f = 6πηvR
——斯托克斯公式 斯托克斯公式
R ~ 106 m,vmax ~ 104 m s1
解释云雾的形成: 2 ρgR 2 解释云雾的形成: v max = 9η 七,非牛顿流体
1,其速度梯度与互相垂直的粘性力间不呈线性 , 函数关系,如血液,泥浆,橡胶等. 函数关系,如血液,泥浆,橡胶等. 2,其粘性系数会随着时间而变的,如:油漆等 ,其粘性系数会随着时间而变的, 凝胶物质. 凝胶物质. 3,对形变具有部分弹性恢复作用,如沥青等 ,对形变具有部分弹性恢复作用, 粘弹性物质. 粘弹性物质.
y粘滞力: 粘滞力: 源自 AB = f BA二,牛顿粘性定律 1,实验表明: ,实验表明:
A
B
ds
x
z0
f BA
→u y
o
du f = η ds dz z 0
形式一
x 4-3
η
——粘度(粘性系数) 粘度(粘性系数) 粘度
单位是Pas 单位是
说明: )定律对气体和液体都是适用的. 说明: 1)定律对气体和液体都是适用的. 2)η与流体的性质及温度,压强有关 ) 与流体的性质及温度 与流体的性质及温度, 气体的黏度随温度升高而增加, 气体的黏度随温度升高而增加, 液体的黏度随温度升高而减少. 液体的黏度随温度升高而减少. 2,从效果看: ,从效果看: 设在dt 时间内,通过ds截面 截面, 轴定向输运的动量: 设在 时间内,通过 截面,沿z轴定向输运的动量:dp 若规定沿z轴正方向传递的动量 若规定沿 轴正方向传递的动量dp>0,则 轴正方向传递的动量 ,
压强均匀且温度稳定分布的一维热传导) 二,傅立叶定律 (压强均匀且温度稳定分布的一维热传导) 设等温面是x-y平面,若在稳态情况下,温度 仅是 的函数, 仅是z的函数 设等温面是 平面,若在稳态情况下,温度T仅是 的函数, 平面 且温度沿Z轴正方向逐渐加大, 处取一截面A, A,则单 且温度沿Z轴正方向逐渐加大, z=z0 处取一截面A,则单 T 位时间内通过该截面A的热量Q 位时间内通过该截面A的热量Q与温度梯度 z Z 及截面的面积A成正比: 及截面的面积A成正比: z T2 (< T ) 1 B