七年级数学一次函数同步练习
- 格式:doc
- 大小:476.50 KB
- 文档页数:9
一次函数(一) 同步练习一、选择题,2,2xy x y ==,22005x y -=22005-=x y 中,是一次函数的有( )个. A.1 C.3 D.4 2.下列说法中,错误的是( )A. 函数b kx y +=一定是一次函数B.正比例函数)0(≠=k kx y 不是一次函数C. 函数42-=x y 是一次函数D. 函数222-=x y 不是一次函数 23+=x y ,下列说法中,正确的是( )A.自变量x 的取值X 围是一切正数B. 自变量x 的取值X 围是一切非负数C.自变量x 的取值X 围是一切实数D. 自变量x 的取值X 围是一切整数4. 已知函数m x m y m 3)1(+-=表示一次函数,则m 等于( )A. 1B. -1C.1或-1D. 0或-15. 已知一次函数22)3(++-=m x m y ,当x=2时, y=12,则m 等于( )A.3B.-1C.4二、填空题6.形如y=时,表示正比例函数.7.已知梯形的高是10,下底长比上底长大4,如果设上底长x,则梯形面积y 与x 的函数关系式是,其中自变量x 的取值X 围是 .8.一个弹簧,不挂物体时,长6cm,挂上重物后,所挂物体质量每增加1kg,弹簧就伸长0.25 cm,但质量不得超过10 kg,则弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式是,其中自变量x 的取值X 围是 .9.当m=时,函数y=(m-1)x m-2+2m 表示一次函数,其表达式是 .10. 当m 满足时,函数y=(m-1)x+2m-6表示一次函数且不是正比例函数.三、简答题11. 用一次函数表示下列几种关系:(1)某数y 比另一个数x 的54大4; (2) 某数y 比另一个数x 的3倍小2;(3) 某数y比另一个数x的80%大7; (4) 某数y比另一个数x的4倍少20%.12.某工人上午7点上班至11点下班,他一开始用15分钟做准备工作,接着每隔15分钟加工完1个零件.(1)求他在上午上班时间内y(点)与加工完零件x(个)之间的函数关系式;(2)他加工完1个零件是几点?(3)8点整他加工完几个零件?(4)上午他可加工完几个零件?13.某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,按每个产品2元付酬,超过100个,超过部分每个产品付酬增加0.2元, 超过200个,超过部分每个产品付酬增加0.3元,求一个工人: (1)完成100个以内所得报酬y(元)与产品数x(个)之间的函数关系式;(2) 完成100个以上但不超过200个所得报酬y(元)与产品数x(个)之间的函数关系式;(3) 完成200个以上所得报酬y(元)与产品数x(个)之间的函数关系式;14.A,B两地相距32千米,某人从A地出发,以每小时5千米的速度走了t小时到达C地,并继续向B地行走,试分别写出A与C的距离s A(千米)及C与A的距离s B(千米)与时间t(小时)之间的函数关系式,并确定自变量t的取值X围.它们各是什么函数?它们统称为什么函数?15.某影碟出租店开设两种租碟方式:一种是零星租碟,每X收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每X0.4元.小彬经常来该店租碟,若每月租碟数量为x.(1)写出零星租碟方式应付金额y1(元)与租碟数量x(X)之间的函数关系式;(2)写出会员卡租碟方式应付金额y2(元)与租碟数量x(X)之间的函数关系式;(3)你知道上述两函数是什么函数?(2004年某某市中考试题)16.当(y+a)与(x+b)成正比例关系时,有人认为y与x之间一定是一次函数关系,你同意这种看法吗?说说你的道理.1~5BBCBC6.y=kx+b(k ≠0); b=0. 7.y=10x+20,x>0. 8.y=0.25x+6, 0≤x ≤10. 9.m=3.≠3,1. 11. (1)y=54 12. (1)42941+=x y ,(2)7点30分,(3)3个零件,15个零件. 13. (1) y=2x,(2)y=2.2x-20, (3)y=2.5x-80.14. s A =5t (5260≤≤t ),s B =32-5t (5260≤≤t ),正比例函数,一次函数, 一次函数. 15. y 1=x, y 2=0.4x+12,正比例函数,一次函数.16.同意。
2021-2022学年鲁教版七年级数学上册《6.5一次函数的应用》同步练习题(附答案)1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m22.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣33.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x﹣1=2x+5,其中正确的是()A.B.C.D.4.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.5.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.6.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y=k1x+b1,直线CD的表达式为y=k2x+b2,则k1•k2=.7.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.8.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.9.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为4,那么b1﹣b2等于.10.如图,直线l:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.11.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.12.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030…甲复印店收费(元)0.52…乙复印店收费(元)0.6 2.4…(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x 的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.13.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.14.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?15.在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?16.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?14.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?18.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元∕台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)19.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时a超过150千瓦时但不超过300千瓦时的部b分超过300千瓦时的部分a+0.35月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?20.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.参考答案1.解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.2.解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选:D.3.解:5x﹣1=2x+5,∴实际上求出直线y=5x﹣1和y=2x+5的交点坐标,把x=0分别代入解析式得:y1=﹣1,y2=5,∴直线y=5x﹣1与y轴的交点是(0,﹣1),y=2x+5与y轴的交点是(0,5),选项A、B、C、D都符合,∴直线y=5x﹣1中y随x的增大而增大,故选项D错误;∵直线y=2x+5中y随x的增大而增大,故选项C错误;当x=2时,y=5x﹣1=9,故选项B错误;选项A正确;故选:A.4.解:由直线y=x+b(b>0),可知∠1=45°,∵∠α=75°,∴∠ABO=180°﹣45°﹣75°=60°,∴OB=OA÷tan∠ABO=.∴点B的坐标为(0,),∴b=.故选:B.5.解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.6.解:设点A(0,a)、B(b,0),∴OA=a,OB=﹣b,∵△AOB≌△COD,∴OC=a,OD=﹣b,∴C(a,0),D(0,b),∴k1==,k2==,∴k1•k2=1,故答案为:1.7.解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×(180﹣30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.8.解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.9.解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为:4.10.解:过点C作CE⊥x轴于点E由直线AB的解析式可知当x=0时,y=,即OB=当y=0时,x=1,即OA=1∵∠AOB=∠C=90°,tan∠3=OB:OA=∴∠3=60°∵△AOB与△ACB关于直线l对称∴∠2=∠3=60°,AC=OA=1∴∠1=180°﹣∠2﹣∠3=60°在RT△ACE中AE=CE=∴OE=1+=∴点C的坐标是(,).11.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.12.解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=;(3)顾客在乙复印店复印花费少;当x>70时,y1=0.1x,y2=0.09x+0.6,设y=y1﹣y2,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,设y=0.01x﹣0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.13.解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==100千米/小时.由题意60(x+1)=100x解得x=1.5小时.(3)设y甲=kt+b,则解得,∴y甲=60t﹣300,设y乙=k′t+b′,则,解得,∴y乙=100t﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60t﹣300﹣(100t﹣600)=20或100t﹣600﹣(60t﹣300)=20或60t﹣300=20或60t ﹣300=280解得t=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.14.解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.15.解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0≤x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x<60x+6000,解得x>200,所以至少买201张票时选择方案一比较合算.16.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y 元,由题意,得y=(30﹣25)a+(60﹣45)(1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.17.解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴25≤x≤100,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.18.解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65,由(2)知:成本每台为2000÷50=40(万元).总利润为:25×(65﹣40)=625(万元).答:该厂第一个月销售这种机器的利润为625万元.19.解:(1)根据5月份,该市居民甲用电100千瓦时,交电费60元;得出:a=60÷100=0.6,居民乙用电200千瓦时,交电费122.5元.则(122.5﹣0.6×150)÷(200﹣150)=0.65,故:a=0.6;b=0.65.(2)当x≤150时,y=0.6x.当150<x≤300时,y=0.65(x﹣150)+0.6×150=0.65x﹣7.5,当x>300时,y=0.9(x﹣300)+0.6×150+0.65×150=0.9x﹣82.5;(3)当居民月用电量x≤150时,0.6x≤0.62x,故x≥0,当居民月用电量x满足150<x≤300时,0.65x﹣7.5≤0.62x,解得:x≤250,当居民月用电量x满足x>300时,0.9x﹣82.5≤0.62x,解得:x≤294,综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过250千瓦时时,其月平均电价每千瓦时不超过0.62元.20.解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).方法三:设从家到乙地的路程为n(km),由题意得:(n/20+0.5)﹣(n/60+4/3)=10/60∴n=30∴从家到乙地的路程为30(km).方法四:设小明离家a小时到达乙地,则妈妈到达乙地时,小明离家(a﹣)小时,则60(a﹣﹣)=20(a﹣),解得,a=2,20×(2﹣)=30,∴从家到乙地的路程为30(km).。
一次函数同步练习题一、选择题1、下列函数中,y 是x 的一次函数的是( )①y=x-6;②y= -3x –1;③y=-0.6x ;④y=7-xA 、①②③B 、①③④C 、①②③④D 、②③④2、一次函数y= -3x+2的图象经过第( ) 象限A 、一、二、三;B 、一、二、四;C 、一、三、四 ;D 、二、三、四。
3、若一次函数y=kx+b 的图象经过点(-2,-1 )和点(1,2),则这个函数的图象不经过( )A 、第一象限 ;B 、第二象限 ;C 、第三象限 ;D 、第四象限4、下列说法正确的是( )A 、正比例函数是一次函数;B 、一次函数是正比例函数;C 、正比例函数不是一次函数;;D 、不是正比例函数就不是一次函数。
5、当ab >0,ac <0,直线ax+by+c=0不通过的象限是( )、A 、第一象限 ;B 、第二象限;C 、第三象限 ;D 、第四象限6、若一次函数y=mx+1与y=nx -2的图象交于x 轴上一点,则m :n=( )、A 、1:2;B、-1:2;C、2:1;D、-2:17、如果一次函数y=kx+(k -1)的图像经过第一、三、四象限,则 k 的取值范围是( )、A 、k >0 ;B 、k <0 ;C 、0<k <1 ;D 、k >18、一次函数y=3x+p 和y=x+q 的图像都经过点A(-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( ) A 、2;B、4;C、6;D、89、直线y=kx +b 经过一、二、四象限,则k 、b 应满足( )A 、k>0, b<0; B 、k>0,b>0; C 、k<0,b<0; D 、k<0, b>0. 10、函数Y=4x -2与y=-4x -2的交点坐标为( )A 、(-2,0); B 、(0,-2);C 、(0,2);D 、(2,0)11、已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )12、如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )13、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( ) 二、填空:14、函数的三种表示方法:_______,用描点法画函数图象的一般步骤是_____。
《一次函数》同步练习一、选择题1.下列函数中,是一次函数但不是正比例函数的为( ) =-2x=-x2 =-21-x=xx 12- 2.下列各关系中,符合正比例关系的是( ) A.正方形的周长P 和它的一边长a B.距离s 一定时,速度v 和时间t C.圆的面积S 和圆的半径r D.正方体的体积V 和棱长a3.若y=(m -1)x 22m -是正比例函数,则m 的值为( )B.-1或-1D.2或-24.若函数y=(3m -2)x 2+(1-2m)x(m 为常数)是正比例函数,则m 的值( )>32<21=32=215.若5y+2与x -3成正比例,则y 是x 的( ) A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确二、填空题6.一次函数y=-7x+3中,k=______,b=______.7.已知y-2=kx(k≠0),且当x=1时,y=7,则y与x之间的关系式为______.8.某油箱中有油20升,油从管道中均匀流出10分钟可流尽,则油箱中剩油量G(升)与流出时间t(分)之间的函数关系式为____,自变量t的取值范围是____.9.某种国库券的年利率是%,则存满三年的本息和y与本金x之间的函数关系式为______.10.某林场现有森林面积为1560平方千米,计划今后每年增加160平方千米的树林,那么森林面积y(平方千米)与年数x的函数关系式为______,6年后林场的森林面积为______.三、解答题11.写出一次函数和正比例函数的表达式,并指出它们的区别和联系.12.等腰三角形的周长为12,底边长为y,腰长为x,求y与x之间的函数关系式,并写出自变量的取值范围.13.如图,在△ABC中,∠B与∠C的平分线交于点P,设∠A=x°,∠BPC=y°,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围.14.某商店出售某商品时,在进价的基础上加一定的利润,其数量x与售价y的关系如下表所示.请根据表中所提供的信息,列出y与x的函数关系式并求出当数量是千克时的售价.15.甲乙两地相距500千米,汽车从甲地以每小时80千米的速度开往乙地.(1)写出汽车离乙地的距离s(千米)与开出时间t(小时)之间的函数关系式,并指出是不是一次函数;(2)写出自变量的取值范围;(3)汽车从甲地开出多久,离乙地为100千米?参考答案一、二、6.-7,3 =5x+2 =20-2t,0≤t≤10=x+%×3x =160x+1560,2520三、11.略=12-2x(0<x<6)1x(0<x<180);y是x的一次函数=90+2=(8+x,2115.(1)s=500-80t,是一次函数(2)0≤t≤ (3)t=5。
一次函数(图像题)专项练习一1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k?b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A.第一部分B.第二部分C.第三部分D.第四部分7.已知正比例函数y=﹣kx和一次函数y=kx﹣2(x为自变量),它们在同一坐标系内的图象大致是()A.B.C.D.8.函数y=2x+3的图象是()A.过点(0,3),(0,﹣)的直线B.过点(1,5),(0,﹣)的直线C.过点(﹣1,﹣1),(﹣,0)的直线D.过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x﹣1表示的是同一个一次函数的图象是()A.B.C.D.10.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.11.已知直线y1=k1x+b1,y2=k2x+b2,满足b1<b2,且k1k2<0,两直线的图象是()A.B.C.D.12.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选 C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选 C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k?b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选 D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选 D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选 D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.故选D.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;(2)x<2时,y<0;x=2时,y=0;x>2时,y>0.24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣ 2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
一次函数测试题(考90 分,分 100 分)一、(每 3 分,共 30 分)1. 直 y 9 3x 与x交点的坐是________,与y交点的坐是_______.2. 把直y 1 x 1向上平移1个位 , 可获取函数 __________________.3.2 2若点 P (– 1, 3)和 P ( 1, b)关于 y 称, b= .1 24. 若一次函数y= mx-(m-2) 点 (0,3) , m= .5. 函数 y x-5 的自量x的取范是.6. 若是直 y ax b 一、二、三象限,那么ab ____0 (“<”、“>”或“=”).7. 若直 y 2x 1和直y m x 的交点在第三象限, m的取范是 ________.8. 函数 y= -x+2 的象与 x , y 成的三角形面_________________.9. 某位激励工用水,作出了以下定:每位工每个月用水不超10 立方米的,按每立方米m元水收;用水超 10 立方米的,超部分加倍收. 某工某月水16m元,工个月用水 ___________立方米 .10. 有 1 的等三角形卡片若干 , 使用些三角形卡片拼出分是2、3、4⋯的等三角形 ( 如). 依照形推断每个等三角形卡片数S 与 n 的关系式.二、(每 3 分,共 18 分)11.x-2的自量 x 的取范是()函数 y=x+2A. x≥ -2 B.x > -2 C. x≤ -2 D. x<-212. 一根簧原12cm,它所挂的重量不超10kg,并且挂重 1kg 就伸,写出挂重后簧度 y( cm)与挂重 x( kg)之的函数关系式是()A. y= 1.5 ( x+12) (0 ≤ x≤ 10) B. y=1.5x+12 (0 ≤ x≤ 10)C. y= 1.5x+10 (0 ≤ x) D. y=1.5(x -12) (0 ≤ x≤ 10)13. 无 m何数,直y x 2m 与 y x 4 的交点不可以能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限14. 某趣小做,将一个装水的啤酒瓶倒置(如),并法使瓶里的水从瓶中匀速流出. 那么倒置啤酒瓶内水面高度 h 随水流出的 t 化的象大体是()h h h hA. B.C.D.15. 已知函数 y1x 2 , 当-1 < x ≤1 时, y 的取值范围是( )25 3 3 5 C.3 53 5 A.yB.yy D.2y22 2 2 2 2216. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡 到达 A 地后,宣传 8 分钟;尔后下坡到B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是()分钟分钟 C.46 分钟分钟三、解答题(第 17— 20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图 , 先填空 , 尔后回答以下问题 :(1) 由上而下第 n 行 , 白球有 _______个; 黑球有 _______个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y, 并指出其中 n 的取值范围 .18. 已知,直线 y=2x+3 与直线 y=-2x-1. y( 1)求两直线与 y 轴交点 A ,B 的坐标 ; ( 2)求两直线交点 C 的坐标 ;A( 3)求△ ABC 的面积 .CxB19. 旅客乘车按规定可以免费携带必然重量的行李.若是所带行李高出了规定的重量, 就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看作他们携带的行李质量 x (千克)的一次函数为y1x 5 .画出这个函数的图象,并求旅客最多可以免费携带多少千克的行李? 620. 某医药研究所开发一种新药, 若是成人按规定的剂量服用, 据监测 : 服药后每毫升血液中含药量y 与时间t 之间近似满足以以下图曲线:(1) 分别求出t 1 1和 t 时 ,y 与 t 之间的函数关系式;2 2(2) 据测定 : 每毫升血液中含药量很多于 4 微克时治疗疾病有效, 若是某病人一天中第一次服药为7:00, 那么服药后几点到几点有效?21.某军加油飞机接到命令,马上给另一架正在翱翔的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t 分钟, Q1、Q2与 t 之间的函数关系如图. 回答以下问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后, 以原速连续翱翔, 需 10 小时到达目的地,y(微克 )油料可否够用?请经过计算说明理由.6O128 t(小时 )参照答案1. ( 3, 0)( 0, 9) 3. 3 4. – 1 5.x ≥5 6. >7. m < -1 8. 2 9. 13 10. s n211. B 12. B 13. C 14. A 15. D 16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数 )18. (1) A ( 0, 3) ,B ( 0, -1 ); (2) C(- 1,1); △ABC 的面积 = 1 =2(3+1 ) 1219. ( 1) y=12x (0≤t 1( t1);)若 y≥4时 , 则1 2 2(2) x 3,因此7:00服药后,7:20 到 10:00 有效320. 函数y 1x 5 (x≥30)的图象如右图所示. 6当 y=0 时, x=30. 因此旅客最多可以免费携带30 千克的行李 .21.(1) 30吨油,需10分钟(2)设 Q1= kt + b,由于过 (0,30) 和 (10,65) 点,可求得: Q1= 2.9t +36(0 ≤ t ≤10)(3) 依照图象可知运输飞机的耗油量为每分钟0.1 吨,因此10 小时耗油量为10×60×0.1 = 60(吨)< 65(吨) , 因此油料够用。
初中七年级数学上册一次函数测试题(答案在最后)(时间:60分钟满分100分)一、选择题(每小题4分,共32分)1.下列关于正比例函数y=-5x的说法中,正确的是( )A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限2.若函数y=kx-k(k为常数,且k≠0)中,y随x的增大而减小,则其图象可能是( )A B C D;③y=2x+1;④y=2x2+1,其中一次函数有( )3.下列函数:①y=2x;②y=12XA.4个B.3个C.2个D.1个4.函数y=3x+1的图象一定经过点( C )A.(3,5)B.(-2,3)C.(2,7)D.(4,10)5.已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是( )A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<06.若点A(-2,y1),B(1,y2),C(3,1)都在一次函数y=kx+7的图象上,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.无法确定7.如图所示,在平面直角坐标系中,直线y=23x-23与矩形ABCO 的边OC,BC 分别交于点E,F,已知OA=3,OC=4,则△CEF 的面积是( )第7题图A.6B.3C.12D.438.A,B 两地相距30km,甲、乙两人沿同一条路线从A 地到B 地。
如图所示的是两人行进路程y(km)与行进时间t(h)之间的关系,下列说法:①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5h 到达目的地;③乙比甲迟出发0.5h,④甲在出发5h 后被乙追上。
以上说法正确的有( )第8题图A.1个B.2个C.3个D.4个 二、填空题(每小题4分,共16分)9.某工程队承建一条长为30km 的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的关系式为 。
一次函数同步练习(一)填空1.直线y=-3x-6和两轴围成的三角形的周长为______;面积为______.2.直线y=x-1和直线y=x+1与y轴交点间的距离为______.3.直线y=kx+b过点P(3,2),且它交x轴,y轴的正半轴于A,B两点,若OA+OB=12,则此直线的解析式为______.4.已知y=y1+y2,y1=k1x,y2=k2x,当x=1时,y=3,且当x=1时,y1-y2=1,则函数y1,y2的解析式分别为______.(二)解下列各题5.已知一次函数y=mx-m+2,求(1)当m为何值时,它的图象过原点?(2)当m为何值时,它的图象过(0,5)?6.已知一次函数 y=mx-m+2,若它的图象过第一、第三、四象限,求m的取值X围.8.一次函数y=kx+b的图象过A(2,4),B(-1,5),求函数的解析式,并求出此函数图象与坐标轴围成的三角形的面积.9.已知函数y=kx+b,当x=8时,y=12;当x=2时,y=-3.求此函数的解析式.10.将下列二元一次方程变形成一次函数y=kx+b的形式,并求出每条直线与x轴、y轴的交点坐标,以及在x轴和y 轴上的截距.数是一次函数?并写出此函数.(1)试确定点 A(4,5),B(-2,3)是否在此函数的图象上?(2)求出在此图象上已知点关于原点的对称点的坐标.(1)当x=-2a时,对应的函数值;(1)当x=-9a2时,对应的函数值;(2)当y=4时,对应的x值.15.函数y=(a+1)xa2-a-1+2是一次函数时,求a的值.16.已知函数y=(2m-1)x+m+5,求m为何值时,(1)函数值随x的增大而增大;(2)函数值随x的增大而减小.17.已知函数y=(1-3k)x+2k+31,求当k是什么数时,(1)此函数值随x的增大而增大;(2)函数值随x的增大而减小.18.若一次函数图象过点A(2,-1)和B点,其中B是另一条直线19.若一次函数图象过点A(-1,2)和B点,其中B是另一条直线20.已知一次函数y=kx+b的图象过两点A(-3,2),B(5,0).(1)求k和b;(2)求此图象与坐标轴交点间的距离.21.已知一次函数y=kx+b的图象过两点A(2,-3),B(-4,-6).(1)求此函数的解析式;(2)求此图象与坐标轴两交点的坐标;(3)求(2)中两交点间的距离.22.一次函数y=kx+b的图象过两点A(1,5),B(-1,8),求:(1)此图象与坐标轴两交点的坐标;(2)此图象与坐标轴围成的三角形面积.23.已知一次函数y=kx+b的图象如图13-19所示,求k,b值及此函数的解析式.24.已知一次函数y=kx+b的图象如图13-20所示.(1)求k,b值及此函数解析式;(2)求A,B两点间的距离.25.已知一次函数y=kx+b的图象经过点(m,1)和点(-1,m),其中m>1,问k,b值的符号如何?26.若一次函数y=3x+b的图象与坐标轴所围成的三角形面积等于24,求b的值.27.已知一次函数y=kx+b的图象过两点A(-6,4),B(3,0),求此函数的解析式和其图象与坐标轴两交点的坐标.28.已知函数y=kx+1的图象上有一点A(1,a),A到原点的距离29.已知直线y=kx+2过点(-2,4).(1)求此直线的方程;(2)若此直线与x轴交于C点,且点A(5,-3)在直线上,且A点在x轴上的射影为B点,求△ABC的面积.30.设m是任意实数,证明一次函数y=mx-2m+1的图象必通过一个定点,并求出此点的坐标.31.某油箱存油60m3,每小时耗油8m3,写出油箱中剩余油量Q(m3)与用油时间t(小时)之间函数关系式,并作图.32.某工厂有一水池,容积1000升,池内原有水400升,今需将池注满.已知每分钟注入水20升,写出水池内水量Q与时间t(分)的函数解析式,并求出此函数的定义域.33.已知等腰三角形周长为10厘米,腰长为x,底边长为y,列出用x表示y的函数关系式,求出自变量取值X围并画出此函数的图象.34.某汽车油箱中存油20千克,油从管道中匀速流出,经210分钟流尽.(1)写出油箱中剩余油量y(千克)与流出时间x(分)之间的函数关系式;35.如图13-21所示,已知AA′,BB′是甲、乙两人在同一条路上步行的时间x与距离y之间函数关系的图象,求甲乙步行的时间x与距离y的关系式,并且求出他们的速度.36.在重为x、浓度为a%的食盐水中,加入重为y、浓度为b%的食盐水,使混合后的盐水浓度变成c%,求x与y的关系式,并作出此关系式的图象.37.汽车A在下午2时15分从甲地出发,开往乙地,途中发生故障停车6分钟,结果在当天下午3时57分到达乙地.汽车B在同一天下午2时28分从甲地出发,开往乙地,当天下午3时40分到达.若A,B行驶时保持固定的速度,求汽车B在A发生故障前追上A,追上的时刻是几时几分?38.根据记录,从地面向上,11千米以内,每升高1千米,气温降低6℃;又在11千米以上的高空,气温几乎不变.设在地面温度为20℃时,离地面距离x千米处的大气温度是y(℃),求x与y的关系式,并求出离地面4500米的高空,气温是多少?39.由记录知,从地面向上,11千米以内,每升高1千米,气温降低5℃;又在11千米以上的高空,气温几乎不变.设在地面温度为18℃时,离地面距离x千米处的大气温度是y(℃),求x,y的关系式,并求出离地面13000米的高空,气温是多少?40.从A地到B地的一条路,最初6千米是平地,接着3千米是上坡,最后4千米是下坡.一个人步行的速度,在平地上是每小时4千米,上坡每小时3千米,下坡每小时6千米.当他从A地出发,经过时间x(小时)后,到达距离为y(千米)的地方,求x与y的关系并作出其图象.41.从甲地到乙地的一条路,最初20千米是平地,接着6千米是上坡,最后10千米是下坡.一个人骑自行车的速度,在平地上是每小时10千米,上坡每小时6千米,下坡每小时12千米.当他从甲地出发经过时间x(小时)后,到达距离为y(千米)的地方,求x与y的关系.42.某油箱存油40升,每小时耗油10升,写出油箱中剩余油量Q(升)与用油时间t(小时)之间的函数关系式,并作图.43.如图13-22所示,有一块三角地ABC,底BC为60米,高AG为40米.现在要沿着BC建筑一座地基为矩形的大楼,若大楼的长为x,宽为y时,写出y与x的关系式(矩形的长在底BC上).44.在图13-23中,设两条直线l1和l2,分别是汽车在柏油路和公路上行驶时,所需牵引力F随载重量G而变化的图形.求l1,l2中F,G的关系式.45.某油箱存油80升,每小时耗油12升,写出油箱中剩余油量Q(升)与用油时间t(小时)之间的函数关系式和自变量t的取值X围,并作出此函数的图象草图.46.一根弹簧,挂5千克重物时,弹簧长为24厘米,以后每增加重量1千克,弹簧伸长1.5厘米,在弹性限度内,弹簧长l和悬挂重量w之间有何关系?并求出当w=10千克时,l等于多少?(三)作出下列函数的图象47.作出当a>0且b>0时,y=ax+b的图象(草图).48.作出当a>0且b<0时,y=ax+b的图象(草图).49.求作通过点(4,7),且与x轴成60°角的直线l.50.已知一次函数y=a2x-b,若其中a<0,b>0,画出它的图象(草图).51.作出当k2>0,k3<0,且满足k2>k3>k1时,函数y=kix+1(i=1,2,3)的图象(草图).52.作y=-2|x|+1的图象.53.作y=2|x|+1的图象.54.作函数y=-|x|-1的图象.55.作y=|x-2|+1的图象.(1)求作此函数的图象;(2)观察图象,问x取什么值时,y值大于1?(1)求作函数的图象;(2)x取何值时,y值小于2且大于-1?58.已知一次函数y=kx+3的图象与两坐标轴围成的三角形面积等于9,求k值,并画出这个函数图象.59.若一次函数的图象在x轴上的截距为-2,且过点(1,5).求这个函数的解析式并画出此函数的图象.关于y轴的对称图形.61.作出一次函数y=3x+1与y=3x-1的图象,并回答它们的位置关系.62.作y=4|x|-1的图象.值小于零.参考答案:(一)填空2.24.y1=2x,y2=x(二)解下列各题5.(1)2;(2)-3.6.m>2.提示:依题意要满足条件m>0且-m+2<0,所以m>2.7.A,D,E在;B,C不在..-4),在x轴上的截距为6,在y轴上的截距为-4;(2)y=2x-8,x轴交点(4,0),y轴交点(0,-8),x轴截距为4,y轴截距为-8.12.(1)点A在,点B不在;(2)(-4,-5).15.2.18.y=-2x+3.19.y=3x+5.25.k<0,b>0. 26.±12.+1的图象上.所以a=k+1,即k=a-1.因为A(1,a)到原点的距离30.(2,1).提示:由y=m(x-2)+1知当x=2时,恒有y=1而与m值无关,故一次函数y=mx-2m+1的图象必过定点(2,1).31.a=-8t+60(0≤t≤7.5).32.a=20t+400(0≤t≤30).33.y=-2x+10(2.5<x<5).35.甲:y=10x-5,10千米/小时;乙:y=4x+4,4千米/小时.为:y=10x-5.由B(-1,0)及B'(0,4)求出BB'的函数解析式为y=4x+4.所以甲的速度是每小时10千米,乙的速度是每小时4千米.37.下午3时7分.提示:设甲、乙两地的距离为1,A行驶在38.y=20-6x(0≤x≤11),-7℃.39.y=18-5x(0≤x≤11),-37℃.41.当0≤x≤2时,y=10x;当2<x≤3时,y=6x+8;当3<42.Q=-10t+40(0≤t≤4).44.l1为:G-10F=0,l2为:3G-20F=0.46.l=1.5w+16.5(w≥5),31.5厘米.提示:依题意得l=24+(w-5)×1.5=1.5w+16.5(w ≥5).(三)作出下列函数的图象47~63(略)。
初中一次函数集中专题训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.对于一次函数y =3x ﹣1,下列说法正确的是( )A .图象经过第一、二、三象限B .函数值y 随x 的增大而增大C .函数图象与直线y =3x 相交D .函数图象与y 轴交于点(0,13) 2.下列各图象能表示y 是x 的一次函数的是( )A .B .C .D . 3.下列函数中,是一次函数的是( )A .y =1﹣xB .y =1xC .y =kx +1D .y =x 2+1 4.一条直线3y x =的图象沿x 轴向右平移2个单位,所得到的函数关系式是( ) A .22y x =+ B .32y x =- C .36y x =+ D .36y x =- 5.将直线y =﹣2x +1向上平移2个单位长度,所得到的直线解析式为( ) A .y =2x +1 B .y =﹣2x ﹣1C .y =2x +3D .y =﹣2x +3 6.已知一次函数()333m y m x -=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >,则m 的值为( )A .-3B .-4C .4D .4或-4 7.一次函数y =3x ﹣2的图象经过的象限是( )A .第一、二、四象限B .第一、二、三象限C .第一、三、四象限D .第二、三、四象限8.关于一次函数26y x =-,下列说法正确的是( )A .y 随x 的增大而减小B .图象交x 轴于点()0,6-C .点(1,2)在此函数的图象上D .图象经过第一、三、四象限 9.一次函数()23y m x m =-+-的图象不经过第二象限,则m 的值可以是( ) A .1 B .2 C .3 D .410.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .7二、填空题11.下列函数:①y =2x -8;①y =-2x +8:①y =2x +8;①y =-2x -8.其中,y 随x 的增大而减小的函数是____(填序号).12.若一次函数y=kx+2的图象经过点(2,10),则k 的值为________________. 13.将直线y x =-向上平移3个单位长度,平移后直线的解析式为________. 14.当a =______时,y =x 2a -1是正比例函数.15.根据图象,不等式kx >﹣x +3的解集是_____.16.如图,直角坐标系中,直线2y x =+和直线y ax c =+相交于点P (m ,3),则方程组2y x y ax c=+⎧⎨=+⎩的解为______.17.把正比例函数3y x =-的图象向上平移2个单位长度,得到的函数图象的解析式是________.18.已知一次函数y=(m+2)x+3,若y 随x 值增大而增大,则m 的取值范围是________.19.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB 上的一点,且位于第二象限,当①OBC 的面积为3时,点C 的坐标为______.20.甲、乙两名大学生去距学校36km 的某乡镇进行社会调查,他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车继续步行向前走,乙骑电动车按原路返回,取到相机后马上骑电动车追甲,在距乡镇13.5km 处追上甲并同车前往乡镇,若电动车速度始终不变,设甲与学校相距y 甲km ,乙与学校相距y 乙km ,甲离开学校的时间为x min ,y 甲,y 乙与x 之间的函数图象如图,则下列结论:①电动车的速度为0.9km/min ;①甲步行所用的时间为45min ;①甲步行的速度为0.15km/min .其中正确的是___________(只填序号).21.如图,已知函数2y x b =+与函数6y kx =-的图象交于点P ,则不等式62kx x b -<+的解集是______.22.当自变量x 的值满足_______时,直线2y x =-+上的点在x 轴下方.23.如果P (2,m ),A (1, 1), B (4, 0)三点在同一直线上,则m 的值为_________. 24.若函数y kx b =+的图像如图所示,则关于x 的不等式0kx b -+<的解集是______.25.如图,直线y=-x+m 与y=nx+4n (n≠0)的交点的横坐标为-2.则下列结论:①m <0,n >0;①直线y =nx +4n 一定经过点(-4,0);①m 与n 满足m =2n -2;①当x >-2时,nx +4n >-x +m ,其中正确结论的个数是____个.26.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.27.如图,□OABC 的顶点A 在x 轴的正半轴上,点D (4,3)在对角线OB 上,反比例函数y =k x (k >0,x >0)的图像经过C 、D 两点.已知□OABC 的面积是283,则点B 的坐标为_____________.28.如图,在平面直角坐标系中,点1A ,2A ,3A ……都在x 轴上,点1B ,2B ,3B ……都在直线y x =上,11OA B ,112B A A △,212△B B A ,223B A A △,323B B A △……都是等腰直角三角形,且11OA =,则点2022B 的坐标是__________.三、解答题29.某商店销售A 、B 两种品牌书包.已知购买1个A 品牌书包和2个B 品牌书包共需550元;购买2个A 品牌书包和1个B 品牌书包共需500元.(1)求这两种书包的单价.(2)某校准备购买同一种品牌的书包(10)m m >个,该商店对这两种品牌的书包给出优惠活动:A 种品牌的书包按原价的八折销售;若购买B 种品牌的书包10个以上,则超出部分按原价的五折销售.①设购买A 品牌书包的费用为1w 元,购买B 品牌书包的费用为2w 元,请分别求出1w ,2w 与m 的函数关系式;②根据以上信息,试说明学校购买哪种品牌书包更省钱.30.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制宣传材料数量x (份)之间的关系式; (2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由. (3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?31.如图,直线113:4l y x m =-+与y 轴交于点(0,6)A ,直线2:1l y kx =+分别与x 轴交于点(2,0)B -,与y 轴交于点C ,两条直线交点记为D .(1)m = ,k = ;(2)求两直线交点D 的坐标;(3)根据图像直接写出12y y <时自变量x 的取值范围.32.定义:在平面直角坐标系中,一个图形向右平移1个单位再向下平移2个单位称为一个跳步.如:点()1,2P 一个跳步后对应点()2,0P '.已知点()1,4A -,()2,3B . (1)求点A ,B 经过1个跳步后的对应点A ',B '的坐标.(2)求直线AB 经过一个跳步后对应直线的函数表达式.33.如图所示,OA ,BA 分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程s (米)与时间t (秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)如果甲、乙两名学生所行驶的路程记为s 甲,s 乙,试写出s 甲,s 乙与t 之间的函数关系式.(3)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?34.学校准备购进一批节能灯,已知2只A 型节能灯和5只B 型节能灯共需45元;4只A 型节能灯和3只B 型节能灯共需41元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元.(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.35.某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克2.5元.小王携带现金3 000元到该市场采购苹果,并以批发价买进.如果购进的苹果是x 千克,小王付款后剩余现金y 元.(1)试写出x 与y 之间的函数关系式,并指出自变量的取值范围;(2)画出函数图象,指出图象形状和终点坐标;(3)若小王以每千克3元的价格将苹果卖出,卖出x 千克后可获利润多少元? 36.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案.(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?37.如图,在平面直角坐标系中,函数883y x =-+的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴的正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)如果在直线AM 上有一点P ,使得ABP AOM S S =△△,请求出点P 的坐标.(3)在坐标平面内是否存在点N ,使以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出所有点N 的坐标;若不存在,请说明理由.38.甲、乙两车从A 城出发前往B 城,在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60km/h 的速度匀速行驶.(①)填空:①,?A B 两城相距_______km ; ①当02x ≤≤时,甲车的速度为_______km /h ;①乙车比甲车晚_______h 到达B 城;①甲车出发4h 时,距离A 城_______km ;①甲、乙两车在行程中相遇时,甲车离开A 城的时间为_______h ;(①)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式. (①)当1352x ≤≤时,两车所在位置的距离最多相差多少km ? 39.赣南脐橙果大形正,肉质脆嫩,风味浓甜芳香,深受大家的喜爱.某脐橙生产基地生产的礼品盒包装的脐橙每箱的成本为30元,按定价50元出售,每天可销售200箱.为了增加销量,该生产基地决定采取降价措施,经市场调研,每降价1元,日销售量可增加20箱.(1)求出每天销售量y (箱)与销售单价x (元)之间的函数关系式;(2)若该生产基地每天要实现最大销售利润,每箱礼品盒包装的脐橙应定价多少元?每天可实现的最大利润是多少40.如图,直线y =ax +b 与双曲线k y x=相交于两点A (1,2),B (m ,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax +b >k x的解集(直接写出答案) 41.如图,在平面直角坐标系xOy 中,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一动点,E 是直线AB 上的一动点.若以E ,D ,O ,A 为顶点的四边形恰好为平行四边形,则点E 的坐标为________.42.如图,已知A (-3,n )、B (2,-3)是一次函数y kx b =+的图象和反比例函数m y x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求①AOB 的面积;(3)根据图象:直接写出使得 m kx b x+< 成立时,x 的取值范围; 43.已知关于x 、y 的二元一次方程组21310x my x ny -=⎧⎨+=⎩. (1)若关于x 、y 的二元一次方程组2()()13()()10x y m x y x y n x y ++-=⎧⎨+--=⎩ 的解为13x y =-⎧⎨=⎩,直接写出原方程组的解为____________.(2)若2m n +=,且0x y >>,求32W x y =-的取值范围.44.已知:如图点(68)A ,在正比例函数图象上,点B 坐标为(12,0),连接AB ,10AO AB ==,点C 是线段AB 的中点,点P 在线段BO 上以每秒2个单位的速度由点B 向点O 运动,点Q 在线段AO 上由点A 向点O 运动,P Q 、两点同时运动,同时停止,运动时间为t 秒.(1)正比例函数的关系式为 ;(2)当1t =秒,且6OPQ S ∆=时,求点Q 的坐标;(3)连接CP ,在点P Q 、运动过程中,OPQ ∆与BPC ∆是否全等?如果全等,请求出点Q 的运动速度;如果不全等,请说明理由.45.先阅读材料,再解答问题:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式d (2,1)P -到直线23y x =+的距离.解:由直线23y x =+可知:2,3k b ==.所以点(2,1)P -到直线23y x =+的距离为d === 求:(1)已知直线21y x =+与25y x =-平行,求这两条平行线之间的距离;(2)已知直线443y x =--分别交,x y 轴于,A B 两点,C 是以(2,2)C 为圆心,2为半径的圆,P 为C 上的动点,试求PAB ∆面积的最大值.46.平面直角坐标系中,直线y ax b =+与x 轴、y 轴分别交于点B 、C ,且a 、b 满足:3a =,不论k 为何值,直线:2l y kx k =-都经过x 轴上一定点A . (1)=a __________,b =__________;点A 的坐标为___________;(2)如图1,当1k =时,将线段BC 沿某个方向平移,使点B 、C 对应的点M 、N 恰好在直线l 和直线24y x =-上,请你判断四边形BMNC 的形状,并说明理由;(3)如图2,当k 的取值发生变化时,直线:2l y kx k =-绕着点A 旋转,当它与直线y ax b =+相交的夹角为45°时,求出相应的k 的值.47.如图,已知点A (2,-5)在直线1l :y =2x +b 上,1l 和2l :y =kx ﹣1的图象交于点B ,且点B 的横坐标为8.(1)直接写出b 、k 的值;(2)若直线1l 、2l 与y 轴分别交于点C 、D ,点P 在线段BC 上,满足14BDP BDC SS =,求出点P 的坐标;(3)若点Q 是直线2l 上一点,且①BAQ =45°,求出点Q 的坐标.48.如图,在平面直角坐标系中,直线AB :y =kx +b 交y 轴于点A (0,1),交x 轴于点B (3,0).平行于y 轴的直线x =1交AB 于点D ,交x 轴于点E ,点P 是直线x =1上一动点,且在点D 的上方,设P (1,n ).(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,直接写出点C 的坐标.参考答案:1.B【分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】①一次函数y=3x﹣1,①该函数图象经过第一、三、四象限,故选项A错误,函数值y随x的增大而增大,故选项B正确;函数图象与y=3x互相平行,故选项C错误;函数图象与y轴交于点(0,﹣1),故选项D错误,故选:B.【点睛】本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2.B【分析】一次函数的图象是直线.【详解】解:表示y是x的一次函数的图象是一条直线,观察选项,只有B选项符合题意.故选:B.【点睛】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.3.A【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:A、y=1-x是一次函数,故此选项符合题意;B、y=1x是反比例函数,故此选项不符合题意;C、当k=0时不是一次函数,故此选项不符合题意;D、y=x2+1是二次函数,故此选项不符合题意.故选:A.【点睛】本题考查了一次函数.解题的关键是掌握一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,函数y=3x的图象沿x轴向右平移2个单位,所得直线的解析式为y =3(x -2),即y =3x -6.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.D【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把直线y =﹣2x +1上平移2个单位长度后所得直线的解析式为:y =﹣2x +12,即y =﹣2x +3故选:D .【点睛】本题考查了一次函数图象的平移规律,理解平移规律是解题的关键.6.C【分析】根据题意:可得y 随x 的增大而减小,31m -=,即可求解.【详解】解:①一次函数()333m y m x-=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >, ①y 随x 的增大而减小, ①31m -=,且30m < ,解得:4m =± ,且3m > ,①4m = .故选:C【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数图象上点的坐标特点,和一次函数的性质是解题的关键.7.C【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象经过哪几个象限.【详解】解:①一次函数y =3x ﹣2,k =3>0,b =﹣2<0,①该函数的图象经过第一、三、四象限,故选C .【点睛】本题主要考查一次函数图象性质,解决本题的关键是要熟练掌握一次函数图象的性质.8.D【分析】根据一次函数的图象和性质,逐项判断即可求解.【详解】解:A 、①20,60>-<,①y 随x 的增大而增大,故A 选项错误,不符合题意;B 、当0x =时,y =-6,①图象交y 轴于点()0,6-,故B 选项错误,不符合题意;C 、当1x =时,21642y =⨯-=-≠,故C 选项错误,不符合题意;D 、图象经过第一、三、四象限,故D 选项正确,符合题意;故选:D.【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.9.C【分析】根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:①()23y m x m =-+-的图象不经过第二象限,①2030m m ->⎧⎨-≤⎩, ①23m <≤.故选:C .【点睛】本题考查一次函数图象与系数的关系:由于y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.10.A【分析】把2x =-代入解析式即可.【详解】解:把2x =-代入23y x =+得,2(2)31y =⨯-+=-,故选:A .【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.11.①①【分析】根据一次函数(0)y kx b k =+≠的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小,可找出答案.【详解】①①①①①都是一次函数,①当y 随x 的增大而减小时,即0k <,①20k =>,①20k =-<,①20k =>,①20k =-<,①有①①满足,故答案为:①①.【点睛】本题考查一次函数的性质,掌握一次函数的增减性是解题的关键.12.4.【详解】试题解析:①一次函数y=kx+2的图象经过点(2,10),①10=2k+2,解得k=4.考点:一次函数图象上点的坐标特征.13.y =-x +3【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:将直线y =-x 向上平移3个单位长度,平移后直线的解析式为y =-x +3, 故答案为:y =-x +3.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键.14.1.【分析】根据正比例函数的定义可知2a-1=1,从而可求得a 的值.【详解】①y=x 2a-1是正比例函数,①2a-1=1,解得:a=1.故答案为1.【点睛】本题主要考查的是正比例函数的定义,由正比例函数的定义得到2a-1=1是解题的关键.15.1x >【分析】先根据函数图象得出交点坐标,根据交点的坐标和图象得出即可.【详解】解:根据图象可知:两函数的交点为(1,2),所以关于x 的一元一次不等式kx >﹣x +3的解集为1x >,故答案为:1x >.【点睛】本题主要考查一次函数与不等式,数形结合是解题的关键.16.13x y =⎧⎨=⎩【分析】首先求出P 点坐标,再根据两函数图象的交点坐标即为两函数组成的方程组的解.【详解】解:①直线y =x +2过点P (m ,3),①3=m +2,解得:m =1,①P (1,3),①方程组2y x y ax c =+⎧⎨=+⎩的解为13x y =⎧⎨=⎩. 故答案为:13x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程组,关键是掌握二元一次方程(组)与一次函数图象的关系.17.32y x =-+【分析】直线上下平移解析式时,要注意平移时k 的值不变,只有b 发生变化.【详解】解:根据题意,①正比例函数3y x =-的图象向上平移2个单位长度,①得到的函数图象的解析式是:32y x =-+;故答案为:32y x =-+.【点睛】本题要注意利用一次函数平移的特点,上加下减,比较基础.18.m >﹣2【详解】试题分析:根据一次函数的图象与系数的关系列出关于m 的不等式m+2>0,求出m 的取值范围m >﹣2.考点:一次函数图象与系数的关系19.()3,6-【分析】过点C 作CH ①x 轴于点H ,由题意易得1,3OB OA ==,然后根据①OBC 的面积可得点C 的纵坐标,进而问题可求解.【详解】解:过点C 作CH ①x 轴于点H ,如图所示:①直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,①令0x =时,则有y =-3,即OA =3, ①13OB OA =, ①1OB =,即()1,0B -,代入直线解析式得:03k =--,解得:3k =-;①直线AB 的解析式为33y x =--,①①OBC 的面积为3, ①132OB CH ⋅=, ①6CH =,即点C 的纵坐标为6,①336x --=,解得:3x =-,①()3,6C -;故答案为()3,6-.【点睛】本题主要考查一次函数与几何的综合,熟练掌握利用待定系数法求函数解析式是解题的关键.20.①①##①①【分析】①根据图象由速度=路程÷时间就可以求出结论;①先求出乙追上甲所用的时间,再加上乙返回学校所用的时间就是乙步行所用的时间; ①先根据第二问的结论求出甲步行的速度.【详解】解:①由图象,得18200.9÷=(km/min ),故①说法正确;①乙从学校追上甲所用的时间为:(3613.5)0.925-÷=(min ),①甲步行所用的时间为:202545+=(min ),故①说法正确;①由题意,得甲步行的速度为:(3613.518)450.1--÷=(km/min ),故①说法错误;综上,正确的是①①,故答案为:①①.【点睛】本题考查了一次函数的应用,速度与时间,追击问题,分析函数图象反应的数量关系是解题关键.21.2x >【分析】根据图象即可得出结论.【详解】解:由图象可知:在点P 的右侧,函数2y x b =+的图象在函数6y kx =-图象的上方①62kx x b -<+的解集是2x >故答案为:2x >.【点睛】此题考查的是一次函数与不等式,掌握利用图象解不等式是解题关键. 22.2x >【分析】直线y =-x +2上的点在x 轴下方时,应有-x +2<0,求解不等式即可.【详解】当直线2y x =-+上的点在x 轴下方,则y < 0,∴-x +2<0,解得:x >2,即当自变量x 的值满足x > 2时,直线2y x =-+上的点在x 轴下方,故答案为:2x >.【点睛】本题考查了一次函数与不等式的关系及数形结合思想的应用,解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.23.23【详解】设直线的解析式为y =kx +b (k ≠0)①A (1,1),B (4,0)140k b k b +=⎧∴⎨+=⎩解得4313b k ⎧=⎪⎪⎨⎪=-⎪⎩①直线AB 的解析式为1433y x =-+ ①P (2,m )在直线上,1422333m ⎛⎫∴=-⨯+= ⎪⎝⎭. 24.6X <-【分析】观察函数图象得到即可.【详解】由图象可知函数y=kx+b 与x 轴的交点为(6,0),则函数y=-kx+b 与x 轴的交点为(-6,0),且y 随x 的增大而增大,①当x <-6时,-kx+b <0,所以关于x 的不等式-kx+b <0的解集是x <-6,故答案为:x <-6.【点睛】此题考查一次函数与一元一次不等式的关系,解题关键在于掌握从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.25.4【分析】①由直线y =−x +m 与y 轴交于负半轴,可得m <0;y =nx +4n (n ≠0)的图象从左往右逐渐上升,可得n >0,即可判断结论①正误;①将x =−4代入y =nx +4n ,求出y =0,即可判断结论①正误;①代入交点坐标整理即可判断结论①正误;①观察函数图象,可知当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,即nx +4n >−x +m ,即可判断结论①正误.【详解】解:①①直线y =−x +m 与y 轴交于负半轴,①m <0;①y =nx +4n (n ≠0)的图象从左往右逐渐上升,①n >0,故结论①正确;①将x =−4代入y =nx +4n ,得y =−4n +4n =0,①直线y =nx +4n 一定经过点(−4,0).故结论①正确;①①直线y =−x +m 与y =nx +4n (n ≠0)的交点的横坐标为−2,①当x =−2时,y =2+m =−2n +4n ,①m =2n −2.故结论①正确;①①当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,①当x >−2时,nx +4n >−x +m ,①()14n x m n +>-故结论①错误.故答案为:①①①.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象.解题的关键在于熟练掌握函数图象与性质.26.1x ≤【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2), ①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.27.(163,4) 【分析】由点D 坐标求出k =12,直线OB 的表达式为y =34x ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x,由平行四边形的面积公式列方程求出x 值即可解答.【详解】解:①反比例函数()0,0k y k x x =>>的图象经过点D (4,3), ①k =4×3=12,①反比例函数的表达式为12y x=, ①点D 在对角线OB 上, ①设直线OB 的表达式为y =mx ,①3=4m ,则m =34, ①直线OB 的表达式为y =34x , ①四边形ABCD 是平行四边形,①BC ①OA ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x, ①OABC 的面积是283, ①(x ﹣16x)·34x =283, 解得:x =163±, ①x >0,①x =163, ①点B 坐标为(163,4), 故答案为:(163,4).【点睛】本题考查待定系数法求函数解析式、反比例函数图象上点的坐标特征、平行四边形的性质、图形与坐标,一元二次方程的解法,熟练掌握反比例函数图象上点的坐标特征和平行四边形的性质是解答的关键.28.20212021(2,2)【分析】由11OA =得到点1B 的坐标,然后利用等腰直角三角形的性质得到点2A 的坐标,进而得到点2B 的坐标,然后再一次类推得到点2022B 的坐标.【详解】解:11,OA =∴点1A 的坐标为()1,0,11OA B 是等腰直角三角形,111,A B ∴=()11,1B ∴,112B A A 是等腰直角三角形,12121,A A B A ∴==212B B A 为等腰直角三角形,232A A ∴=,()22,2B ∴,同理可得,22331134(2,2),(2,2),,(2,2),n n n B B B --202120212022(2,2),B ∴故答案为:20212021(2,2).【点睛】本题考查了正比例函数图象上点的坐标特征、等腰直角三角形的性质,勾股定理的应用,解题的关键是通过等腰直角三角形的性质依次求出系列点B 的坐标找出规律. 29.(1)A 品牌书包单价为150元,B 品牌书包单价为200元(2)当1050m <<时,购买A 品牌书包更省钱;当50m =时,购买两种品牌书包花费相同;当50m >时,购买B 品牌书包更省钱【分析】(1)设A 品牌书包单价为x 元,B 品牌书包单价为y 元,根据所给等量关系列二元一次方程组,即可求解;(2)①根据优惠活动的规则列式即可;②分别计算12w w <,12w w =,12w w >得出m 的取值范围,即可得出结论.【详解】(1)解:设A 品牌书包单价为x 元,B 品牌书包单价为y 元,由题意知25502500x y x y +=⎧⎨+=⎩, 解得150200x y =⎧⎨=⎩, 即A 品牌书包单价为150元,B 品牌书包单价为200元;(2)解:①根据优惠活动的规则可知:10.8150120w m m =⨯⋅=,()210200102000.51001000w m m =⨯+-⨯⨯=+;②当12w w <时,1201001000m m <+,解得50m <, 又10m >,∴当1050m <<时,购买A 品牌书包更省钱;当12w w =时,1201001000m m =+,解得50m =,∴当50m =时,购买两种品牌书包花费相同;当12w w >时,1201001000m m >+,解得50m >,∴当50m >时,购买B 品牌书包更省钱.【点睛】本题考查二元一次方程组的应用,一次函数的应用,解一元一次不等式等知识点,解题的关键是理解题意,正确列出二次一次方程组及函数关系式.30.(1)y 甲=x +1500,y 乙=2.5x (2)选择乙印刷厂比较合算(3)选择甲印刷厂印制宣传材料能多一些.【分析】(1)利用题目中所给等量关系即可求得答案;(2)把800x =分别代入两函数解析式,分别计算y 甲、y 乙的值,比较大小即可; (3)令3000y =代入两函数解析式分别求x 的值,比较大小即可.【详解】解:(1)由题意可得y 甲=x +1500,y 乙=2.5x ;(2)当x =800时,y 甲=2300,y 乙=2000,①y 甲>y 乙,①选择乙印刷厂比较合算;(3)当y =3000时,甲:x =1500,乙:x =1200,①1500>1200,①选择甲印刷厂印制宣传材料能多一些.【点睛】本题主要考查一次函数的应用,利用题目中所给的等量关系求得两函数解析式是解题的关键.31.(1)6,12;(2)D 点坐标为(4,3);(3)>4x .【详解】试题分析:(1)将A (0,6)代入134y x m =-+即可求出m 的值,将B (−2,0)代入1y kx =+即可求出k 的值. (2)根据(1),得到两函数的解析式,组成方程组解求出D 的坐标;(3)由图可直接得出12y y <时自变量x 的取值范围.试题解析:(1)将A (0,6)代入134y x m =-+得,m =6; 将B (−2,0)代入1y kx =+得, 1.2k = (2) 联立12,l l 解析式,即364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:43x y =⎧⎨=⎩, 故D 点坐标为(4,3);(3)由图可知,在D 点右侧时,即4x >时,12y y <. 32.(1)()0,2A ',()3,1B ';(2)123y x =-+. 【分析】(1)根据坐标系中点平移坐标变化规律即可解答.(2)根据(1)点A ,B 经过1个跳步后的对应点A ',B '的坐标在直线AB 经过一个跳步后直线上.利用待定系数法即可求解【详解】解:(1)点()1,4A -经过1个跳步后对应点()0,2A ',点()2,3B 经过1个跳步后对应点()3,1B '.(2)设直线AB 经过一个跳步后对应直线A B ''的函数表达式为y kx b =+,由题意得:2132b k =⎧⎨=+⎩, ①13k =-,2b =. ①直线AB 经过一个跳步后对应直线A B ''的函数表达式为123y x =-+. 【点睛】本题考查了坐标与图形变化-平移和待定系数法求一次函数解析式,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键. 33.(1)12米;(2)s 乙=132t +12. (3)t<8秒;t=8;t>8秒. 【分析】(1)由图象可知,x =0时,y=12,即出发时乙在甲前面12米处.(2)因为甲的图象过点(0,0),(8,64),乙的图象过点(0,12),(8,64),利用待定系数法即可求解.(3)由图象可知它们的交点为(8,64),即8秒时两人相遇,再分别分析x <8和x >8时,两直线的位置即可求出答案.【详解】解:(1)出发时乙在甲的前面12米处.(2)学生甲所走的路程的图象是OA,设s 甲=k1t,当t =8时,s =64,①k1=8,①s甲=8t .学生乙所走路程的图象是BA ,设s甲=k2t+b,将点A (8,64)及点B(0,12)代入,可得2132k =,b =12, ①s甲=132t+12. (3)由图可知OA,BA 的交点A 的坐标是(8,64),则当t <8秒时,甲走在乙的后面;当t =8秒时,他们相遇;当t >8秒时,甲走在乙的前面.【点睛】本题主要考察函数图象信息分析,解决本题的关键是要熟练掌握分析函数图象的。
第十四章《一次函数》同步练习
班级 学号 姓名
得分
一、 填空题(每题3分,共30分)
1..若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n .
2.直线x y 39-=与x 轴交点的坐标是________,与y 轴交点的坐标是_______.
3..函数y = -x +2的图象与x 轴,y 轴围成的三角形面积为 _________________.
4.如右图:一次函数y kx b =+的图象经过A 、B 两点,则△AOC
的面积为___________.
5.一次函数12-=x y 一定不经过第 象限.
6.若直线12-=x y 和直线x m y -=的交点在第三象限,则m 的取值范围是________.
7.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .
8
.函数y =x 的取值范围是_______________. 9.已知一次函数y =2x +4的图像经过点(m ,8),则m =________. 10.已知点P (3a – 1,a + 3)是第二象限内坐标为整数的点,则整数a 的值是___
二、选择题(每题3分,共18分)
11.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正
确的是()
A. B. C.
D.
12.小明的父亲饭后散步,从家中走20分钟到一个离家900米的报
亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明
父亲离家的时间与距离之间的关系是()
A. B. C.
D.
13.函数y=x-2
x+2
的自变量x的取值范围是()
A.x≥-2 B.x>-2 C.x≤-2 D.x<-2
14.下列关系式中,不是函数关系的是()
A.y=-x (x<0) B.y=±x (x>0) C.y=x (x>0) D.y=-x (x>0)
15.若m<0,n>0, 则一次函数y=mx+n的图象不经过()
A.第一象限
B. 第二象限
C.第三象限
D.第四象限
16. 13. 点A(1,m)在函数y=2x的图象上,则m的值是 ( )
1 D.0
A.1
B.2
C.
2
三、解答题(第17题7分,第18—22每题9分,共52分)
17.已知直线y kx b
=+经过点(1,2)和点(1-,4),求这条直线的解析式.
18.已知,直线y =2x +3与直线y =-2x -1. (1) 求两直线与y 轴交点A ,B 的坐标
(2)
求两直线交点C 的坐标; (3) 求△ABC 的面积.
19.王教授和孙子小强经常一起进行早锻
炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时). (1)小强让爷爷先上多少米?
(2)山顶离山脚的距离有多少米?谁先爬上山顶? (3)小强经过多少时间追上爷爷?
20.已知3-y 与x 成正比例,且2=x 时,7=y . (1)求y 与x 的函数关系式;
(2)当2
1
-=x 时,求y 的值;
(3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.
21. 已知弹簧的长度y (厘米)在一定的限度内是所挂物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7. 2厘米,求这个一次函数的关系式.
22.某军加油飞机接到命令,立即给另一架正在飞行
的运输飞机进行空中加油.在加油的过程中,
设运输飞机的油箱余油量为Q1吨,加油飞机的
加油油箱的余油量为Q2吨,加油时间为t分钟,
Q1、Q2与t之间的函数关系如图.回答问题:
(1) 加油飞机的加油油箱中装载了多少吨油?
将这些油全部加给运输飞机需要多少分钟?
(2) 求加油过程中,运输飞机的余油量Q1(吨)
与时间t(分钟)的函数关系式;
(3) 运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?
请通过计算说明理由.
答案:一.1.m= 2n ≠-1 2. (3,0)(0,9) 3.2 4. 9 5.二 6. m <-1 7.y= -3x 8. x ≥5 9. m=2 10. 9. -2,-1,0
二.11. C 12.D 13.B 14. B 15. C 16.B
三.17..3y x =-+18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=1
3+112
⨯⨯()=2
19. (1)60米;(2)300米,小强;(3)8分钟 20.(1)y =2x +3;(2)2;(3)y =2x -5 21. y =0.3x +6
22. (1) 30吨油,需10分钟
(2) 设Q 1=kt +b ,由于过(0,30)和(10,65)点,可求得:Q 1=2.9t +36(0≤t ≤10)
(3) 根据图象可知运输飞机的耗油量为每分钟0.1吨,因此10小时耗油量为
10×60×0.1=60(吨)<65(吨),所以油料够用。