高中数学:第2章 数列 §2.4-第1课时
- 格式:doc
- 大小:103.00 KB
- 文档页数:6
§2.4 等比数列(一) 课时目标1.理解等比数列的定义,能够利用定义判断一个数列是否为等比数列.2.掌握等比数列的通项公式并能简单应用.3.掌握等比中项的定义,能够应用等比中项的定义解决有关问题.1.如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式:a n =a 1q n -1. 3.等比中项的定义如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项,且G =±ab .一、选择题1.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .81答案 B解析 由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27.2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .243答案 A解析 ∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1·26=64.3.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8等于( ) A .1+ 2 B .1- 2C .3+2 2D .3-2 2答案 C解析 设等比数列{a n }的公比为q ,∵a 1,12a 3,2a 2成等差数列,∴a 3=a 1+2a 2,∴a 1q 2=a 1+2a 1q ,∴q 2-2q -1=0,∴q =1± 2.∵a n >0,∴q >0,q =1+ 2.∴a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2. 4.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-9答案 B解析 ∵b 2=(-1)×(-9)=9且b 与首项-1同号,∴b =-3,且a ,c 必同号.∴ac =b 2=9.5.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( )A.53B.43C.32D.12答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25,∴这三个数45,75,125,公比q 为7545=53.6.若正项等比数列{a n }的公比q ≠1,且a 3,a 5,a 6成等差数列,则a 3+a 5a 4+a 6等于() A.5-12 B.5+12C.12 D .不确定答案 A解析 a 3+a 6=2a 5,∴a 1q 2+a 1q 5=2a 1q 4,∴q 3-2q 2+1=0,∴(q -1)(q 2-q -1)=0 (q ≠1),∴q 2-q -1=0,∴q =5+12 (q =1-52<0舍)∴a 3+a 5a 4+a 6=1q =5-12.二、填空题7.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________. 答案 4·(32)n -1解析 由已知(a +1)2=(a -1)(a +4),得a =5,则a 1=4,q =64=32,∴a n =4·(32)n -1.8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则 a 6+a 7=________.答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3. ∴a 6+a 7=(a 4+a 5)q 2=(12+32)×32=18.9.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 答案 5解析 设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5. 10.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案 5-12解析 设三边为a ,aq ,aq 2 (q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12.三、解答题11.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q ,a 4=a 3q =2q ,∴2q +2q =203.解得q 1=13,q 2=3. 当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n .当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.综上,当q =13时,a n =2×33-n ;当q =3时,a n =2×3n -3. 12.已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.(1)解 由S 1=13(a 1-1),得a 1=13(a 1-1),∴a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明 当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12,又a 2a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列. 能力提升13.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.答案 -9解析 由题意知等比数列{a n }有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,四项是两个正数、两个负数,故-24,36,-54,81,符合题意,则q =-32,∴6q =-9.14.已知数列{a n }满足a 1=1,a n +1=2a n +1,(1)求证:数列{a n +1}是等比数列;(2)求a n 的表达式.(1)证明 ∵a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2. ∴{a n +1}是等比数列,公比为2,首项为2.(2)解 由(1)知{a n +1}是等比数列.公比为2,首项a 1+1=2.∴a n+1=(a1+1)·2n-1=2n. ∴a n=2n-1.。
[课时作业][A 组 基础巩固]1.已知等比数列{a n }中,a 1=32,公比q =-12,则a 6等于( )A .1B .-1C .2 D.12解析:由题知a 6=a 1q 5=32×⎝⎛⎭⎫-125=-1,故选B.答案:B2.已知数列a ,a (1-a ),a (1-a )2,…是等比数列,则实数a 的取值范围是( )A .a ≠1B .a ≠0且a ≠1C .a ≠0D .a ≠0或a ≠1解析:由a 1≠0,q ≠0,得a ≠0,1-a ≠0,所以a ≠0且a ≠1.答案:B3.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( )A .2B .3C .4D .8解析:q 3=a 2 016a 2 013=8,∴q =2.答案:A4.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .243解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1×26=64.答案:A5.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4a 4+a 5=( ) A .-5+12 B.1-52 C.5-12 D .-5+12或5-12解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2=1+q ,∵q >0,∴q =5+12,∴a 3+a 4a 4+a 5=1q =5-12. 答案:C6.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 解析:设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5.答案:57.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q =2,a 1=1,a n =2n -1.答案:2n -18.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.解析:由题意,(2k +2)2=k (3k +3),解得k =-4或k =-1,又k =-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k =-4,前3项为-4,-6,-9,第四项为-272. 答案:-2729.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式. 证明:∵S n =2a n +1,∴S n +1=2a n +1+1.∴S n +1-S n =a n +1=(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n .①又∵S 1=a 1=2a 1+1,∴a 1=-1≠0.由①式可知,a n ≠0,∴由a n +1a n=2知{a n }是等比数列,a n =-2n -1. 10.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827. (1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项? 解析:(1)∵2a n =3a n +1,∴a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,所以a 21⎝⎛⎭⎫235=⎝⎛⎭⎫233,由于各项均为负,故a 1=-32,a n =-⎝⎛⎭⎫23n -2. (2)设a n =-1681,则-1681=-⎝⎛⎭⎫23n -2, ⎝⎛⎭⎫23n -2=⎝⎛⎭⎫234,n =6,所以-1681是该数列的项,为第6项. [B 组 能力提升]1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215解析:由等比数列的定义,a 1·a 2·a 3=⎝⎛⎭⎫a 3q 3,故a 1·a 2·a 3·…·a 30=⎝⎛⎭⎫a 3·a 6·a 9·…·a 30q 103.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B2.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.答案:B3.设{a n }为公比q >1的等比数列,若a 2 014和a 2 015是方程4x 2-8x +3=0的两根,则a 2 016+a 2 017=________.解析:4x 2-8x +3=0的两根分别为12和32,q >1,从而a 2 014=12,a 2 015=32,∴q =a 2 015a 2 014=3.a 2 016+a 2 017=(a 2 014+a 2 015)·q 2=2×32=18.答案:184.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n -1a n a n +1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以n =14. 答案:145.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.解析:由题意,设这四个数为b q,b ,bq ,a ,则⎩⎪⎨⎪⎧ b 3=-8.2bq =a +b ,b 2aq =-80解得⎩⎪⎨⎪⎧ a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧ a =-8,b =-2,q =52.∴这四个数依次为1,-2,4,10或-45,-2,-5,-8.6.已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,….(1)证明数列{lg(1+a n )}是等比数列;(2)求{a n }的通项公式.解析:(1)证明:由已知得a n +1=a 2n +2a n , ∴a n +1+1=a 2n +2a n +1=(a n +1)2. ∵a 1=2,∴a n +1+1=(a n +1)2>0. ∴lg(1+a n +1)=2lg(1+a n ),即lg (1+a n +1)lg (1+a n )=2, 且lg(1+a 1)=lg 3.∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列.(2)由(1)知,lg(1+a n )=2n -1·lg 3=lg 312n -, ∴1+a n =312n -,∴a n =312n --1.。
第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
第二章 数列§2.1 数列的概念与简单表示法第1课时 数列的概念与通项公式1.下列说法中正确的是A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,-1,-2与-2,-1,0,1是相同的数列C.数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D.数列0,2,4,6,…可记为{2n }解析 {1,3,5,7}是一个集合,故选项A 错;数虽相同,但顺序不同,不是相同的数列,故选项B 错;数列0,2,4,6,…可记为{2n -2},故选项D 错,故选C. ★答案★ C2.已知数列{a n }为1,0,1,0,…,则下列各式可作为数列{a n }的通项公式的有 (1)a n =12[1+(-1)n +1];(2)a n =sin 2n π2;(3)a n =12[1+(-1)n +1]+(n -1)(n -2);(4)a n =1-cos n π2;(5)a n =⎩⎪⎨⎪⎧1(n 为奇数),0(n 为偶数).A.1个B.2个C.3个D.4个解析 对于(3),将n =3代入,则a 3=3≠1,易知(3)不是通项公式.根据三角中的半角公式可知(2)和(4)实质是一样的,都可作为数列{a n }的一个通项公式.数列1,0,1,0,…的通项公式可猜想为a n =12+12×(-1)n +1,即为(1)的形式.(5)是分段表示的,也为数列的一个通项公式.故选D.★答案★ D3.在数列1,1,2,3,5,8,x ,21,34,55中,x 等于 A.11B.12C.13D.14解析 观察数列可知,后一项是前两项的和, 故x =5+8=13. ★答案★ C4.数列1,2,7,10,13,…中的第26项为________.解析 ∵a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,∴a n =3n -2, ∴a 26=3×26-2=76=219. ★答案★ 2195.已知数列{a n }的通项公式为a n =2n 2+n,那么110是它的第________项.解析 令2n 2+n =110,解得n =4或n =-5(舍去),所以110是该数列的第4项.★答案★ 4[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.下列有四个结论,其中叙述正确的有①数列的通项公式是唯一的;②数列可以看做是一个定义在正整数集或其子集上的函数;③数列若用图象表示,它是一群孤立的点;④每个数列都有通项公式.A.①②B.②③C.③④D.①④解析数列的通项公式不唯一,有的数列没有通项公式,所以①④不正确.★答案★ B2.数列0,33,22,155,63,…的一个通项公式是A.a n=n-2n B.a n=n-1nC.a n=n-1n+1D.a n=n-2n+2解析已知数列可化为:0,13,24,35,46,…,故a n=n-1n+1.★答案★ C3.已知数列12,23,34,…,nn+1,则0.96是该数列的A.第20项B.第22项C.第24项D.第26项解析由nn+1=0.96,解得n=24.★答案★ C4.已知数列{a n}的通项公式a n=nn+1,则a n·a n+1·a n+2等于A.n n +2B.n n +3C.n +1n +2D.n +1n +3解析 a n ·a n +1·a n +2=n n +1·n +1n +2·n +2n +3=n n +3.故选B. ★答案★ B5.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是 A.15 B.5C.6D.log 23+log 31325解析 a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132 =lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5. ★答案★ B6.(能力提升)图中由火柴棒拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第n 个图形中,火柴棒的根数为 A.3n -1B.3nC.3n +1D.3(n +1)解析 通过观察,第1个图形中,火柴棒有4根;第2个图形中,火柴棒有4+3根;第3个图形中,火柴棒有4+3+3=4+3×2根;第4个图形中,火柴棒有4+3+3+3=4+3×3根;第5个图形中,火柴棒有4+3+3+3+3=4+3×4根,…,可以发现,从第二项起,每一项与前一项的差都等于3,即a 2-a 1=3,a 3-a 2=3,a 4-a 3=3,a 5-a 4=3,…,a n -a n -1=3(n ≥2),把上面的式子累加,则可得第n 个图形中,a n =4+3(n -1)=3n +1(根).★答案★ C二、填空题(每小题5分,共15分)7.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析 令n -2n 2=0.08,解得n =10⎝⎛⎭⎫n =52舍去,即为第10项. ★答案★ 108.若数列{a n }的通项公式是a n =3-2n ,则a 2n =________,a 2a 3=________.解析 根据通项公式我们可以求出这个数列的任意一项. 因为a n =3-2n ,所以a 2n =3-22n =3-4n , a 2a 3=3-223-23=15. ★答案★ 3-4n159.(能力提升)如图(1)是第七届国际数学教育大会(简称ICME 7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.解析 因为OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…,所以a n =n . ★答案★n三、解答题(本大题共3小题,共35分)10.(11分)观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式: (1)34,23,712,( ),512,13,…; (2)53,( ),1715,2624,3735,…; (3)2,1,( ),12,…;(4)32,94,( ),6516,…. 解析 (1)根据观察:分母的最小公倍数为12,把各项都改写成以12为分母的分数,则序号1 2 3 4 5 6 ↓ ↓ ↓ ↓ ↓ ↓912 812 712 ( ) 512 412于是括号内填612,而分子恰为10减序号,故括号内填12,通项公式为a n =10-n 12.(2)53=4+14-1, 1715=16+116-1, 2624=25+125-1, 3735=36+136-1. 只要按上面形式把原数改写,便可发现各项与序号的对应关系:分子为序号加1的平方与1的和的算术平方根,分母为序号加1的平方与1的差.故括号内填108, 通项公式为a n =(n +1)2+1(n +1)2-1.(3)因为2=21,1=22,12=24,所以数列缺少部分为23,数列的通项公式为a n =2n .(4)先将原数列变形为112,214,( ),4116,…,所以括号内应填318,数列的通项公式为a n =n +12n .11.(12分)在数列{a n }中,a 1=2,a 17=66,通项公式是关于n 的一次函数. (1)求数列{a n }的通项公式;(2)求a 2 017;(3)2 018是否为数列{a n }中的项?解析 (1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧k +b =2,17k +b =66,解得k =4,b =-2.∴a n =4n -2. (2)a 2 017=4×2 017-2=8 066.(3)令2 018=4n -2,解得n =505∈N *, ∴2 018是数列{a n }的第505项.12.(12分)(能力提升)数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项;(2)求证:此数列的各项都在区间(0,1)内; (3)区间⎝⎛⎭⎫13,23内有无数列的项?若有,有几项? 解析 (1)a 7=7272+1=4950.(2)证明 ∵a n =n 2n 2+1=1-1n 2+1,∴0<a n <1,故数列的各项都在区间(0,1)内.(3)因为13<n 2n 2+1<23,所以12<n 2<2,又n ∈N *,所以n =1,即在区间⎝⎛⎭⎫13,23内有且只有一项a 1.。
第1课时 等比数列的概念及通项公式[学生用书P105(单独成册)][A 基础达标]1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36D .18解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54. 2.在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( )A .±4 B.4 C .±14D .14解析:选A.由题意得(±a 6)2=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6=±4.3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B.因为b 是-1,-9的等比中项,所以b 2=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2=ac ,即ac =9.4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A. 2B.4 C .2D .12解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则{a n }的通项公式a n =( ) A .22n -1B.2nC .22n +1D .22n -3解析:选A.由a 2n +1-3a n +1a n -4a 2n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.故选A.6.下面四个数列:①1,1,2,4,8,16,32,64;②在数列{a n }中,已知a 2a 1=2,a 3a 2=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,a n +1a n=q (q ≠0),其中n ∈N *. 其中一定是等比数列的有________.解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *,有a n +1a n=q (q ≠0),那么{a n }是等比数列.答案:④7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4=8,所以⎩⎪⎨⎪⎧-1+3d =8,-1·q 3=8,所以⎩⎪⎨⎪⎧d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=22=1.答案:18.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________.解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化简得a 1q 3=2=a 4. 因为a 4与a 6的等差中项为54,所以a 4+a 6=2×54,所以a 4(1+q 2)=52.所以q 2=14,解得q =±12.则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±169.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =12,求n .解:(1)因为a 5=a 1q 4=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫12n -3=28-n ;当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫-12n -3.所以a n =28-n或a n =32×⎝ ⎛⎭⎪⎫-12n -3.(2)当a n =12时,即28-n=12或32×⎝ ⎛⎭⎪⎫-12n -3=12,解得n =9.10.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9①2(q 2+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列,所以a 1=q =2,所以a n =2n.[B 能力提升]11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n-1 B.2n -1-1C .2n -1D .2(n -1)解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n-1.12.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18D .21解析:选D.ka 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k=a 1q k -12=a 1q 10,因为a 1>0,q ≠1,所以k -12=10,所以k =21,故选D.13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则b n b n -1=2a n 2a n -1=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.(2)由已知,得⎩⎪⎨⎪⎧a 1+d =3,a 1+3d +3(a 1+4d )=56,解得⎩⎪⎨⎪⎧a 1=-1,d =4,于是b 1=2-1=12,公比q =2d =24=16,所以数列{b n }的通项公式b n =12·16n -1=24n -5.14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *). (1)求a 1,a 2;(2)求数列{a n }的通项公式.解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-12.又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=14.(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-12,所以数列{a n }是首项为-12,公比为-12的等比数列,所以a n =⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n.。
§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。
而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。
所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。
第13课时等比数列的概念及通项公式知识点一等比数列的定义1.数列m,m,m,…一定( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.是等差数列,但不一定是等比数列D.既是等差数列,又是等比数列答案 C解析当m=0时,数列是等差数列,但不是等比数列;当m≠0时,数列既是等差数列,又是等比数列.故选C.2.若正数a,b,c依次成公比大于1的等比数列,则当x>1 时,log a x,log b x,log c x( ) A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列答案 C解析1log a x+1log c x=log x a+log x c=log x(ac)=log x b2=2log x b=2log b x,∴1log a x,1log b x,1log c x成等差数列.知识点二等比数列的通项公式3.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )A.na(1-b%) B.a(1-nb%)C.a(1-b%)n D.a[1-(b%)n]答案 C解析依题意可知第一年后的价值为a(1-b%),第二年后的价值为a(1-b%)2,依此类推形成首项为a(1-b%),公比为1-b%的等比数列,则可知n年后这批设备的价值为a(1-b %)n .故选C .4.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知,得⎩⎪⎨⎪⎧a 1+a 2=1,a 3+a 4=9.∴q 2(a 1+a 2)=9,∴q 2=9.∵a n >0,∴q =3. ∴a 4+a 5=q (a 3+a 4)=3×9=27.知识点三 等比数列的证明5.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n ∈N *,若t =35,求证1a n-1是等比数列并求出{a n }的通项公式.解 由题意知a n >0,1a n +1=2a n +13a n , 1a n +1=13a n +23, 1a n +1-1=131a n -1,1a 1-1=23, 所以数列1a n -1是首项为23,公比为13的等比数列.1a n -1=2313n -1=23n ,a n =3n3n +2.知识点四 等比中项及应用6.已知一等比数列的前三项依次为x ,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .8 答案 B解析 由x ,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4.∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4×32n -1,由-4×32n -1=-1312,得n =4.7.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4 答案 D解析 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.8.在等比数列{a n }中,若a 4a 5a 6=27,则a 3与a 7的等比中项是________. 答案 ±3解析 由等比中项的定义知a 25=a 4a 6,∴a 35=27. ∴a 5=3,∴a 1q 4=3,∴a 3a 7=a 21q 8=32,因此a 3与a 7的等比中项是±3.易错点一 忽略对等比中项符号的讨论9.若1,x ,y ,z ,16这五个数成等比数列,则y 的值为( ) A .4 B .-4 C .±4 D.2易错分析 对于本题的求解,若仅注意到y 是1与16的等比中项,会很快得出y 2=16,进一步得出y =±4,从而导致错解.答案 A解析 由于⎩⎪⎨⎪⎧x 2=1·y ,y 2=1×16⇒y =4,故选A .易错点二 忽略等比数列中公比可正可负10.已知一个等比数列的前4项之积为116,第2项与第3项的和为2,则这个等比数列的公比为________.易错分析 本题易错设四个数分别为a q 3,a q,aq ,aq 3公比为q 2相当于规定了这个等比数列各项要么同正,要么同负而错算出公比为3±22.答案 3±22或-5±2 6解析 设这4个数为a ,aq ,aq 2,aq 3(其中aq ≠0),由题意得⎩⎪⎨⎪⎧a ·aq ·aq 2·aq 3=116,aq +aq 2=2,所以⎩⎪⎨⎪⎧a 2q 3=±14,a 2q +q 22=2.所以a 2q 3a 2q +q 22=±18, 整理得q 2-6q +1=0或q 2+10q +1=0, 解得q =3±22或q =-5±26.一、选择题1.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A .7 B .8 C .9 D .16 答案 B解析 ∵点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n .∵a 1=1≠0,∴a n ≠0.∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8.3.已知等比数列a 1,a 2,…a 8各项为正,且公比q ≠1,则( ) A .a 1+a 8=a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8>a 4+a 5D .a 1+a 8与a 4+a 5大小关系不能确定 答案 C解析 由题意可知,a 1>0,q >0,a 1+a 8-a 4-a 5=a 1(1+q 7-q 3-q 4)=a 1[1-q 3-q 4(1-q 3)]=a 1[(1-q 3)(1-q 4)]>0.∴a 1+a 8>a 4+a 5.故选C .4.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A .53 B .43 C .32 D .12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25.∴这三个数分别为45,75,125,公比q 为7545=53.5.在如下表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1B .2C .3D .98答案 D解析 按题意要求,每一横行成等差数列,每一纵列成等比数列填表如图,故a =12,b =38,c =14,则a +b +c =98.故选D .二、填空题6.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案5-12解析 设该直角三角形的三边分别为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12. 7.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金12,第2关收税金13,第3关收税金14,第4关收税金15,第5关收税金16,5关所收税金之和,恰好1斤重,设这个人原本持金为x ,按此规律通过第8关”,则第8关需收税金为________.答案172x 解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;…,可得第8关收税金:18×9x ,即172x . 8.各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.答案 2n -1解析 设等比数列的公比为q (q >0), 由a 2-a 1=1,得a 1(q -1)=1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q >0), 而-1q 2+1q =-⎝ ⎛⎭⎪⎫1q -122+14, ①当q =2时①式有最大值14,所以当q =2时a 3有最小值4. 此时a 1=1q -1=12-1=1. 所以数列{a n }的通项公式a n =2n -1.故答案为2n -1.三、解答题9.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q , 由已知得16=2q 3,解得q =2, ∴a n =a 1qn -1=2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, ∴数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 证明:由a n =3a n -1-2n +3可得a n -n =3[a n -1-(n -1)],因为a 1-1=-2≠0,所以a n -n ≠0, 所以a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,所以{a n -n }是以-2为首项,3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,所以a n =n -2·3n -1.。
第二章 数列2.4 等比数列第1课时 等比数列的概念与通n 项公式A 级 基础巩固一、选择题1.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D .1 解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1,所以2a 1+a 22a 3+a 4=4a 116a 1=14. 答案:A2.公差不为0的等差数列的第2,3,6项构成等比数列,则公比是( )A .1B .2C .3D .4解析:设等差数列的第2项是a 2,公差是d ,则a 3=a 2+d ,a 6=a 2+4d .由等差数列的第2,3,6项构成等比数列,得(a 2+d )2=a 2(a 2+4d ),则d =2a 2,公比q =a 3a 2=a 2+d a 2=a 2+2a 2a 2=3.答案:C3.若正数a ,b ,c 组成等比数列,则log 2a ,log 2b ,log 2c 一定是( )A .等差数列B .既是等差数列又是等比数列C .等比数列D .既不是等差数列也不是等比数列解析:由题意得b 2=ac (a ,b ,c >0),所以log 2b 2=log 2ac即2log 2b =log 2a +log 2c ,所以log 2a ,log 2b ,log 2c 成等差数列.答案:A4.已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .±6D .±12解析:a =1+22=32, b 2=(-1)(-16)=16,b =±4,所以ab =±6.答案:C5.(2016·四川卷)某公司为激励创新,计划逐步加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2018年B .2019年C .2020年D .2021年解析:设第n 年的研发投资资金为a n ,a 1=130,则a n =130×1.12n -1,由题意,需a n =130×1.12n -1≥200,解得n ≥5,故从2019年该公司全年的投入的研发资金超过200万,选B.答案:B二、填空题6.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为________.解析:a 4=a 1q 3=18×23=1, a 8=a 1q 7=18×27=16, 所以a 4与a 8的等比中项为±16=±4.答案:±47.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列的公比为q ,由⎩⎨⎧a 1+a 3=10,a 2+a 4=5得⎩⎨⎧a 1(1+q 2)=10,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=8,q =12,所以a 1a 2…a n =a n 1q 1+2+…+(n -1)=8n ×⎝ ⎛⎭⎪⎫12n (n -1)2=2-12n 2+72n ,于是当n =3或4时,a 1a 2…a n 取得最大值26=64.答案:648.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 6+a 7a 8+a 9等于________. 解析:设等比数列{a n }的公比为q ,由于a 1,12a 3,2a 2成等差数列, 则2⎝ ⎛⎭⎪⎫12a 3=a 1+2a 2,即a 3=a 1+2a 2, 所以a 1q 2=a 1+2a 1q .由于a 1≠0,所以q 2=1+2q ,解得q =1±2.又等比数列{a n }中各项都是正数,所以q >0,所以q =1+ 2.所以a 6+a 7a 8+a 9=a 1q 5+a 1q 6a 1q 7+a 1q 8=1q 2=1(1+2)2=3-2 2. 答案:3-2 2三、解答题9.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式. 解:设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3.q =2q , 所以2q +2q =203. 解得q =13或q =3. 当q =13时,a 1=18, 所以a n =18×⎝ ⎛⎭⎪⎫13n -1=2×33-n . 当q =3时,a 1=29, 所以a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ; 当q =3时,a n =2×3n -3.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827. (1)求证:{a n }是等比数列,并求出其通项.(2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.解:(1)因为2a n =3a n +1,所以a n +1a n =23. 又因为数列{a n }的各项均为负数,所以a 1≠0,所以数列{a n }是以23为公比的等比数列. 所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1. 所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1, 又因为a 2·a 5=23a 1·1681a 1=827, 所以a 21=94. 又因为a 1<0,所以a 1=-32. 所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *). (2)令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681, 则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项. B 级 能力提升1.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( )A .-4B .-2C .2D .4答案:A2.已知等比数列{a n },若a 3a 4a 8=8,则a 1a 2…a 9=________. 答案:5123.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n ,αβ=1a n .代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n =3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝ ⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0. 所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列. (3)解:当a 1=76时,a 1-23=12, 所以数列⎩⎨⎧⎭⎬⎫a n -23是首项为12,公比为12的等比数列. 所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n , 所以a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…, 即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…. 由函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。
§2.4 等比数列
第1课时等比数列的定义与通项公式
1.在等比数列{a n}中,a n>0,且a1+a2=1,a3+a4=9,则a4+a5的值为
A.16
B.27
C.36
D.81
解析由a3+a4=q2(a1+a2)=9,
所以q2=9,又a n>0,所以q=3.
a4+a5=q(a3+a4)=3×9=27.
★答案★ B
2.在等比数列{a n}中,a1=-16,a4=8,则a7=
A.-4
B.±4
C.-2
D.±2
解析 因为数列{a n }为等比数列,所以
a 24=a 1·a 7,所以a 7=a 24a 1=82-16
=-4. ★答案★ A 3.对任意等比数列{a n },下列说法一定正确的是
A.a 1,a 3,a 9成等比数列
B.a 2,a 3,a 6成等比数列
C.a 2,a 4,a 8成等比数列
D.a 3,a 6,a 9成等比数列
解析 从项的序号寻找规律,序号成等差数列,对应的项成等比数列.由于3,6,9成
等差数列,所以a 3,a 6,a 9成等比数列.事实上,设等比数列的公比为q ,则a 6a 3=a 9a 6
=q 3. ★答案★ D
4.在等比数列{a n }中,若a 3=3,a 7=12,则a 5=________.
解析 a 25=a 3a 7=36,又a 5=a 3q 2>0,
∴a 5=6.
★答案★ 6
5.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________.
解析 由已知得a 10a 3=a 1q 9a 1q 2=q 7=128=27,故q =2. 所以a n =a 1q n -1=a 1q 2·q n -3=a 3·q n -3=3×2n -
3.
★答案★ 3×2n -3
[限时45分钟;满分80分]
一、选择题(每小题5分,共30分)
1.在等比数列{a n }中,已知a 1=19
,a 5=9,则a 3=
A.1
B.3
C.±1
D.±3
解析 因a 3是a 1和a 5的等比中项,故a 23=a 1·a 5=1,又a 3=a 1q 2=19
q 2>0,所以a 3=1.
★答案★ A
2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于
A.64
B.81
C.128
D.243
解析 由题意⎩⎪⎨⎪⎧a 1+a 1q =3,a 1q +a 1q 2=6,
解之,得⎩
⎪⎨⎪⎧a 1=1,q =2,∴a 7=1·26=64. ★答案★ A
3.等比数列{a n }中,a 1=12
,q =2,则a 3和a 7的等比中项是 A.8 B.±8 C.18 D.±18
解析 a 3=a 1q 2=2,a 7=a 1q 6=32,故a 3和a 7的等比中项是±2×32=±8.
★答案★ B
4.下列命题中正确的是
A.若a ,b ,c 是等差数列,则lg a ,lg b ,lg c 是等比数列
B.若a ,b ,c 是等比数列,则lg a ,lg b ,lg c 是等差数列
C.若a ,b ,c 是等差数列,则10a ,10b ,10c 是等比数列
D.若a ,b ,c 是等比数列,则10a ,10b ,10c 是等差数列
解析 若a ,b ,c 成等差数列,则2b =a +c ,
所以10a ·10c =10a +c =102b =(10b )2,
所以10a ,10b ,10c 是等比数列.故选C.
★答案★ C
5.设a 1=2,数列{1+2a n }是公比为3的等比数列,则a 6等于
A.607.5
B.608
C.607
D.159 解析 ∵1+2a n =(1+2a 1)×3n -1,
∴1+2a 6=5×35,∴a 6=5×243-12
=607.
★答案★ C
6.(能力提升)如果数列a 1,a 2a 1,a 3a 2,…,a n a n -1
,…是首项为1,公比为-2的等比数列,那么a 5等于
A.32
B.64
C.-32
D.-64
解析 由已知得a n a n -1
=(-2)n -1, 则a 2a 1=-2, a 3a 2
=(-2)2, a 4a 3
=(-2)3, a 5a 4
=(-2)4, 以上四式相乘得a 5=(-2)1
+2+3+4, 解得a 5=32.故选A.
★答案★ A
二、填空题(每小题5分,共15分)
7.在数列{a n }中,a 1=2,且对任意正整数n ,3a n +1-a n =0,则a n =________.
解析 因为3a n +1-a n =0,
所以a n +1a n =13
, 因此{a n }是以13
为公比的等比数列, 又a 1=2,所以a n =2×⎝⎛⎭
⎫13n -1.
★答案★ 2×⎝⎛⎭⎫13n -1
8.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________. 解析 因为a n =a 1q n -1=(-2)n -
1,
所以a 1+|a 2|+a 3+|a 4|=1+2+4+8=15.
★答案★ 15
9.(能力提升)设a 1,a 2,a 3,a 4成等比数列,其公比为2,则2a 1+a 22a 3+a 4
的值为________. 解析 设{a n }的公比为q ,则2a 1+a 22a 3+a 4=2a 1+a 1q 2a 1q 2+a 1q 3=2a 1+2a 18a 1+8a 1=4a 116a 1=14
. ★答案★ 14
三、解答题(本大题共3小题,共35分)
10.(11分)在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a 3的值.
解析 由a 5-a 1=15,a 4-a 2=6.
设等比数列{a n }的公比为q ,
则⎩⎪⎨⎪⎧a 1q 4-a 1=15 ①,a 1q 3-a 1
q =6 ②, ①÷②得q 4-1q 3-q =52,∴(q 2+1)(q 2-1)q (q 2-1)
=52. ∴q 2+1q =52
,即2q 2-5q +2=0. ∴q =2或q =12
. 当q =2时,a 1=1,∴a 3=1×22=4;
当q =12
时,a 1=-16, ∴a 3=(-16)×⎝⎛⎭⎫122=-4.
11.(12分)(2016·全国Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.
(1)求a 2,a 3;
(2)求{a n }的通项公式.
解析 (1)由题意可得a 2=12,a 3=14
. (2)由a 2n -(2a n +1-1)a n -2a n +1=0得
2a n +1(a n +1)=a n (a n +1).
因为{a n }的各项都为正数,所以a n +1a n =12
. 故{a n }是首项为1,公比为12
的等比数列, 因此a n =1
2n -1. 12.(12分)(能力提升)(1)已知数列{c n }中,c n =2n +3n ,且数列{c n +1-pc n }为等比数列,求
常数p ;
(2)设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n ,证明:数列{c n }不是等比数列.
解析 (1)因为{c n +1-pc n }是等比数列,
所以(c n +1-pc n )2=(c n +2-pc n +1)(c n -pc n -1)对一切n ≥2,n ∈N *均成立.将c n =2n +3n 代入上式,得[2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)][2n +3n -p (2n -1+3n -
1)],
整理得16
(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (2)设{a n },{b n }的公比分别为p ,q ,且p ≠q .
因为c 22=(a 2+b 2)2=(a 1p +b 1q )2=a 21p 2+b 21q 2+2a 1b 1pq ,c 1c 3=(a 1+b 1)(a 1p 2+b 1q 2)=a 21p
2+b 21q 2+a 1b 1(p 2+q 2),所以c 22-c 1c 3=2a 1b 1pq -a 1b 1(p 2+q 2)=-a 1b 1(p -q )2. 由于p ≠q ,所以p -q ≠0,又a 1≠0,b 1≠0,
因此c 22≠c 1c 3.
故{c n }不是等比数列.。