第三章 气体内的输运过程
- 格式:ppt
- 大小:2.25 MB
- 文档页数:87
热学习题答案第三章:气体分子的输运过程(内容对应参考书的第四章)1. 某一时刻,氧气中一组分子刚与其他分子碰撞过,问:经过多长时间后,其中还保留一半未与其他分子相碰。
设氧气分子都以平均速率运动,氧气温度300K ,在给定压强下,分子平均自由程为2.0cm 。
解:设这组分子个数为0N ,经过时间t (对应的路程为x )后未碰撞的分子数为N ,根据分子按自由程的分布()dx e dx x f N dN x⋅==-λλ10 由已知:t v x =,210=N N ,则有 210===⋅--λλt v x e e N N ,即2ln v t λ= 又由πμRTv 8=,mol Kg /10323-⨯=μ,代入上式得()s RT t 532101.32ln 30031.88103214.3100.22ln 8---⨯≈⨯⨯⨯⨯⨯==πμλ。
2. (P 142。
8)在气体放电管中,电子不断与气体分子相碰,因电子的速率远远大于气体分子的平均速率,所以后者可以认为是静止不动的。
设电子的“有效直径”比起气体分子的有效直径d 来可以忽略不计。
(1)电子与气体分子的碰撞截面σ为多大?(2)证明:电子与气体分子碰撞的平均自由程为σλn e 1= 解:(1)电子与气体分子的碰撞截面22⎪⎭⎫ ⎝⎛+=d d e πσ,由于d d e <<,故 22412d d d e ππσ≈⎪⎭⎫ ⎝⎛+=(2)由于气体分子可以认为是静止不动的,则电子与气体分子间的平均相对速率就等于电子的平均速率e v 。
在时间t 内,电子走过的路程为t v e ,相应的圆柱体的体积为t v e σ,则在此圆柱体内的气体分子数为t v n e σ,即为时间t 内电子与气体分子的碰撞次数,故碰撞频率为e e v n t t v n Z σσ==电子与气体分子碰撞的平均自由程为σλn Z v e e 1==。
3. (P 143。
18)一长为2m ,截面积为410-米2的管子里贮有标准状态下的2CO 气,一半2CO 分子中的C 原子是放射性同位素C 14。