ≥C.{}1x x <D.{}21x x -<<2.若复数312iz =-(i 为虚数单位),则复数z 在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.下列函数中,最小值为4的是()A.4y x x=+B.()4sin 0πsin y x x x=+<<C.e 4e x xy -=+ D.y =4.若函数()2f x +为偶函数,对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,则()A.()()212log 60log 0.2f f f ⎛⎫<< ⎪⎝⎭B.()()122log 0.20log 6f f f ⎛⎫<< ⎪⎝⎭C.()()122log 0.2log 60f f f ⎛⎫<< ⎪⎝⎭D.()()2120log 6log 0.2f f f ⎛⎫<< ⎪⎝⎭5.已知某电子产品电池充满时的电量为3000毫安时,且在待机状态下有两种不同的耗电模式可供选择.模式A :电量呈线性衰减,每小时耗电300毫安时;模式B :电量呈指数衰减,即:从当前时刻算起,t 小时后的电量为当前电量的12t 倍.现使该电子产品处于满电量待机状态时开启A 模式,并在m 小时后切换为B 模式,若使其在待机10小时后有超过5%的电量,则m 的取值范围是()A.(5,6)B.(6,7)C.(7,8)D.(8,9)6.已知正项等比数列{}n a 满足2022202120202a a a =+,若215log a +是2log m a 和2log n a 的等差中项,则9n mmn+的最小值为()A.43B.138C.85D.34217.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为()A.4π3B.82π3C.32π38.已知ln 22ln a a =,ln 33ln b b =,ln 55ln c c =,且(),,0,e ∈a b c 则()A.c <a <bB.a <c <bC.b <a <cD.b <c <a二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知()831f x x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的展开式中的常数项是56B.()f x 的展开式中的各项系数之和为0C.()f x 的展开式中的二项式系数最大值是70D.()f x 的展开式中不含4x 的项10.已知某物体作简谐运动,位移函数为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,则下列说法正确的是()A.该简谐运动的初相为6πB.函数()f t 在区间0,2π⎛⎫⎪⎝⎭上单调递增C.若[0,]2t π∈,则(),2[]1f t ∈D.若对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12()2f t t +=11.已知正三棱锥S ABC -的底面边长为6,侧棱长为则下列说法中正确的有()A.侧棱SA 与底面ABC 所成的角为4πB.侧面SAB 与底面ABC 所成角的正切值为C.正三棱锥S ABC -外接球的表面积为64πD.正三棱锥S ABC -内切球的半径为1-12.关于函数()sin x f x e x =+,(),x ππ∈-.下列说法正确的是()A.()f x 在()()0,0f 处的切线方程为210x y -+=B.()f x 有两个零点C.()f x 有两个极值点D.()f x 存在唯一极小值点0x ,且()010f x -<<三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知随机变量ξ服从正态分布()2,N μσ,若函数()()1f x P x x ξ=≤≤+为偶函数,则μ=_______.14.为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有_____________.15.数列{}n a 的各项均为正数,其前n 项和n S 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭.则n a =__________.16.椭圆的光学性质,从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上.已知椭圆C :()2221024x y b b+=<<,1F ,2F 为其左、右焦点.M 是C 上的动点,点(N ,若1MN MF +的最大值为6.动直线l 为此椭圆C 的切线,右焦点2F 关于直线l 的对称点()11,P x y ,113424S x y =+-,则:(1)椭圆C 的离心率为___________;(2)S 的取值范围为___________.高三二轮复习选填满分“8+4+4”小题强化训练(4)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|320}A x x x =-+-≤,3{|log (2)1}B x x =+<,则A B = ()A.∅B.{1x x ≤或}2x ≥C.{}1x x <D.{}21x x -<<【答案】D【解析】()()22320,32120x x x x x x -+-≤-+=--≥,解得1x ≤或2x ≥,所以{|1A x x =≤或}2x ≥.由3log y x =在()0,∞+上递增,且()33log 21log 3x +<=,所以023,21x x <+<-<<,所以{}|21B x x =-<<,所以{}21A B x x ⋂=-<<,故选:D 2.若复数312iz =-(i 为虚数单位),则复数z 在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由题意可知:()()3112i 2i 21i 2i 2i 2i 2i 555z --=====--++-,所以复数z 在复平面上对应的点为21,55⎛⎫- ⎪⎝⎭.位于第四象限.故选:D.3.下列函数中,最小值为4的是()A.4y x x =+B.()4sin 0πsin y x x x=+<<C.e 4e x x y -=+D.y =【答案】C【解析】A 项,4y x x=+没有最值,故A 项错误;B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数,所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =,即e 2x =时,等号成立,所以函数e 4e x x y -=+的最小值为4,故C 项正确;D 项,y =≥,当且仅当==时,等号成立,所以函数y =+的最小值为,故D 项错误.故选:C.4.若函数()2f x +为偶函数,对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,则()A.()()212log 60log 0.2f f f ⎛⎫<< ⎪⎝⎭B.()()122log 0.20log 6f f f ⎛⎫<< ⎪⎝⎭C.()()122log 0.2log 60f f f ⎛⎫<< ⎪⎝⎭D.()()2120log 6log 0.2f f f ⎛⎫<< ⎪⎝⎭【答案】D【解析】由题意知函数()2f x +为偶函数,故函数()f x 关于直线=2x 对称,由对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,可知函数()f x 在[2,+)x ∈∞时单调递减,而()()1220(4),log 0.52log f f f f ⎛⎫== ⎪⎝⎭,因为2252<log log 64<<,故()()2120(4)log 6log 0.2f f f f ⎛⎫=<< ⎪⎝⎭,故选:D5.已知某电子产品电池充满时的电量为3000毫安时,且在待机状态下有两种不同的耗电模式可供选择.模式A :电量呈线性衰减,每小时耗电300毫安时;模式B :电量呈指数衰减,即:从当前时刻算起,t 小时后的电量为当前电量的12t 倍.现使该电子产品处于满电量待机状态时开启A 模式,并在m 小时后切换为B 模式,若使其在待机10小时后有超过5%的电量,则m 的取值范围是()A.(5,6)B.(6,7)C.(7,8)D.(8,9)【答案】D【解析】由题意可设,模式A 的函数关系为:y =-300t +3000,模式B 的函数关系为:y =p ⋅12t ,其中p 为初始电量,在模式A 下使用m 小时,其电量为3000-300m ,在模式B 下使用10-m 小时,则可得到(3000-300m )⋅1210-m >3000⋅5%,可化为2m -10(10-m )>12,令x =10-m ,可得2-x ⋅x >12,即2x -1<x ,可结合图形得到1<x <2,即1<10-m <2,解得8<m <9,即m ∈(8,9),故答案选D.6.已知正项等比数列{}n a 满足2022202120202a a a =+,若215log a +是2log m a 和2log n a 的等差中项,则9n mmn+的最小值为()A.43B.138C.85D.3421【答案】A【解析】正项等比数列{}n a 满足2022202120202a a a =+,所以22q q =+,且0q >,解得2q =,又因为215log a +是2log m a 和2log n a 的等差中项,所以()212225log log log m n a a a +=+,得102222121log (2)log (2)m n a a +-=,即12m n +=,()9119191410101212123n m m n m n mn m n n m ⎛+⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当39n m ==时,等号成立.故选:A.7.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为()A.4π3B.π3C.32π3【答案】B【解析】由题意易得BC ⊥平面11ACC A ,所以()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=,当且仅当AC BC =时等号成立,又阳马11B ACC A -体积的最大值为43,所以2AB =,所以堑堵111ABC A B C -的外接球的半径R =所以外接球的体积343V r π==,故选:B8.已知ln 22ln a a =,ln 33ln b b =,ln 55ln c c =,且(),,0,e ∈a b c 则()A.c <a <b B.a <c <b C.b <a <c D.b <c <a【答案】A 【解析】由已知得ln 2ln 2a a =,ln 3ln 3b b=,ln ln 55c c =,令()()()ln 0e ,=∈x f x x x ,()21ln xf x x -'=,可得()f x 在()0e ,∈x 上单调递增,在()e ,+∈∞x 上单调递减,()()25lnln 5ln 23205210-=-=<f c f a ,且(),0,e ∈a c ,所以c a <,()()8lnln 2ln 390236-=-=<f a f b ,且(),0,e ∈a b ,所以a b <,所以c a b <<.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知()831f x x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的展开式中的常数项是56B.()f x 的展开式中的各项系数之和为0C.()f x 的展开式中的二项式系数最大值是70D.()f x 的展开式中不含4x 的项【答案】BC【解析】二项展开式通项公式为382441881()(1)rr rr r rr T C x C x x --+⎛⎫=-=- ⎪⎝⎭,2440r -=,6r =,常数项为6678(1)28T C =-=,A 错;2444r -=,=5r ,第6项是含4x 的项,D 错;令1x =得(1)0f =所有项系数和,B 正确;8n =,因此二项式系数的最大值为4870C =,C 正确.故选:BC.10.已知某物体作简谐运动,位移函数为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,则下列说法正确的是()A.该简谐运动的初相为6πB.函数()f t 在区间0,2π⎛⎫⎪⎝⎭上单调递增C.若[0,]2t π∈,则(),2[]1f t ∈D.若对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12()2f t t +=【答案】ACD【解析】因为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,所以422sin 3πϕ⎛⎫-=+⎪⎝⎭,即432,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因为2πϕ<,所以6π=ϕ所以()2sin 6f t t π⎛⎫=+ ⎪⎝⎭,所以对于A 选项,简谐运动的初相为6π,故正确;对于B 选项,函数()f t 在区间0,3π⎛⎫ ⎪⎝⎭上单调递增,,32ππ⎛⎫ ⎪⎝⎭上单调递减,故错误;对于C 选项,当0,2t π⎡⎤∈⎢⎥⎣⎦时,2,663t πππ⎡⎤+∈⎢⎥⎣⎦,所以sin sin sin 662t πππ⎛⎫≤+≤ ⎪⎝⎭,即1sin 126t π⎛⎫≤+≤ ⎪⎝⎭,所以(),2[]1f t ∈,故正确;对于D 选项,对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12,2t t k k Z ππ+=+∈,所以12()2f t t +=,故正确.故选:ACD11.已知正三棱锥S ABC -的底面边长为6,侧棱长为则下列说法中正确的有()A.侧棱SA 与底面ABC 所成的角为4πB.侧面SAB 与底面ABC 所成角的正切值为C.正三棱锥S ABC -外接球的表面积为64πD.正三棱锥S ABC -1【答案】BC【解析】若,E F 分别是,BC AB 的中点,连接,AE SE ,易知AES ∠为侧棱SA 与底面ABC 所成角,由题设,SE =,AE =,SA =,则1cos2AES ∠==,∴3AES π∠=,故A 错误;若O 是底面中心,易知:SO ⊥面ABC ,连接OF 、SF ,则侧面SAB 与底面ABC 所成角为SFO ∠,又6SO =,OF =,则tan SFO ∠=B 正确.若外接球的半径为R ,则R ==,解得4R =,∴正三棱锥S ABC -外接球的表面积为2464R ππ=,故C 正确.由题设易知:S ABC V -=,若内切球的半径为r ,则()3SAB SAC SBC ABC r S S SS +++=,又SAB SAC SBC S S S ===ABC S =,则93)2r ==,故D 错误.故选:BC12.关于函数()sin x f x e x =+,(),x ππ∈-.下列说法正确的是()A.()f x 在()()0,0f 处的切线方程为210x y -+=B.()f x 有两个零点C.()f x 有两个极值点D.()f x 存在唯一极小值点0x ,且()010f x -<<【答案】ABD【解析】()sin x f x e x =+,()00sin 01f e =+=,()cos xf x e x '=+,()00cos02f e '=+=,切线方程为()120y x -=-,即210x y -+=,故A 正确;()sin x f x e x ''=-⎡⎤⎣⎦,当0x >时,()0sin 110x x f x e x e e ''=≥-->-=⎡⎤⎣⎦,当π0x -<≤时,sin 0x ≤,0x e >,∴()sin 0x f x e x ''=>⎡⎤⎣⎦-,∴(),x ππ∈-时,()0f x ''>⎡⎤⎣⎦,∴()cos xf x e x '=+单调递增,32430422f e e --⎛⎫'-=-<-< ⎪⎝⎭ππ,2002f e -⎛⎫'-=-> ⎪⎝⎭ππ,在(),ππ-内,()cos x f x e x '=+存在唯一的零点0x ,且03,42x ππ⎛⎫∈-- ⎪⎝⎭,且在()0,x x π∈-内,()0f x '<,()f x 单调递减;()0,x x π∈,()0f x '>,()f x 单调递增,∴0x 为极值点,且为极小值点.由()000cos 0x f x e x '=+=,∴()00000sin sin cos x f x e x x x =+=-,∵03,42x ππ⎛⎫∈-- ⎪⎝⎭,∴00001sin 0,1cos 0,sin cos x x x x -<<-<<<,∴001sin cos 0x x -<-<,∴()f x 有唯一的极值点,且为极小值点0x ,且()010f x -<<,故C 错误,D 正确;又∵()()ππ0,sin 0f e f e e ππππ--=>=+=>,结合函数()f x 的单调性可知∴()f x 有两个零点,故B 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知随机变量ξ服从正态分布()2,N μσ,若函数()()1f x P x x ξ=≤≤+为偶函数,则μ=_______.【答案】C【解析】因为函数()f x 为偶函数,则()()f x f x -=,即()()11P x x P x x ξξ-≤≤-+=≤≤+,所以,1122x x μ-++==.故答案为:1214.为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有_____________.【答案】54【解析】①若甲乙两人恰有一人入选,志愿者有12236C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有6636⨯=种选派方法;②若甲乙两人都入选,志愿者有21233C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有1863=⨯种选派方法综上,由分类加法计数原理知,共有361854+=种选派方法.故答案为:54.15.数列{}n a 的各项均为正数,其前n 项和n S 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭.则n a =__________.【答案】【解析】由1111112a S a a ⎛⎫==+ ⎪⎝⎭,得111a S ==.当n>1时,由112n n n S a a ⎛⎫=+ ⎪⎝⎭①1112n n n n S a a a -⎛⎫⇒+=+ ⎪⎝⎭1112n n nS a a -⎛⎫⇒=-+ ⎪⎝⎭.②①+②得11n n n S S a -+=.③又1n n n S S a --=,④③⨯④得2211n n S S --=.则{}2n S 成等差数列,2n S n =,n S =.于是,1n n n a S S -=-=当1n =时,也满足上式.综上,n a =.故答案为16.椭圆的光学性质,从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上.已知椭圆C :()2221024x y b b+=<<,1F ,2F 为其左、右焦点.M 是C 上的动点,点(N ,若1MN MF +的最大值为6.动直线l 为此椭圆C 的切线,右焦点2F 关于直线l 的对称点()11,P x y ,113424S x y =+-,则:(1)椭圆C 的离心率为___________;(2)S 的取值范围为___________.【答案】12[]7,47【解析】根据椭圆定义得:122MF MF a +=,所以12222MN MF MN MF a NF a +=-+≤+,因为1MN MF +的最大值为6,因为2a =,所以22NF =2=,解得1c =,所以离心率为12c a =.右焦点()21,0F 关于直线的对称点()11,P x y ,设切点为A ,由椭圆的光学性质可得:P ,A ,1F 三点共线,所以111224FP F A AP F A AF a =+=+==,即点()11,P x y 的轨迹是以()1,0-为圆心,半径为4的圆,圆心()1,0-到直线34240x y +-=275=,则圆上的点到直线34240x y +-=的距离最小值277455-=,最大值2747455+=,所以点()11,P x y 到直线34240x y +-=的距离为:1134245x y +-,所以113424S x y =+-表示点()11,P x y 到直线34240x y +-=的距离的5倍,则1174734245,555S x y ⎡⎤=+-∈⨯⨯⎢⎥⎣⎦,即[]7,47S ∈.故答案为:12,[]7,47.。
小题提速练(四) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |3≤3x ≤27,x ∈N *},B ={x |log 2x >1},则A ∩B =( )A .{1,2,3}B .(2,3]C .{3}D .[2,3]C [∵3≤3x≤27,即31≤3x≤33,∴1≤x ≤3,又x ∈N *,∴A ={1,2,3},∵log 2x >1,即log 2x >log 22,∴x >2,∴B ={x |x >2},∴A ∩B ={3},选C.] 2.已知复数z =15i 3+4i,则z 的虚部为( )【导学号:07804211】A .-95iB .95iC .-95D .95D [z =15i 3+4i =15i 3-4i 3+4i 3-4i =1525(4+3i)=125+95i ,故选D.]3.设D 是△ABC 所在平面内一点,AB →=2DC →,则()A.BD →=AC →-32AB →B .BD →=32AC →-AB →C.BD →=12AC →-AB →D .BD →=AC →-12AB →A [BD →=BC →+CD →=BC →-DC →=AC →-AB →-12AB →=AC →-32AB →,选A.]4.(2017·湖南三模)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,712B .⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎭⎪⎫12,1 C [根据题意,学生发球次数为1即一次发球成功的概率为p ,即P (X =1)=p ,发球次数为2即二次发球成功的概率P (X =2)=p (1-p ), 发球次数为3的概率P (X =3)=(1-p )2, 则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75, 解得,p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12,故选C.]5.已知点F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1→·NF 1→>0,则该双曲线的离心率e 的取值范围是( ) A .(2,2+1) B .(1,2+1) C .(1,3)D .(3,+∞)B [设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,得到y =±b 2a ,不妨设M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝ ⎛⎭⎪⎫c ,-b 2a ,则MF 1→·NF 1→=⎝⎛⎭⎪⎫-2c ,-b 2a ·⎝ ⎛⎭⎪⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+2,故选B.]6.函数y =f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图9所示,关于函数y =f (x )(x ∈R ),有下列命题:图9①y =f (x )的图象关于直线x =π6对称;②y =f (x )的图象可由y =2sin 2x 的图象向右平移π6个单位长度得到;③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称; ④y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增.其中正确命题的个数是( )A .1B .2C .3D .4C [依题意可得T =2×⎝⎛⎭⎪⎫11π12-5π12=π,故T =2πω=π,解得ω=2,所以f (x )=2sin(2x+φ),由f (x )=2sin(2x +φ)的图象经过点⎝⎛⎭⎪⎫5π12,2可得2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2,即sin ⎝ ⎛⎭⎪⎫56π+φ=1,又-π2<φ<π2,故φ=-π3,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以①不对;y =2sin 2x 的图象向右平移π6个单位长度得到y =2sin2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象,②正确;因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=0,所以③正确;由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,取k =0,得-π12≤x ≤5π12,即y =f (x )在⎣⎢⎡⎦⎥⎤-π12,5π12上单调递增,④正确,故选C.] 7.某几何体的三视图如图10所示,则该几何体的体积为( )【导学号:07804212】图10A.17π6B .17π3C .5πD .13π6A [由三视图可知,该几何体是半个圆锥,一个圆柱,一个半球的组合体, 其体积为16π+2π+23π=176π.选A.]8.执行如图11所示的程序框图,输出的结果为( )图11A .-1B .1 C.12D .2C [n =12,i =1进入循环,n =1-2=-1,i =2;n =1-(-1)=2,i =3;n =1-12=12,i=4,…,所以n 对应的数字呈现周期性的特点,周期为3,因为2 017=3×672+1,所以当i =2 017时,n =12,故选C.]9.若x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0ax -y +3≥0y ≥0,且z =y -x 的最小值为-6,则a 的值为( )A .-1B .1C .-12D .12C [作出不等式组表示的可行域如图中阴影部分所示,当a >0时,易知z =y -x 无最小值,故a <0,目标函数所在直线过可行域内点A 时,z 有最小值,联立⎩⎪⎨⎪⎧y =0ax -y +3=0,解得A ⎝ ⎛⎭⎪⎫-3a ,0,z min =0+3a=-6,解得a =-12,故选C.]10.(数学文化题)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日D [由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n +1952,二马相逢时所走路程之和为2×1 125=2 250,所以n a 1+a n2+n b 1+b n2=2 250,即n+13n +2+n ⎝⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.]11.设函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2与直线y =3的交点的横坐标构成以π为公差的等差数列,且x =π6是f (x )图象的一条对称轴,则下列区间中是函数f (x )的单调递减区间的是( )A.⎣⎢⎡⎦⎥⎤-π3,0 B .⎣⎢⎡⎦⎥⎤-4π3,-5π6C.⎣⎢⎡⎦⎥⎤2π3,7π6D .⎣⎢⎡⎦⎥⎤-5π6,-π3D [由题意得A =3,T =π,∴ω=2.∴f (x )=3sin(2x +φ),又f ⎝ ⎛⎭⎪⎫π6=3或f ⎝ ⎛⎭⎪⎫π6=-3,∴2×π6+φ=k π+π2,k ∈Z ,φ=π6+k π,k ∈Z ,又|φ|<π2,∴φ=π6,∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6.令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,故当k =-1时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-5π6,-π3,故选D.]12.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A.40π3 B .4030π27C.32030π27D .20πB [设△A 1B 1C 1的外心为O 1,△ABC 的外心为O 2,连接O 1O 2,O 2B ,OB ,如图所示.由题意可得外接球的球心O 为O 1O 2的中点.在△ABC 中,由余弦定理可得BC 2=AB 2+AC 2-2AB ×AC cos∠BAC =32+12-2×3×1×cos 60°=7, 所以BC =7.由正弦定理可得△ABC 外接圆的直径2r =2O 2B =BC sin 60°=273,所以r =73=213. 而球心O 到截面ABC 的距离d =OO 2=12AA 1=1,设直三棱柱ABC A 1B 1C 1的外接球半径为R ,由球的截面性质可得R 2=d 2+r 2=12+⎝ ⎛⎭⎪⎫2132=103,故R =303,所以该三棱柱的外接球的体积为V =4π3R 3=4030π27.故选B.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=ln x ,g (x )=x 2+mx (m ∈R ),若函数f (x )的图象在点(1,f (1))处的切线与函数g (x )的图象相切,则m 的值为________.[解析] 易知f (1)=0,f ′(x )=1x,从而得到f ′(1)=1,函数f (x )的图象在点(1,f (1))处的切线方程为y =x -1.法一:(应用导数的几何意义求解)设直线y =x -1与g (x )=x 2+mx (m ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0-1.又g ′(x )=2x +m ,因此有⎩⎪⎨⎪⎧gx 0=2x 0+m =1x 20+mx 0=x 0-1,得x 2=1,解得⎩⎪⎨⎪⎧x 0=1m =-1或⎩⎪⎨⎪⎧x 0=-1m =3.法二:(应用直线与二次函数的相切求解)联立⎩⎪⎨⎪⎧y =x -1y =x 2+mx ,得x 2+(m -1)x +1=0,所以Δ=(m -1)2-4=0,解得m =-1或m =3. [答案] -1或314.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有________种.【导学号:07804213】[解析] 3所学校依次选医生、护士,不同的分配方法共有C 13C 26C 12C 24=540种. [答案] 54015.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.[解析] 法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my -1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎪⎨⎪⎧x =my -1x 22+y 2=1⇒(m 2+2)y 2-2my -1=0⇒y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2. ∴|PQ |=1+m 2|y 3-y 4|=22m 2+1m 2+2.故|PQ |2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2. [答案] 2 216.设函数f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x )=f (x +4),且当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫12-1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是________. [解析] 设x ∈[0,2],则-x ∈[-2,0],∴f (-x )=⎝ ⎛⎭⎪⎫12-1=2x-1,∵f (x )是定义在R 上的偶函数,∴f (x )=f (-x )=2x-1.∵对任意x ∈R ,都有f (x )=f (x +4), ∴当x ∈[2,4]时,(x -4)∈[-2,0],∴f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12-1; 当x ∈[4,6]时,(x -4)∈[0,2], ∴f (x )=f (x -4)=2x -4-1.∵在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根, ∴函数y =f (x )的图象与函数y =log a (x +2)的图象在区间(-2,6]内恰有3个不同的交点,作出两个函数的图象如图所示,易知⎩⎪⎨⎪⎧log a +>3log a+<3,解得223<a <2,即34<a <2,因此所求a 的取值范围是(34,2).[答案] (34,2)。
2020年高考数学120分120分(12+4+3+2)保分练(四)(满分:126分 限时:90分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P ={0,m },Q ={x |2x 2-7x +5≤0,x ∈Z},若P ∩Q ≠∅,则m =( ) A .1 B .2 C .1或52D .1或2解析:选D 依题意得Q ={x |(2x -5)(x -1)≤0,x ∈Z}=⎩⎨⎧⎭⎬⎫x 1≤x ≤52,x ∈Z ={1,2},因为P ∩Q ≠∅,P ={0,m },所以m =1或m =2.2.复数2-i 31-2i =( )A .iB .-iC .1D .-1解析:选A 2-i 31-2i =2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i )=3i3=i.3.设{a n }是公差不为零的等差数列,满足a 25+a 26=a 27+a 28,则该数列的前12项和等于( )A .-10B .-5C .0D .5解析:选C 法一:设等差数列{a n }的首项为a 1,公差为d (d ≠0),由a 25+a 26=a 27+a 28,得(a 1+4d )2+(a 1+5d )2=(a 1+6d )2+(a 1+7d )2,整理得2a 1+11d =0,即a 1+a 12=0,所以S 12=12(a 1+a 12)2=0.法二:由a 25+a 26=a 27+a 28,得a 25-a 27=a 28-a 26,即(a 5+a 7)(a 5-a 7)=(a 8+a 6)(a 8-a 6).因为{a n }是公差不为零的等差数列,设其公差为d (d ≠0),则2a 6×(-2d )=2a 7×2d ,即a 6+a 7=0,所以S 12=12(a 1+a 12)2=6(a 6+a 7)=0.4.由函数g (x )=4sin x cos x 的图象向左平移π3个单位长度得到函数f (x )的图象,则f ⎝⎛⎭⎫π8=( )A.6+23 B.6-23 C.6-22D.6+22解析:选C 函数g (x )=4sin x cos x =2sin 2x 的图象向左平移π3个单位得到y =2sin ⎝⎛⎭⎫2x +2π3的图象, 即f (x )=2sin ⎝⎛⎭⎫2x +2π3.故f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫2×π8+2π3 =2sin π4+2π3=2⎝⎛⎭⎫sin π4cos 2π3+cos π4sin 2π3 =222×⎝⎛⎭⎫-12+22×32=6-22. 5.已知向量a =(2,4),b =(-1,x ),若a ⊥(a -b ),则x =( ) A .2 B .2.5 C .5D .5.5解析:选D 因为a =(2,4),b =(-1,x ),所以a -b =(3,4-x ),因为a ⊥(a -b ),所以a ·(a -b )=2×3+4(4-x )=0,解得x =5.5.6.如图是一个空间几何体的三视图,则该空间几何体的体积是( )A.10π3 B .4π C .6πD .12π解析:选A 这个空间几何体的下半部分是一个底面半径为1,高为2的圆柱,上半部分是一个底面半径为2,高为1的圆锥,故其体积为π×12×2+13π×22×1=10π3.7.《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷3 000颗图钉,则落在黄色图形内的图钉数约为(3≈1.732)( )A .134B .268C .402D .536解析:选C 设大正方形的边长为2,由图中直角三角形的两直角边长之比为1∶3,可得小正方形的边长为3-1,所以小正方形与大正方形的面积比值为(3-1)24=1-32,所以落在小正方形内的图钉数为⎝⎛⎭⎫1-32×3 000≈⎝⎛⎭⎫1-12×1.732×3 000=402. 8.在[-4,4]上随机取一个实数m ,能使函数f (x )=x 3+mx 2+3x 在R 上单调递增的概率为( )A.14B.38C.58D.34解析:选D 由题意,得f ′(x )=3x 2+2mx +3,要使函数f (x )在R 上单调递增,则3x 2+2mx +3≥0在R 上恒成立,即Δ=4m 2-36≤0,解得-3≤m ≤3,所以所求概率为3-(-3)4-(-4)=34. 9.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x +1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D 由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.10.函数f (x )=1x+ln |x |的图象大致为( )解析:选B 因为f (1)=1,排除A 项;当x >0时,f (x )=1x +ln x ,f ′(x )=-1x 2+1x =x -1x 2,所以当0<x <1时,f ′(x )<0,f (x )单调递减,当x >1时,f ′(x )>0,f (x )单调递增,排除D 项,又f (-1)=-1,排除C 项,故选B.11.椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A.⎣⎡⎦⎤12,34B.⎣⎡⎦⎤38,34 C.⎣⎡⎦⎤12,1D.⎣⎡⎦⎤34,1解析:选B 椭圆的左顶点为A 1(-2,0),右顶点为A 2(2,0),设点P (x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.又kPA 2=y 0x 0-2,kPA 1=y 0x 0+2,所以kPA 2·kPA 1=y 20x 20-4=-34.又kPA 2∈[-2,-1],所以kPA 1∈⎣⎡⎦⎤38,34.12.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,x 2-2x +1,x >0,若关于x 的方程f 2(x )-af (x )=0恰有5个不同的实数解,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .(0,3)解析:选A 设t =f (x ),则方程为t 2-at =0,解得t =0或t =a ,即f (x )=0或f (x )=a .如图所示,作出函数f (x )的图象,由函数图象,可知f (x )=0的解有2个,故要使方程f 2(x )-af (x )=0恰有5个不同的解,则方程f (x )=a 的解必有3个,此时0<a <1.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2小组的频数为10,则抽取的学生人数为________.解析:前3个小组的频率和为1-(0.037 5+0.012 5)×5=0.75,所以第2小组的频率为13×0.75=0.25, 所以抽取的学生人数为100.25=40.答案:4014.观察下列不等式:1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,照此规律,第6个不等式为________________.解析:观察不等式的规律知1+12+122-1>1=22,1+12+13+…+123-1>32,1+12+13+…+124-1>42,1+12+13+…+125-1>52,…,由此猜测第6个不等式为1+12+13+…+1127>72.答案:1+12+13+…+1127>7215.若tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2,则sin ⎝⎛⎭⎫2α+π4+2cos π4cos 2α的值为________. 解析:因为tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2, 所以(tan α-3)(3tan α-1)=0,所以tan α=3或13.因为α∈⎝⎛⎭⎫π4,π2,所以tan α>1,所以tan α=3, 所以sin ⎝⎛⎭⎫2α+π4+2cos π4cos 2α =22sin 2α+22cos 2α+2(1+cos 2α)2 =22(sin 2α+2cos 2α+1) =222sin αcos αsin 2α+cos 2α+2cos 2α-2sin 2αsin 2α+cos 2α+1 =222tan α1+tan 2α+2-2tan 2α1+tan 2α+1 =0. 答案:016.设抛物线y 2=4x 的焦点为F ,A ,B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若|PF |=32,则M 点的横坐标为___.解析:由题意得F (1,0),准线方程为x =-1, 设A (x 1,y 1),B (x 2,y 2),直线AB 方程为y =k (x -1), 代入抛物线方程消去y ,得k 2x 2-(2k 2+4)x +k 2=0, 所以x 1+x 2=2k 2+4k2,x 1x 2=1.又设P (x 0,y 0),则y 0=12(y 1+y 2)=12[k (x 1-1)+k (x 2-1)]=2k ,所以x 0=1k 2,所以P ⎝⎛⎭⎫1k 2,2k . 因为|PF |=x 0+1=1k 2+1=32,解得k 2=2,所以M点的横坐标为x1+x22=2k2+4k22=2.答案:2三、解答题(本大题共3小题,共36分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)数列{a n}的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)设b n=a n+1S n S n+1,求数列{b n}的前n项和T n.解:(1)∵S n=2a n-a1,∴当n≥2时,S n-1=2a n-1-a1,∴a n=2a n-2a n-1,即a n=2a n-1.由a1,a2+1,a3成等差数列,得2(a2+1)=a1+a3,∴2(2a1+1)=a1+4a1,解得a1=2.∴数列{a n}是首项为2,公比为2等比数列,∴a n=2n.(2)∵a n+1=2n+1,S n=2n+1-2,S n+1=2n+2-2.∴b n=a n+1S n S n+1=2n+1(2n+1-2)(2n+2-2)=1212n-1-12n+1-1.∴数列{b n}的前n项和T n=12⎝⎛⎭⎫12-1-122-1+⎝⎛⎭⎫122-1-123-1+…+⎝⎛⎭⎫12n-1-12n+1-1=12⎝⎛⎭⎫1-12n+1-1.18.(本小题满分12分)如图,在四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求四棱锥S-ABCD的高.解:(1)证明:如图,取AB的中点E,连接DE,DB,则四边形BCDE为矩形,∴DE=CB=2,∴AD=BD= 5.∵侧面SAB为等边三角形,AB=2,∴SA=SB=AB=2.又SD=1,∴SA2+SD2=AD2,SB2+SD2=BD2,∴∠DSA =∠DSB =90°,即SD ⊥SA ,SD ⊥SB , 又SA ∩SB =S ,∴SD ⊥平面SAB . (2)设四棱锥S -ABCD 的高为h , 则h 也是三棱锥S -ABD 的高. 由(1),知SD ⊥平面SAB .由V S -ABD =V D -SAB,得13S △ABD ·h =13S △SAB ·SD , ∴h =S △SAB ·SDS △ABD.又S △ABD =12AB ·DE =12×2×2=2,S △SAB =34AB 2=34×22=3,SD =1, ∴h =S △SAB ·SD S △ABD =3×12=32.故四棱锥S -ABCD 的高为32. 19.(本小题满分12分)某校开展“翻转合作学习法”教学试验,经过一年的实践后,对“翻转班”和“对照班”的220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表:(1)秀与翻转合作学习法”有关;(2)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样的方法抽出6名学生,再从这6名学生中抽出3名交流学习方法,求至少抽到一名“对照班”学生的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)∵K 2=220×(20×70-40×90)60×160×110×110=556≈9.167<10.828,∴在犯错误的概率不超过0.001的前提下,不能认为“成绩优秀与翻转合作学习法”有关.(2)设从“翻转班”中抽取x 人,从“对照班”中抽取y 人,由分层抽样的定义可知660=x 40=y20,解得x =4,y =2. 在这6名学生中,设“对照班”的2名学生分别为A 1,A 2,“翻转班”的4名学生分别为B 1,B 2,B 3,B 4.则所有的抽样情况如下,{A 1,A 2,B 1},{A 1,A 2,B 2},{A 1,A 2,B 3},{A 1,A 2,B 4}, {A 1,B 1,B 2},{A 1,B 1,B 3},{A 1,B 1,B 4},{A 1,B 2,B 3}, {A 1,B 2,B 4},{A 1,B 3,B 4},{A 2,B 1,B 2},{A 2,B 1,B 3}, {A 2,B 1,B 4},{A 2,B 2,B 3},{A 2,B 2,B 4},{A 2,B 3,B 4}, {B 1,B 2,B 3},{B 1,B 2,B 4},{B 1,B 3,B 4},{B 2,B 3,B 4}, 共20种.其中至少有一名“对照班”学生的情况有16种.记事件A 为至少抽到一名“对照班”学生交流学习方法,则P (A )=1620=45.四、选做题(请在第22~23题中任选一题作答,如果多做,则按所做的第一题计分) 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-35t +2,y =45t(t 为参数),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=a sin θ(a ≠0).(1)求圆C 的直角坐标方程与直线l 的普通方程;(2)设直线l 截圆C 的弦长是半径长的3倍,求a 的值. 解:(1)圆C 的直角坐标方程为x 2+⎝⎛⎭⎫y -a 22=a24, 直线l 的普通方程为4x +3y -8=0.(2)∵直线l 截圆C 的弦长等于圆C 的半径长的3倍,∴圆心C 到直线l 的距离d =⎪⎪⎪⎪3a 2-85=12×|a |2,解得a =32或a =3211. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +1|+|x -3|-m 的定义域为R. (1)求m 的取值范围;(2)若m 的最大值为n ,解关于x 的不等式:|x -3|-2x ≤2n -4.解:(1)因为函数f (x )的定义域为R , 所以|x +1|+|x -3|-m ≥0恒成立, 设函数g (x )=|x +1|+|x -3|, 则m 不大于函数g (x )的最小值, 又|x +1|+|x -3|≥|(x +1)-(x -3)|=4, 即g (x )的最小值为4.所以m ≤4,即m 的取值范围为(-∞,4].(2)当m 取最大值4时,原不等式等价于|x -3|-2x ≤4,所以⎩⎪⎨⎪⎧ x ≥3,x -3-2x ≤4或⎩⎪⎨⎪⎧x <3,3-x -2x ≤4,解得x ≥3或-13≤x <3.所以原不等式的解集为⎩⎨⎧⎭⎬⎫xx ≥-13.。
高中数学专题复习《数列等差等比数列综合》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.已知{}n a 为等比数列.下面结论中正确的是 ( )A .1322a a a +≥B .2221322a a a +≥C .若13a a =,则12a a =D .若31a a >,则42a a >(汇编北京文)2.已知等差数列{n a },n S 表示前n 项的和,,0,0993<>+S a a 则N S S S ,,21中最小的是( ) A .S 4 B .5S C .S 6D .9S (汇编)3.等差数列和的前n 项和分别为S n 和T n ,对一切自然数n 都有,则等于( )B .C .D .(汇编)4.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和为n S ,则30S 为( )A .470B .490C .495D .510(汇编江西理)5.已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =( ) A .52 B .7C .6D .42(汇编)6.已知数列{a n }既是等差数列又是等比数列,则这个数列的前n 项和为 A.0 B.n C.na 1 D. a 1n7.设是公比为q 的等比数列,是它的前n 项和,若是等差数列,则q 的值等于( )A . 1B . 2C . 3D . 48.等比数列{a n }的前n 项的和为S n ,已知a 5=2S 4+3,a 6=2S 5+3,则数列的公比q 等于 A.2 B.3 C.4 D.59.如果成等比数列,那么 ( )A .B .C .D .10.一个各项均为正数的等比数列,其任何项都等于后面两项之和,则其公比是( ) A .52B . 152-C . 255D . 512-11.设等差数列{an}的公差为d,如果它的前n 项和Sn=-n2,那么A.an=2n-1,d=-2B.an=2n-1,d=2C.an=-2n+1,d=-2D.an=-2n+1,d=212.已知a 、b 、c 的倒数成等差数列,如果a 、b 、c 互不相等,则 为A. B. C. D.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题13.若实数a,b,c 满足:数列1,a ,b ,c ,4是等比数列,则b 的值为 . 14.已知)(),(x g x f 都是定义在R 上的函数,()0,()()()()g x f x g x f x g x ''≠>,()(),x f x a g x =⋅(01a a >≠且),(1)(1)5,(1)(1)2f f g g -+=- 在有穷数列)10,,2,1}()()({=n n g n f 中,任意取正整数k (110k ≤≤),则前k 项和不小于1615的概率是 ▲ .15.设等差数列}{n a 的前n 项和为,n S 且满足,0,01615<>S S 则15152211,,,a S a S a S 中最大的项为 ▲ .16.等差数列{}n a 中,已知27a ≤,69a ≥,则10a 的取值范围是 ▲ .17.已知数列{}n a 中,()12121,2,,3,n n n a a a a a n N n +--===-∈≥则2011a = ▲ .18.在等差数列}{n a 中,若67,211234=+++=---n n n n a a a a S ,且286=n S ,则n =____19.在数列}{n a 中,3,511+==+n n a a a ,则通项公式为n a =_______20.证:lg(a +c),lg(a-c),lg(a +c-2b)也成等差数列. 评卷人得分三、解答题21.设等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为,n T 已知数列{}n b 的公比为,1),0(11==>b a q q .,452335b a T S -==(1)求数列{}n a ,{}n b 的通项公式; (2)求.13221++⋅⋅⋅++n n a a q a a q a a q (本题满分14分)22.设等差数列}{n a 的前n 项和为n S ,若),(,*q p N q p p S q S q p <∈==且,求q p S +。
限时练(四)
(建议用时:40分钟)
1.已知集合A ={x |-1≤x ≤1},B ={x |x 2-2x ≤0},则A ∩B =________. 解析 ∵B =[0,2],∴A ∩B =[0,1].
答案 [0,1]
2.复数5(1+4i )2
i (1+2i )=________.
解析 5(1+4i )2i (1+2i )=5(-15+8i )-2+i =5(-15+8i )(-2-i )
(-2+i )(-2-i )=
5(38-i )
5=38-i.
答案 38-i
3.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率
分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.
解析 高三年级总人数为:90
0.05=1800;90~100分数段人数的频率为0.45;
分数段的人数为1800×0.45=810.
答案 810
4.曲线y =1
x
在x =2处的切线斜率为________.
解析 根据导数的几何意义,只要先求出导数以后,将x =2代入即可求解.因为y ′=-1
x 2,所以y ′|x =2=-1
4
,即为切线的斜率.
答案 -1
4
5.将一枚骰子(一种六个面上分别标有1,2,3,4,5,6个点的正方体玩具)
先后抛掷2次,向上的点数分别记为m ,n ,则点P (m ,n )落在区域|x -2|+|y -2|≤2的概率是________.
解析 利用古典概型的概率公式求解.将一枚骰子先后抛掷2次,向上的点数分别记为m ,n ,则点P (m ,n )共有36个,其中落在区域|x -2|+|y -2|≤2内的点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,2),共11个,故所求概率是1136
.
答案
1136
6.已知向量a =(3,1),b =⎝ ⎛
⎭⎪⎫-1,12,若a +λb 与a 垂直,则λ等于________.
解析 根据向量线性运算、数量积运算建立方程求解.由条件可得a +λb =⎝
⎛
⎭⎪⎫3-λ,1+12λ,所以(a +λb )⊥a ⇒3(3-λ)+1+12λ=0⇒λ=4.
答案 4
7.已知正数x ,y 满足x +2y =2,则x +8y
xy
的最小值为________.
解析 利用“1”的代换,结合基本不等式求解.因为x ,y 为正数,且x +2y =2,
x +8y xy =⎝ ⎛⎭⎪⎫1y +8x ⎝ ⎛⎭⎪⎫x 2+y =x 2y +8y
x
+5≥2x 2y ·8y
x
+5=9,当且仅当x =4y =43时,等号成立,所以x +8y xy 的最小值为9.
答案 9
8.给出四个命题: ①平行于同一平面的两个不重合的平面平行; ②平行于同一直线的两个不重合的平面平行; ③垂直于同一平面的两个不重合的平面平行; ④垂直于同一直线的两个不重合的平面平行; 其中真命题的序号是________. 解析 若α∥β,α∥γ,则β∥γ,
即平行于同一平面的两个不重合的平面平行,故①正确; 若a ∥α,a ∥β,则α与β平行或相交,故②错误; 若α⊥γ,β⊥γ,则平面α与β平行或相交,故③错误; 若a ⊥α,a ⊥β,则α与β平行,故④正确.
答案 ①④
9.设某程序框图如图所示,该程序运行后输出的k 的值是________.
解析 阅读算法中流程图知:
运算规则是S =S ×k 2故
第一次进入循环体后S =1×32=9,k =3;
第二次进入循环体后S =9×52=225>100,k =5.退出循环,其输出结果k =5.故答案为:5.
答案 5
10.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,
则a 1的取值范围为________.
解析 利用a 1,a 2,a 5成等比数列确定公差与首项的关系,再解不等式即可.设等差数列{a n }的公差为d ,则d ≠0,所以a 1,a 2,a 5成等比数列⇒a 22=a 1a 5⇒(a 1+d )2=a 1(a 1+4d )⇒d =2a 1,代入不等式a 1+a 2+a 5>13,解得a 1>1.
答案 (1,+∞)
11.P 为直线y =b 3a x 与双曲线x 2a 2-y 2
b
2=1(a >0,b >0)左支的交点,F 1是左焦点,
PF 1垂直于x 轴,则双曲线的离心率e =________.
解析
由⎩⎪⎨⎪⎧y =b 3a x ,x 2a 2
-y 2b 2
=1,得⎩⎪⎨⎪⎧x =-324a ,y =-2
4
b ,又PF 1
垂直于x 轴,所以324a =c ,
即离心率为e =c a =32
4
.
答案
324
12.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面
积为203,则△ABC 的最大角的正切值是________.
解析 由S △ABC =12ab sin C ,代入数据解得sin C =3
2,又C 为三角形的内角,
所以C =60°或120°.若C =60°,则在△ABC 中,由余弦定理得c 2=a 2+
b 2-2ab cos C =84,此时,最大边是b ,故最大角为B ,其余弦值cos B =a 2+
c 2-b 22ac =3221,正弦值sin B =53221
,正切值tan B =533;若C =120°,
此时,C 为最大角,其正切值为tan120°=- 3.
答案 53
3
或- 3
13.若存在区间M =[a ,b ](a <b ),使得{y |y =f (x ),x ∈M }=M ,则称区间M 为
函数f (x )的一个“稳定区间”.给出下列四个函数:①y =e x ,x ∈R ;②f (x )=x 3;③f (x )=cos
πx
2
;④f (x )=ln x +1.其中存在稳定区间的函数有________(写出所有正确命题的序号).
解析 根据新定义逐一判断.因为函数y =e x ,x ∈R 递增,且e x >x ,x ∈R 恒成立,函数y =e x ,x ∈R 不存在“稳定区间”,故①不存在“稳定区间”;函数f (x )=x 3存在稳定区间[-1,0]或[0,1]或[-1,1],故②存在“稳定区间”;函数f (x )=cos
πx
2
存在稳定区间[0,1],故③存在“稳定区间”;函数f (x )=ln x +1在(0,+∞)上递增,且ln x +1≤x ,x >0恒成立,函数
f (x )=ln x +1在定义域上不存在“稳定区间”,故④不存在“稳定区间”.
答案 ②③
14.若关于x 的方程
|x |
x +2
=kx 2有四个不同的实根,则实数k 的取值范围是________.
解析 由于关于x 的方程|x |
x +2
=kx 2有四个不同的实根,x =0是此方程的一个根,故关于x 的方程
|x |
x +2
=kx 2有3个不同的非零的实数解.
∴方程1
k =⎩⎨⎧x (x +2),x >0,-x (x +2),x <0有3个不同的非零的实数解,即函数y =1k
的图象和函数g (x )=⎩⎨⎧x (x +2),x >0,-x (x +2),x <0的图象有3个交点,画出函数g (x )
的图象,如图所示,故0<1
k
<1,解得k >1.
答案(1,+∞)。