悬索桥的计算方法及其历程1
- 格式:docx
- 大小:53.92 KB
- 文档页数:12
悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系,在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论。
最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。
弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
【大跨度悬索桥丝股架设线形计算的精确方法】1. 引言大跨度悬索桥作为工程中的一项重要建筑,其设计和构建中的悬索桥丝股架设线形计算显得尤为重要。
本文将深入探讨大跨度悬索桥丝股架设线形计算的精确方法,帮助读者全面了解该领域的相关知识。
2. 分类精确方法在大跨度悬索桥丝股架设线形计算中,精确方法可以分为几种不同的分类:2.1 几何精确法2.2 数值精确法2.3 实验精确法3. 几何精确法的原理和应用几何精确法是一种通过几何学方法,以解析性的手段进行丝股架设线形计算的方法。
其原理是...在实际工程中,几何精确法常常应用于...4. 数值精确法的原理和应用数值精确法是一种通过数值计算的方法,以数字模拟的手段进行丝股架设线形计算的方法。
其原理是...在实际工程中,数值精确法常常应用于...5. 实验精确法的原理和应用实验精确法是一种通过实际实验和测试的方法,以试验验证的手段进行丝股架设线形计算的方法。
其原理是...在实际工程中,实验精确法常常应用于...6. 精确方法的优缺点比较在大跨度悬索桥丝股架设线形计算中,不同的精确方法都有其优缺点。
几何精确法在...,数值精确法在...,实验精确法在...,因此在实际应用中,需要综合考虑并选择最合适的方法。
7. 个人观点和理解在我看来,大跨度悬索桥丝股架设线形计算的精确方法是一个综合性的问题,需要结合几何、数值和实验方法来进行综合分析。
每种方法都有其局限性,但相互结合可以得到更加精确和可靠的结果。
8. 总结和回顾通过本文的探讨,我们对大跨度悬索桥丝股架设线形计算的精确方法有了更深入的理解。
在实际应用中,需要充分考虑每种方法的特点,并综合运用,才能取得最优的效果。
通过以上论述,可以看出大跨度悬索桥丝股架设线形计算的精确方法是一个复杂而又具有挑战性的问题。
只有站在更加深入和广泛的角度来审视,才能在这个领域做到真正的精通。
希望本文能够帮助读者更好地理解大跨度悬索桥丝股架设线形计算的精确方法,为相关工程提供支持和指导。
综述悬索桥受力特性和计算理论一、悬索桥的受力特性悬索桥是由主缆、主塔、加劲梁、吊索、锚碇等构成的组合体系。
恒载作用下,主缆、主塔承受结构自重,加劲梁受力由施工方法而定。
成桥后,主缆和加劲梁共同承受外荷载作用,受力按刚度分配。
1、主缆的受力特征主缆是结构体系中的主要承重构件,其形状直接影响到整个体系的受力分配和变形,主缆的主要受力特征如下:(1)主缆是几何可变体,主要承受张力。
主缆可通过自身几何形状的改变来影响体系平衡,具有大位移的力学特征,这是区别于一般结构的重要特征之一。
(2)主缆在恒载作用下具有很大的初始张力,使主缆维持一定的几何形状。
初始张力对后续结构形状提供强大的“重力刚度”,这是悬索桥跨径得以不断增大,加劲梁高跨比得以减小的根本原因。
2、主塔的受力特征主塔是悬索桥抵抗竖向荷载的主要承重构件,在外荷载作用下,以轴向受压为主,并应尽量使外荷载在主塔中产生的弯曲内力减小,以减小混凝土桥塔因为徐变而使塔型改变,增加结构抵抗外载的能力。
主塔在外荷载作用下的受力特征可表现为两种形式:(1)恒载状态下,主塔基本无弯曲内力。
这是大部分已建悬索桥桥塔的受力状态。
(2)恒、活载及地震荷载作用下,主塔正负弯曲包络图基本对称或正负弯矩包络按某一比例分配。
3、加劲梁的受力特征加劲梁是悬索桥保证车辆行驶、提供结构刚度的二次结构,主要承受弯曲内力。
由悬索桥施工方法可知,加劲梁的弯曲内力主要来自二期恒载和活载。
按照不同的施工方法,加劲梁的受力特征可表现为两种情况:(1)一期恒载作用下,加劲梁段呈简支梁弯矩分配;二期恒载作用下,加劲梁承受与主缆共同作用下的弯曲内力。
这种受力状态是按加劲梁先铰接后连续,再施加二期荷载而得到的。
由于这种施工方法简单并已成熟,目前大部分已建悬索桥多用这种方法施工。
(2)加劲梁的弯矩根据使恒、活载作用下其应力分布趋于合理的标准人为确定。
这种受力必须通过特定的施工方法来实现。
这一方法目前很少应用,但是随着施工技术的发展, 在设计阶段通过充分考虑施工过程来改善悬索桥结构受力必将成为可能。
第一章绪论1.1悬索桥的分类、构造及主要特点1.1.1 分类悬索桥按有无加劲梁可分为无加劲梁和有加劲梁悬索桥两种。
现代大跨度悬索桥都是有加劲梁的,根据已建和在建大跨度悬索桥的结构形式,悬索桥有以下几种:1.1.1.1 美国式悬索桥其基本特征式采用竖直吊索,并用钢桁架作为加劲梁。
这种形式的悬索桥绝大部分为三跨地锚式。
加劲梁是不连续的,在主塔处有伸缩缝,桥面为钢筋混凝土桥面,主塔为钢结构。
其优点是可以通过增加桁架高度来保证桥梁有足够的刚度,且便于实现双层通车。
1.1.1.2 英式悬索桥60年代英国提出了新型的悬索桥,突破了悬索桥的传统形式。
英国式悬索桥的基本特征是采用呈三角形的斜吊索和高度较小的流线型扁平翼状钢箱梁作为加劲梁。
除此之外,这种形式的悬索桥采用连续的钢箱梁作为加劲梁,桥塔处设有伸缩缝,用混凝土桥塔代替钢桥塔。
有的还将主缆与加劲梁在主跨中点处固结。
英式悬索桥的优点是钢箱加劲梁可减轻恒载,因而减小了主缆的截面,降低了用钢量总造价。
1.1.1.3 日式悬索桥日本的悬索桥出现在20世纪70年代以后,国际上悬索桥的技术发展已日臻完善,日本结合自己的国情,吸收了世界上先进的技术,形成了日式流派,其主要特征是:主缆一律采用预制束股法架设成缆。
加劲梁主要沿袭美式钢桁梁形式,少数公路桥也开始采用英式流线形箱梁结构。
吊索沿用美式竖向4股骑挂式钢丝绳。
桥塔采用钢结构,主要采用焊接,少数用栓接。
鞍座采用铸焊混合式,主缆采用预应力锚固系统。
1.1.1.4 混合式悬索桥其特点是采用竖直吊索和流线型钢箱梁作为加劲梁。
混合式悬索桥的出现,显示了钢箱加劲梁的优越性,同时避免了采用有争议的斜吊索。
1.1.2 主要构造现代悬索桥通常有桥塔、锚碇、主缆、吊索、加劲梁及鞍座等主要部分组成。
1.1.2.1 桥塔桥塔是支撑主缆的重要构件。
悬索桥的活载和恒载(包括桥面、加劲梁、吊索、主缆及其附属构件,如鞍座和索夹等的重量)以及加劲梁主承在塔身上的反力,都将通过桥塔传递到下部分的塔墩和基础。
悬索桥计算数值方法研究摘要:依据悬索桥成桥线形特点,本文采用分段悬链线计算方法,在计算结构参数时提出了基于主缆的自重约束方程,并根据空缆状态主索鞍的受力情况及中边跨的无应力长度不变原理,采用数值计算方法:同伦算法和新Aitken加速迭代技术计算主索鞍的预偏量。
江阴长江大桥和贵州北盘江大桥的应用表明本文提出的数值方法在工程计算稳定且收敛快。
关键词:悬链线;同伦算法;新Aitken迭代法;自重约束方程前言对于大跨度悬索桥的施工控制需要确定悬索桥主缆的初始理想状态以及成桥状态,通常计算都采用有限元法和解析法,有限元法一般根据成桥的线形和受力情况,迭代出空缆状态的线形和受力;解析法则根据成桥设计线形计算主缆无应力长度,利用任何情况下主缆的无应力长度不变的原理计算结构参数,一般在解析法在数学方法上采用牛顿迭代法或拟牛顿法进行计算。
本文结合主缆的实际情况:采用分段悬链线法计算,此法是考虑除主缆外的一期恒载及二期恒载作为多个集中力作用在各吊点处,主缆在各吊点之间线形为悬链线。
并在计算结构参数时考虑主缆的自重约束方程,即荷载集度在施工过程中不断的变化,主缆总的质量不变;根据主缆在主索鞍处的受力情况,以及中边跨空缆与成桥状态下无应力长度相等;在数学方法上进行改进,采用精度更高、收敛更快、计算更稳定的新Aitken迭代方法和同伦算法计算悬索桥的结构参数。
1.分段悬链线的计算方法1.1 基本假定:(1)主缆材料为线弹性,符合胡克定律;(2)主缆是是理想柔性的,只能承受拉力,不能受压,截面抗弯刚度对主缆线形影响忽略不计;(3)忽略主缆横截面在变形前后的变化;通过以上假定,主缆的自重恒载集度沿主缆索长为常量,但变形前后可以不一样。
1.2 分段悬链线法原理考虑加劲梁的一期恒载及二期恒载作为多个集中力作用在各吊点处,此时主缆线形在各吊点之间为悬链线,取任意两吊点间自由悬索建立坐标系,以竖向为方向,向下为正,水平向为方向,向右为正,主缆上任意一点的拉格朗日坐标为,对应的笛卡儿坐标为( , ),如图1所示。
斜拉桥与悬索桥计算理论简析斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。
通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。
在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。
一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。
有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。
斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。
(一)、斜拉桥的静力设计过程1、方案设计阶段此阶段也称为概念设计。
本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。
根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。
2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。
主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。
3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。
主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。
(二)、斜拉桥的计算模式1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。
还可用于技术设计阶段,仅仅计算恒载作用下的内力。
2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。
此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。
悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
悬索桥的挠度理论也是一种非线性的分析方法,至今仍不失为分析悬索桥的较简单实用的手段。
但挠度理论在基本假设中忽略了吊杆的变位影响及加劲梁的剪切变形影响等,使分析结果的精度受到限制。
随着计算方法、计算手段的发展,悬索桥的计算理论也发展到将悬索桥作为大位移构架来分析的有限位移理论。
有限位移理论将整个悬索桥包括缆索、吊杆、索塔、加劲梁全部考虑在内,分析时可以将各种二次影响包括进去,从而使悬索桥的分析精度达到新的水平。
有限位移理论是20世纪60年代提出的计算理论。
它是一种精确的理论,不需挠度理论所作的那些假定。
其计算值一般要小于挠度理论[3]。
根据参考文献,主跨为380m时,用有限位移理论计算的内力、挠度值,比挠度理论小10%;主跨768m时,在半跨加均布荷载的情况下,主跨四分点弯矩的绝对值,用有限位移理论计算值比挠度理论小26%.因此,在大跨径悬索桥(例如大于600m)的施工图设计中,有必要用有限位移理论进行计算。
有限位移理论采用可考虑几何大变行的矩阵分析法求解。
在刚度矩阵中,既考虑了节点坐标在加载过程中变化所产生的几何非线性影响,又用主缆在恒载下产生的初始轴向力,对刚度矩阵进行修正。
至于缆索中的E 值,应按Ernst公式取用[4]。
具体的计算方法请参见参考文献。
有限位移理论适用于带斜吊杆的悬索桥。
对于一般的特大跨径悬索桥可先用线性挠度理论法求的最不利和在位置,然后用有限位移理论计算最终的内力和挠度。
把挠度理论于有限位移理论结合使用,既可节省机时,加快设计速度,又可提高设计精度。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
本文利用挠度理论提出了悬索桥结构设计的实用计算方法,可简捷、有效地确定出悬索桥各部分的结构尺寸。
挠度理论较弹性理论前进了一大步,但也还存在一些缺陷:1)忽略了吊杆的倾斜与伸长、节点的水平位移、加劲梁剪切变形的影响,使计算结果一般偏大。
跨径越大,误差也越大。
因此,在跨径超过600M时,还亦同时用有限位移理论进行计算。
(2)不能用于带斜吊杆悬索桥的分析计算。
1、悬索桥挠度理论挠度理论是一种古典的悬索桥结构分析理论。
19世纪80年代提出了挠度理论,首次在Mahattan桥设计中应用。
和弹性理论不同挠度理论考虑了恒载作用下主缆处内力对刚度的影响,以及活载作用下位移的非线性影响,使加劲梁的计算内力急挠度减小了很多。
大体上400〜500M的悬索桥,主跨跨中的弯矩减小35%以上;半跨均布荷载时,挠度减小50%以上。
直至目前,仍是应用最广的方法这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度同时,它也可以用于大跨度悬索桥的初步设计计算。
1.1挠度理论的基本假定(1)恒载为均布。
恒载在加劲梁为无应力状态,主缆呈抛物线(2)吊杆竖直,不考虑其因活载而引起的延伸及倾斜。
(3)不计加劲梁的剪切变形。
(4)每一跨径内加劲梁为等截面。
5)吊杆很密,当作仅在竖直方向有弹性抗力的膜。
6)主缆及加劲梁均仅有竖直方向的变形。
1.2挠度理论基本微分方程在这里只考虑缆索和加劲梁竖向挠度这个主要因素,忽略塔的变形、缆索的水平位移、吊杆的倾斜和伸长等因素的影响。
在恒载(g)和活载(P(x))的作用下,缆索的水平拉力增加,同时它和加劲梁产生竖向挠度()。
如果考虑对内力的影响,并假定加劲梁不承担恒载,则可推得加劲梁的挠曲微分方程为:(1)式中:EI加劲梁的竖向刚度;———加劲梁的竖向挠度;H缆索中由恒载和活载产生的水平分力和之和;y恒载下缆索的垂度;p(x)作用在加劲梁上的活载。
式(1)中和是两个相互关联的未知数,且都为的函数,故考虑H〃影响的二阶理论是非线性的。
为求得方程的解,必须增加一个条件,在此以两锚固点间缆索伸长的水平投影等于0为相容条件,则可得:(2)式中:,———缆索的截面积及弹性模量;,———缆索的热膨胀系数及温度变化值;———缆索的水平倾角。
式(1)和(2)为悬索桥挠度理论的两个基本方程,联立求解此二式,即可得到活载作用下加劲梁的挠度、弯矩、剪力及缆索水平力。
1.3挠度理论实用计算方法挠度理论的基本方程是非线性的,到目前为止还难以得到其精确的解析解,因此在实际计算中都转而求其近似解。
挠度理论的基本微分方程从形式上看,悬索桥的整个结构可以用一假想的加劲梁即等代梁来代替。
等代梁上作用着活载(p(x)),悬索对加劲梁的悬吊作用力()及梁端作用轴力(H)。
若将H固定为常量时,则式(1)变为线性方程,对p(x)和适用叠加原理,因而可将两个分别处理,这样加劲梁和缆索的挠度和内力M、Q、都可以仿照结构力学的一阶理论来进行求解。
计算时先假定H值,再求解出,则=+、M=+、Q=+。
将代入式⑵即可求得值。
当p(x)取为单位荷载沿加劲梁移动时,则可得到加劲梁弯矩、剪力、挠度的影响线及缆索水平拉力()的影响线。
由于上述所求得的影响线是在假定H为常量的情况下得到的。
只有当H=+条件成立时,才能提供准确的解,因此这种影响线的适用性是有限的,故称之为“狭义影响线”。
为求得较精确的解,可通改变H值,求出H—,H—M,H—等曲线,由H—曲线插值得到H后再确定其它值。
在实际应用中,通常H值取为,+max/2,+max值,一般用2到3个H值作出插值曲线,即可得到较为满意的结果。
2、悬索桥结构设计的实用计算方法悬索桥结构设计计算的目的是拟定出悬索桥结构各部分的截面尺寸及其几何特性值。
在悬索桥的结构设计过程中,一般都要经过初拟结构截面尺寸和估算恒载值,进行结构分析,改变截面尺寸和恒载值的反复计算来确定出符合设计要求的结构截面尺寸[7]。
因此用有限位移理论来进行结构设计计算时,计算工作量将相当大,并且在计算实施上不如挠度理论简便。
挠度理论考虑了主要的非线性因素,计算结果具有一定的精度,并且可以采用比较简便的实用计算方法来分析,输入数据简单,计算快捷,因此比较适用于初步设计阶段的结构设计计算。
为了能简捷、有效地进行悬索桥的结构设计,本文以挠度理论为基础提出了一种实用计算方法。
该方法的分析过程包含3部分内容:初拟和估算各结构参数、挠度理论分析、参数的改进和优化。
通过初拟—分析—改进和优化过程的反复循环,得出悬索桥结构各部分的截面尺寸和几何特性值。
2.1初拟和估算各结构参数在桥梁的结构设计中,经常要借鉴同类桥梁的一些成功经验来提高设计的质量和水平。
对于悬索桥这一点显得尤为重要。
在SID程序中有一个基本参数的输入模块,要求输入以下各参数拟定值:①桥跨结构布置方式,是单跨还是三跨;②主跨跨长()及矢高()和边跨跨长()和矢高();③加劲梁的宽跨比(/)和高跨比(/)及顶底板、腹板的厚度;④吊杆间距(入)和中央吊杆长度();⑤使用的荷载标准;⑥各构件的容许应力值([a])和容重(p)及弹性模量(E)。
根据以上参数,缆索、吊杆、加劲梁截面特性值可由以下方法初步确定。
2.1.1吊杆截面积可以根据以下假定来确定最大吊杆内力:吊杆承受作用于长度等于吊杆间距(入)的加劲梁上的分布荷载(w+p)以及集中力(p)(可以等代为作用在30d长度上的均布荷载,d为加劲梁的高度),由此可以得出吊杆截面积:(6)式中:w加劲梁恒载;p均布活载;P集中力;入吊杆间距;———吊杆容许应力。
2.1.2缆索截面积主跨内缆索的最大内力可由下述假定来确定;加劲梁的恒载及分布的车辆荷载在整个主跨内均布作用以及集中力作用在跨中。
鉴于吊杆的恒载值通常很小,在设计中可忽略不计,因此主缆内的最大水平力)为:(7)跨中主缆截面积为:边跨主缆截面积可按塔柱左右水平力相等的原则来确定。
(8)式中:———主缆容重;———主缆容许应力。
(9)式中:———边跨主缆塔顶处的水平倾角。
2.1.3加劲梁的截面特性值由于具有良好的气动稳定性,自Seven桥以后修建的大跨度悬索桥多数采用流线型加劲箱梁,为方便计算在此将流线型箱梁简化为矩形箱形梁来分析,如图1所示。
图1加劲梁简化截面图截面积为(10)惯性矩为(11)m]Tf!£2.2挠度理论分析该模块以上述所拟定和估算的结构参数作为结构分析的基本参数,用挠度理论进行影响线计算,而后根据所选用的荷载标准进行影响线最不利位置的加载计算,得出结构受力和变形的包络图,以确定相对于主缆、加劲梁、塔柱的最大内力值。