七年级数学一次函数
- 格式:pdf
- 大小:1.20 MB
- 文档页数:8
(每日一练)人教版初中数学一次函数知识点归纳超级精简版单选题在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+ 1、一次函数y=ax+b和反比例函数y=cxbx+c的图象可能是()A.B.C.D.答案:D解析:根据一次函数y=ax+b和反比例函数y=c图象经过的象限,即可得出a<0,b>0,c<0,由此即可得出:x>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象依次二次函数的图象开口向下,对称轴x=−b2a判断即可得出结果.解:观察已知函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=−b2a>0,与y轴的交点在y轴负半轴,故选:D.小提示:此题考查了依据一次函数与反比例函数的图象所经过的象限确定系数的符号,一般形式的二次函数的性质及图象,正确掌握各函数的图象与字母系数的关系是解题的关键.2、若关于x、y的二元一次方程组{4x+2y=3a+13x−y=32a+1的解为非负数,且a使得一次函数y=(a+1)x+3−a图象不过第四象限,那么所有符合条件的整数a的个数是()A.2B.3C.4D.5答案:C解析:由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.解:{4x+2y=3a+13 x−y=32a+1解方程组,得:{x=a+52y=−12a+32,∵方程的解是非负数,∴{a+52≥0−12a+32≥0,解得:−52≤a≤3,∵一次函数y=(a+1)x+3−a图象不过第四象限,∴{a+1>03−a≥0,∴−1<a≤3,∴a的取值范围是−1<a≤3,∴所有符合条件的整数a有:0,1,2,3,共4个;故选:C.小提示:本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a的取值范围.3、已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.答案:A解析:根据一次函数图形的性质,结合题意y1=ax+b和y2=bx+a(a≠b),即可得到答案.①当a>0,b>0,y1、y2的图象都经过一、二、三象限②当a<0,b<0,y1、y2的图象都经过二、三、四象限③当a>0,b<0,y1的图象都经过一、三、四象限,y2的图象都经过一、二、四象限④当a<0,b>0,y1的图象都经过一、二、四象限,y2的图象都经过一、三、四象限满足题意的只有A.故选A.小提示:本题考查一次函数图像,解题的关键是熟练掌握一次函数图像的性质.填空题4、将一次函数y=3x+2的图像向下平移3个单位,则平移后一次函数的图像与y轴的交点坐标是______.答案:(0,−1)解析:根据函数图象平移法则写出平移后函数的解析式,从而确定与y轴的交点坐标即可.一次函数y=3x+2的图象向下平移3个单位,解析式为:y=3x−1,令x=0,得y=−1,∴平移后一次函数的图象与y轴的交点坐标是(0,−1),所以答案是:(0,−1).小提示:本题考查一次函数图象平移以及与坐标轴的交点问题,熟记平移法则,理解函数图象与坐标轴交点的意义是解题关键.5、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点A(x,y)恰好在直线y=−2x+8上的概率是______.答案:112解析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线y=−2x+8上的情况,再利用概率公式求得答案.解:列表如下:∵共有36种等可能的结果,点B(x,y)恰好在直线y=−2x+8上的有:(1,6),(2,4),(3,2),∴点B(x,y)恰好在直线y=−2x+8上的概率是:336=112.所以答案是:112.小提示:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.。
初中数学知识归纳一次函数的概念与性质一次函数是初中数学中的重要内容,它具有简单的形式和规律性的特点。
本文将围绕一次函数的概念和性质展开论述。
一、一次函数的概念一次函数是指函数的最高次数为1的函数,可以表示为y = kx + b的形式,其中k和b为常数,x为自变量,y为因变量。
在一次函数中,自变量x的系数k称为斜率,表示了函数图像的倾斜程度,斜率正负表示了直线的上升或下降趋势;而常数b称为截距,表示了函数图像与y轴的交点。
二、一次函数的性质1. 函数图像为直线:由于一次函数的形式为y = kx + b,故其图像为一条直线。
直线可以用来表示两个变量之间的线性关系,如时间和距离的关系、成本和产量的关系等。
2. 斜率代表变化率:一次函数的斜率k反映了函数图像的倾斜程度。
斜率的绝对值越大,说明函数图像越陡峭;斜率为正表示上升趋势,斜率为负表示下降趋势。
3. 截距代表初始值:一次函数的常数b即截距,表示了函数图像与y轴的交点。
截距决定了函数图像的起点和y轴的交点位置,也可以理解为函数在x=0处的函数值。
4. 变量之间的线性关系:一次函数表示了两个变量之间的线性关系。
斜率k表示了两个变量之间的变化率,而截距b表示了变量在某个初始值时的数值。
三、一次函数的图像特点一次函数的图像有以下几个特点:1. 函数图像为一条直线,呈现出一致的斜率和截距;2. 当斜率为正时,函数图像从左下方朝右上方倾斜;当斜率为负时,函数图像从左上方朝右下方倾斜;3. 当截距为正时,函数图像与y轴的交点在y轴的正半轴上;当截距为负时,函数图像与y轴的交点在y轴的负半轴上;4. 斜率的绝对值越大,函数图像越陡峭;5. 斜率为零时,函数图像平行于x轴,表示了一个常数函数;6. 一次函数的图像可以通过两个点确定,其中一个点可以是截距,另一个点可以通过斜率确定。
四、一次函数的应用举例一次函数广泛应用于日常生活和工作中的各个领域。
以下是一些具体的应用举例:1. 距离和时间的关系:假设一个汽车以固定速度行驶,那么汽车的行驶距离与时间的关系可以用一次函数来表示。
初中数学什么是一次函数的正比例关系一次函数的正比例关系是指函数的解析式形式为y = kx,其中k 是常数。
在初中数学中,正比例关系是一个重要的概念,它描述了两个变量之间的线性关系。
本文将详细介绍一次函数的正比例关系及其相关概念和应用。
一、正比例关系的定义一次函数的正比例关系指的是两个变量之间存在线性关系,即当一个变量的值增加(或减少)时,另一个变量的值也相应地增加(或减少),且变化的比例保持不变。
例如,考虑一个简单的例子,表示两个变量x 和y 的关系。
如果我们发现当x 增加1 个单位时,y 也相应增加2 个单位,那么这两个变量之间就存在正比例关系。
我们可以用一次函数的解析式y = 2x 来表示这个正比例关系,其中的2 就是比例系数。
二、正比例关系的性质和特点1. 比例系数k:一次函数的正比例关系中,比例系数k 是一个常数,它表示了两个变量之间的比例关系。
比例系数可以是正数、负数或零,它决定了变量的增长趋势和方向。
2. 原点(0,0):正比例关系中的一次函数必然通过坐标原点(0,0),即当x 和y 的值都为零时,函数值也为零。
这是因为正比例关系要求两个变量的比例关系在原点(0,0)处成立。
3. 直线图像:正比例关系的一次函数的图像是一条通过原点的直线。
直线的斜率等于比例系数k,表示了变量之间的比例关系。
当比例系数为正时,直线向右上方倾斜;当比例系数为负时,直线向右下方倾斜;当比例系数为零时,直线是水平的。
三、正比例关系的应用正比例关系在实际问题中有着广泛的应用。
以下是一些常见的应用场景:1. 比例尺:地图上的比例尺就是正比例关系的应用。
比例尺表示了地图上距离和实际距离之间的比例关系。
2. 速度和时间:当速度和时间成正比时,可以用一次函数的正比例关系来描述运动的速度变化。
3. 货币兑换:货币兑换中的汇率就是正比例关系的应用。
汇率表示了不同货币之间的比例关系。
4. 材料消耗:在制作产品过程中,材料的消耗量通常与产品数量成正比。
七年级数学定理定义总结大全七年级数学定理定义总结大全:1.一次函数的定义:一次函数是指数可为1的函数,通常表示为y = kx + b,其中k和b为常数,k称为斜率,b称为截距。
2.二次函数的定义:二次函数是指数为2的函数,通常表示为y = ax^2 + bx + c,其中a、b、c为常数,a≠0。
3.函数的定义:函数是一个或多个变量的关系,对于每一个自变量都有唯一的因变量与之对应。
4.全等三角形的定义:两个三角形,如果它们的三边对应相等,三角形的三个内角对应相等,则这两个三角形是全等三角形。
5.平行四边形的定义:两组对边平行且相等的四边形。
6.直角三角形的定义:含有一个直角(90°)的三角形。
7.等腰三角形的定义:两边相等的三角形。
8.等边三角形的定义:三边相等的三角形。
9.两角余弦定理:在三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下公式:cosA = (b^2 + c^2 - a^2)/(2bc)cosB = (a^2 + c^2 - b^2)/(2ac)cosC = (a^2 + b^2 - c^2)/(2ab)10.两角正弦定理:在三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下公式:sinA/a = sinB/b = sinC/c11.两角正切定理:在三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下公式:tanA = (a/b)tanB = (b/a)tanC = (a/c)12.三角形中位定理:对于任意三角形ABC,连接三角形的中点得到三边中点形成的三角形MNP,MNP的中位线平行于ABC的三边,并且中位线的长度等于ABC的三角形的一半。
13.锐角三角函数的定义:在直角三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下定义:sinA = a/ccosA = b/ctanA = a/b14.弧长的定义:圆的弧长是圆周上的一段距离,通常用弧长l表示。
初中数学什么是一次函数它有什么特点一次函数,也被称为线性函数,是初中数学中的一个重要概念。
它是一个以x 的一次方程表示的函数,具有以下形式:f(x) = ax + b,其中a 和 b 是常数。
一次函数在数学中有着广泛的应用,并且具有一些特点和性质。
在本文中,我们将详细讨论一次函数的概念、特点和性质。
一次函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。
其中a 被称为斜率,代表了函数图像的倾斜程度;b 被称为截距,表示函数图像与y 轴的交点。
一次函数的特点和性质如下:1. 直线图像:一次函数的图像是一条直线。
这是因为一次函数是一个一次方程,其图像是一个直线。
直线可以通过两个点来确定,因此我们只需要确定两个点就可以画出一次函数的图像。
2. 斜率:一次函数的斜率决定了函数图像的倾斜程度。
斜率表示了函数在x 方向上的变化率。
当斜率为正时,函数图像向上倾斜;当斜率为负时,函数图像向下倾斜;当斜率为零时,函数图像是水平的。
3. 截距:一次函数的截距决定了函数图像与y 轴的交点。
当x = 0 时,我们可以计算出函数的截距。
截距表示了函数图像与y 轴的位置关系。
4. 增减性:一次函数的增减性由斜率来决定。
当斜率为正时,函数是递增的,即随着x 的增大,函数值也增大;当斜率为负时,函数是递减的,即随着x 的增大,函数值减小。
5. 零点:一次函数的零点表示了函数图像与x 轴的交点。
当函数的值为零时,我们可以求解出函数的零点。
零点表示了函数在x 轴上的位置。
6. 平行和垂直:一次函数的平行和垂直关系可以通过斜率来确定。
如果两个一次函数的斜率相等,则它们是平行的;如果一个函数的斜率是另一个函数斜率的倒数的相反数,则它们是垂直的。
7. 线性关系:一次函数是一种线性关系。
线性关系表示了两个变量之间的直接关系。
在一次函数中,x 和f(x) 之间存在着线性关系,即x 的增加或减少会导致f(x) 的相应变化。
通过以上的讨论,我们可以了解一次函数的概念、特点和性质。
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
初中数学一次函数讲义1.基本概念形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,又称线性函数,其中x为自变量,y为因变量。
当b=0时,即y=kx,被称为正比例函数,是一种特殊的一次函数。
函数特征:(1)k是常数,且k≠0,当k=0时y=b不是一次函数,是偶函数的一种;(2)自变量x和因变量y的次数为1;(3)常数项b可以为任意实数,当b=0时,一次函数为奇函数;(4)一般情况,自变量x和函数值y的取值范围为全体实数R,实际情况应注意取值范围;(5)k决定函数变化趋势,k绝对值越大,函数越接近y轴,反之越接近x 轴,b为直线与y轴的交点,b又被称为截距;(6)一次函数斜率k=tan(α),其中α为函数图像与x轴正方向夹角,α≠0或90°。
表示方法:(1)解析式法:用含有自变量x的式子表示函数的方法;(2)列表法:把一系列x的值对应的函数值y列成表来表示函数关系;(3)图像法:用图像表示函数关系。
2.一次函数图像及其性质2.1图像一次函数图像为xy平面坐标系中不与坐标轴垂直/平行的一条直线。
与x和,0)和(0,b)两点。
对于常数k,b数值的不同引起图像的y轴分别交于(- bk性质变化如下图所示。
一次函数画法:,0)和(0,b)两点,即函数与两点确定一条直线,一般而言,可取(- bkxy坐标轴的交点,连接两点,确定直线。
例题1:证明一次函数图像是一条直线。
解题思路:一次函数满足y=kx+b函数解析式方程,通过验证满足函数任意三点在一条直线上,即可证明一次函数图像为一条直线。
证明:在一次函数图像中取任意三点A(x1,y1),B(x2,y2),C(x3,y3),且x1≠x2≠x3,则满足:A点:y1=kx1+bB点:y2=kx2+bC点:y3=kx3+bAB两点确定的直线斜率为k AB= y2−y1x2−x1= kx2+b−(kx1+b)x2−x1= k;BC两点确定的直线斜率为k BC= y3−y2x3−x2= kx3+b−(kx2+b)x3−x2= k;由上可知,AB和BC确定的直线斜率相同,表明A B C三点在一条直线上,由任意满足函数关系的三点在一条直线上,可证明一次函数图像是一条直线。
七年级下数学第四章知识点:本章主要是关于一次函数的知识,包括一次函数的定义、图像、性质以及一次函数在实际问题中的应用等方面。
下面将针对这些知识点进行详细讲解。
一、一次函数的定义一次函数指的是定义域为实数集合的形如y=kx+b(k,b为常数)的函数。
在一次函数中,k又被称为斜率,b被称为截距。
一次函数还可以表述为y=ax+b的形式,其中a是k的值。
二、一次函数的图像一次函数的图像一般呈直线状,斜率k决定了这条直线的倾斜程度,斜率为正数时向右上方倾斜,斜率为负数时向右下方倾斜,斜率为0时则为水平线。
截距b决定了一次函数图像与y轴的交点。
三、一次函数的性质1. 一次函数的定义域为实数集合。
2. 一次函数的值域也是实数集合。
3. 当斜率k>0时,函数是单调递增的;当斜率k<0时,函数是单调递减的。
4. 当斜率k=0时,函数是水平的;当截距b=0时,函数是经过原点的。
5. 一次函数的最大值和最小值不存在。
四、一次函数在实际问题中的应用1. 一次函数在直线运动的问题中有着广泛应用。
例如汽车以每小时50千米的速度行驶,则汽车行驶x个小时后行驶的距离y就可以用一次函数y=50x来表示。
2. 一次函数在成本、收入和利润等问题中也有着重要的应用。
例如,设某公司的定期成本为100万元,每生产1个单位产品的边际成本为50万元,每售出1个单位产品的售价为100万元,则公司销售x个单位产品的利润可以用一次函数y=50x-100表示。
3. 一次函数还可以用于解决分数的加、减、乘、除等问题。
例如,若x、y为正整数,且x/y=2/3,则x-y/y可以用一次函数y=3x-2y来表示。
综合来看,一次函数是我们数学学科中非常重要的基础内容。
希望学生们能够通过本章学习,掌握一次函数的定义、图像和性质,以及在实际问题中的应用,为更深入的数学学习打下坚实的基础。
初中数学一次函数知识点总结一次函数知识是每年中考的重点知识,是每卷必考的主要内容,本知识点主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.下面是小编为大家整理的关于初中数学一次函数知识点,希望对您有所帮助!初中数学一次函数知识点一次函数的定义一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。
当b=0时,一次函数y=kx,又叫做正比例函数。
1.一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。
2.当b=0,k≠0时,y=kx仍是一次函数。
3.当k=0,b≠0时,它不是一次函数。
4.正比例函数是一次函数的特例,一次函数包括正比例函数。
2一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3.正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;当k>0,b<0时,直线通过一、三、四象限;当k<0,b>0时,直线通过一、二、四象限;当k<0,b<0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
3一次函数的图象与性质的口诀一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
初二数学一次函数知识点总结知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。
初中数学一次函数公式中学数学一次函数常用公式篇11、求函数图像的k值:(y1-y2)/(*1-*2)2、求与*轴平行线段的中点:(*1+*2)/23、求与y轴平行线段的中点:(y1+y2)/24、求任意线段的长:√[(*1-*2)^2+(y1-y2)^2 ]5、求两个一次函数式图像交点坐标:解两函数式两个一次函数 y1=k1*+b1 y2=k2*+b2 令y1=y2 得k1*+b1=k2*+b2 将解得的*=*0值代回y1=k1*+b1 y2=k2*+b2 两式任一式得到y=y0 那么(*0,y0)即为 y1=k1*+b1 与y2=k2*+b2 交点坐标6、求任意2点所连线段的中点坐标:[(*1+*2)/2,(y1+y2)/2]7、求任意2点的连线的一次函数解析式:(*-*1)/(*1-*2)=(Y-y1)/(y1-y2)(假设分母为0,那么分子为0)* y+,+(正,正)在第一象限-,+(负,正)在第二象限-,-(负,负)在第三象限+,-(正,负)在第四象限8、假设两条直线y1=k1*+b1//y2=k2*+b2,那么k1=k2,b1≠b29、如两条直线y1=k1*+b1⊥y2=k2*+b2,那么k1×k2=-110、y=k(*-n)+b就是直线向右平移n个单位y=k(*+n)+b就是直线向左平移n个单位口诀:右减左加(对于y=k*+b来说,只转变n)y=k*+b+n就是向上平移n个单位y=k*+b-n就是向下平移n个单位口诀:上加下减(对于y=k*+b来说,只转变b)11、直线y=k*+b与*轴的交点:(-b/k,0),与y轴的交点:(0,b)中学数学一次函数常用公式篇2设△ABC,∠C=90°(中学是锐角三角函数)AC=b,BC=a,AB=c,正割函数:sec∠A=c/b(斜边:邻边),y=sec*。
在y=sec*中,以*的任一使sec*有意义的值与它对应的y值作为(*,y)。
初中数学一次函数知识点一、一次函数的定义一次函数是指具有形式 $y = kx + b$ 的函数,其中 $k$ 和 $b$ 是常数,$k$ 是斜率,$b$ 是截距。
一次函数的图像是一条直线。
二、斜率($k$)1. 斜率 $k$ 表示函数中 $x$ 每变化一个单位,$y$ 相应变化的量的多少。
斜率是直线的倾斜程度的度量。
2. 当 $k > 0$ 时,函数图像从左下方向右上方倾斜;当 $k < 0$ 时,图像从左上方向右下方倾斜。
3. 当 $k = 0$ 时,函数变为常数函数,即 $y = b$,图像为一条水平直线。
三、截距($b$)1. 截距 $b$ 表示当 $x = 0$ 时,函数 $y$ 的值。
它是直线与$y$ 轴的交点。
2. 当 $b > 0$ 时,直线与 $y$ 轴的交点在原点上方;当 $b <0$ 时,交点在原点下方。
3. 当 $b = 0$ 时,直线通过原点,即图像通过坐标系的 (0,0) 点。
四、图像与系数的关系1. 直线的斜率和截距决定了直线在坐标系中的位置和形状。
2. 斜率和截距的不同组合可以生成不同的直线,但所有这些直线都是一次函数的图像。
五、一次函数的性质1. 一次函数是单调函数,即在整个定义域内,函数值随着自变量的增加而增加或减少。
2. 一次函数的图像不会与自身相交。
3. 一次函数的图像是连续的,并且在任何区间内都是可导的。
六、一次函数的应用1. 一次函数可以用于描述许多现实世界中的问题,如速度与时间的关系、成本与数量的关系等。
2. 在解决实际问题时,通常需要根据实际情况确定函数的斜率和截距。
七、一次函数的运算1. 一次函数可以通过加减乘除等基本运算进行变换。
2. 两个一次函数的和、差、积、商仍然是一次函数。
八、一次函数的图像绘制1. 确定斜率 $k$ 和截距 $b$。
2. 找到与 $y$ 轴的交点 (0, $b$)。
3. 使用斜率 $k$,从截距点开始,沿着斜率方向移动,找到其他点。
\ 1 /0⎨b ⎩ ⎩ ⎪第十九章 一次函数基础知识通关19.1 函数1. 变量与常量:在一个变化过程中,我们称数值发生的量为变量,数值始终 的量为常量。
2. 自变量、函数、函数值:一般地,在一个变化过程中,如果有两个变量 x 与 y ,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是 ,y 是 x 的。
如果当 x=a 时 y=b ,那么 b 叫做当自变量的值为 a 时的 。
3. 解析式:像 y=50-0.1x 这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。
这种式子叫做函数的解析式。
4. 函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内由这些点组成的图形,就是这个函数的图象。
19.2 一次函数5. 一次函数:若两个变量 x,y 间的关系式可以表示成 y=kx+b(k ≠0)的形式,则称 y 是 x 的一次函数(x 为自变量,y 为因变量)。
特别地,当 b=0 时,称 y 是 x 的正比例函数。
(1)b .0 k 0 b 012(2)(3)b . 0 k1 2b 03b 03(1)(2) (3)6. 正比例函数一般式:y=kx (k ≠0),其图象是经过 的一条直线。
7. 正比例函数与一次函数性质正比例函数 y=kx (k ≠0)的图象是一条经过原点的直线, 当 k>0 时,直线 y=kx 经过第一、三象限,y 随 x 的增大而 , 当 k<0 时,直线 y=kx 经过第二、四象限,y 随 x 的增大而 , 在一次函数 y=kx+b (k ≠0)中:当 k>0 时,b>0,y 随 x 的增大而增大,与 y 轴交点在 y 轴正半轴,图象过 象限; 当 k>0 时,b<0,y 随 x 的增大而增大,与 y 轴交点在 y 轴负半轴,图象过 象限; 当 k<0 时,b>0,y 随 x 的增大而减小,与 y 轴交点在 y 轴正半轴,图象过 象限; 当 k<0 时,b<0,y 随 x 的增大而减小,与 y 轴交点在 y 轴负半轴,图象过 象限;8.已知两点坐标求函数解析式:待定系数法9. 一次函数的图象变换直线的平移:⑴当直线 y=kx+b 向左(右)平移 m(m>0)个单位时,可得:y=k(x+m)+b(y=k(x-m)+b); ⑵当直线 y=kx+b 向上(下)平移 n(n>0)个单位时,可得:y=kx+b+n(y=kx+b-n).由一次函数平移的特征可以发现,如果两个一次函数的图象互相平行,则 k 值相等;反之亦然. 直线的对称:⑴直线 y=kx+b 关于 x 轴对称后得到的直线解析式为 ; ⑵直线 y=kx+b 关于 y 轴对称后得到的直线解析式为 ; ⑶直线 y=kx+b 关于原点对称后得到的直线解析式为.解一元一次不等可转化为式 kx+b>0 或kx+b<0(k≠0)10.一次函数与方程和不等式:19.3课题学习选择方案本章知识结构图从图象上看从图象上看解一元一次方程kx+b=0(k≠0)可转化为一次函数 y=kx+b当y=0 时,求 x 值确定直线 y=kx+b与x 的交点横坐标一次函数 y=kx+b求当 y>0 或y<0时,x 的取值范围当y>0 时,直线上的点在 x 轴上方当y<0 时,直线上的点在 x 轴下方\ 2 /单元检测一.选择题(共10 小题)1.一本笔记本5 元,买x 本共付y 元,则5 和y 分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量2.下列曲线中不能表示y 是x 的函数的是()A.B.C.D.3.已知 A、B 两地相距 3 千米,小黄从 A 地到B 地,平均速度为 4 千米/小时,若用 x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)4.函数y=的自变量的取值范围是()A.x≥0 B.x≠2019 C.x≤2019 D.x≥20195.当x=2 时,函数y=﹣x2+1 的值是()A.﹣2 B.﹣1 C.2 D.36.一天,李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家 2000 米B.李师傅修车用了 15 分钟C.修车后李师傅骑车速度是修车前的 2 倍D.李师傅路上耗时 20 分钟7.若函数y=x m+1+1 是一次函数,则常数m 的值是()A.0 B.1 C.﹣1 D.﹣28.一次函数y=ax+b 和y=bx+a 的图象可能是()A.B.C.D.9.若一次函数y=(m﹣1)x﹣3 的图象经过第二、三、四象限,则m 的取范围为()A.m>0 B.m<0 C.m>1 D.m<110.如图,函数y=mx+n 和y=﹣2x 的图象交于点A(a,4),则方程mx+n=﹣2x 的解是()A.x=﹣2B.x=﹣3C.x=﹣4D.不确定\ 3 /11.某物体运动的路程S(厘米)与运动的时间t(秒)之间的关系如图所示.则该物休运动20 秒所经过的路程是厘米.12.函数y=(m﹣4)x是正比例函数,则m=.13.若直线y=kx﹣3 经过点(1,﹣2)和点(0,b),则k﹣b 的值是.14.如图,一次函数y=6﹣x 与正比例函数y=kx 的图象如图所示,则k 的值为.15.已知一次函数的图象经过两点A(﹣1,3),B(2,﹣5),则这个函数的表达式为.16.一次函数y=kx+b,当1≤x≤4 时,3≤y≤6,则k+b=.17.已知正比例函数y=kx(k 是常数,k≠0),当﹣3≤x≤1 时,对应的y 的取值范围是﹣1≤y≤,且y 随x 的减小而减小,则k 的值为.18.如图所示,一次函数y=ax+b 的图象与x 轴交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程﹣ax+b=0 的解是.第18 题图第19 题图19.同一平面直角坐标系中,一次函数y=k1x+b 的图象与一次函数y=k2x 的图象如图所示,则关于x 的方程k1x+b=k2x 的解为.20.“五一黄金周”期间李师傅一家开车去旅游,出发前查看了油箱里有 50 升油,下面的两幅图分别描述了行驶里程及耗油情况,行驶130 公里时,油箱里剩油量为升.\ 4 /21.若一次函数 y=(6﹣3m)x+(2n﹣4)不经过第三象限,求 m、n 的取值范围.22.如图,四边形 ABCD 为菱形,已知 A(3,0),B(0,4).(1)求点 C 的坐标;(2)求经过点 C,D 两点的一次函数的解析式;(3)求菱形 ABCD 的面积.23.如图,函数y=﹣2x+3 与y=﹣x+m 的图象交于P(n,﹣2)(1)m,n 的值;(2)直接写出不等式 -x+m>﹣2x+3 的解集;(3)求出△ABP 的面积.24.已知 O 为原点,点 A(8,0)及在第一象限的动点 P(x,y),且 x+y=8,设△OPA 的面积为 S.(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=12 时,求 P 点坐标;(4)画出函数 S 的图象,\ 5 /\ 6 /25. 某公交车每天的支出费用为 600 元,每天的乘车人数 x (人)与每天利润(利润=票款收入﹣支出费用)y (元)的变化关系如下表所示(每位乘客的乘车票价固定不变):(1) 在这个变化关系中,自变量是什么?因变量是什么? (2) 若要不亏本,该公交车每天乘客人数至少达到多少? (3) 请你判断一天乘客人数为 500 人时,利润是多少?(4) 试写出该公交车每天利润 y (元)与每天乘车人数 x (人)的关系式.四、附加题(共 2小题)26. 某市为支援灾区建设,计划向 A 、B 两受灾地运送急需物资分别为 60 吨和 140 吨,该市甲、乙两地有急需物资分别为 120 吨和 80 吨,已知甲、乙两地运到 A 、B 两地的每吨物资的运费如表所示:x 的取值范围;(2) 求最低总运费,并说明总运费最低时的运送方案.27.五一节快到了,单位组织员工去旅游,参加人数估计为 10 至20 人,甲、乙两家旅行社为了吸引更多的顾客,分别提出了优惠方法,甲旅行社的优惠方法是:买 3 张全票,其余人按半价优惠,乙旅行社的优惠方法是:一律按 6 折优惠,已知两家旅行社的原价均为每人 100 元.(1)分别表示出甲旅行社收费 y1,乙旅行社收费 y2 与旅游人数 x 的函数关系式;(2)随着团体人数的变化,哪家旅行社的收费更优惠?\ 7 /基础知识通关答案1.变化,不变2.自变量,函数,函数值6.原点(0,0)7.增大,减小一、二、三, 一、三、四, 一、二、四, 二、三、四9.y=-kx-b, y=-kx+b, y=kx-b单元检测答案一.选择题(共10 小题)1.【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以 5 和y 分别是常量,变量,据此判断即可.【解答】解:一本笔记本 5 元,买 x 本共付 y 元,则 5 和 y 分别是常量,变量.故选:C.【知识点】12.【分析】根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.【解答】解:A、B、C 选项中,对于一定范围内自变量 x 的任何值,y 都有唯一的值与之相对应,y 是x 的函数;D 选项中,对于一定范围内 x 取值时,y 都有2 个值与之相对应,则 y 不是x 的函数;故选:D.【知识点】23.【分析】根据路程=速度×时间,容易知道 y 与x 的函数关系式.【解答】解:根据题意得:全程需要的时间为:3÷4=(小时)∴y=3﹣4x(0≤x≤).故选:D.【知识点】54.【分析】根据被开方数大于等于 0 列式计算即可得解.【解答】解:根据题意得,2019﹣x≥0,解得 x≤2019.故选:C.【知识点】25.【分析】把x=2 代入函数关系式进行计算即可得解.【解答】解:x=2 时,y=.故选:B.【知识点】26.【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,李师傅上班处距他家 2000 米,故选项 A 正确;李师傅修车用了 15﹣10=5(分钟),故选项 B 错误;修车后李师傅骑车速度是修车前的:=2 倍,故选项C 正确;李师傅路上耗时 20 分钟,故选项 D 正确,故选:B.【知识点】4\ 8 /7.【分析】根据一次函数解析式 y=kx+b(k≠0,k、b 是常数)的结构特征:k≠0;自变量的次数为 1;常数项 b 可以为任意实数.可得 m+1=1,解方程即可.【解答】解:由题意得:m+1=1,解得:m=0,故选:A.【知识点】58.【分析】对于各选项,先确定一条直线的位置得到 a 和b 的符号,然后根据此符号判断另一条直线的位置是否符号要求.【解答】解:依次分析选项可得:A、读图可得,b>0,a>0;两条直线都过一、二、三象限,与图不符;B、读图可得,b>0,a<0;一条直线过一、三、四象限,另一条过一、二、四象限,与图不符;C、读图可得,b<0,a<0;两条直线都过二、三、四象限,与图不符;D、读图可得,b>0,a<0;一条直线过一、三、四象限,另一条过一、二、四象限,与图相符.故选:D.【知识点】79.【分析】一次函数 y=(m﹣1)x﹣3 的图象经过第二、三、四象限,则一次项系数 m﹣1 是负数,即可求得 m 的范围.【解答】解:根据题意得:m﹣1<0,解得:m<1,故选:D.【知识点】710.【分析】把A(a,4)代入 y=﹣2x 求得a 的值,得出 A(﹣2,4),根据方程的解就是两函数图象交点的横坐标即可得出答案.【解答】解:∵y=﹣2x 的图象过点 A(a,4)∴4=﹣2a,解得 a=﹣2∴A(﹣2,4)∵函数 y=mx+n 和 y=﹣2x 的图象交于点 A(﹣2,4)∴方程mx+n=﹣2x 的解是x=﹣2 故选:A.【知识点】10二.填空题(共 10 小题)11.【分析】由图象可求出函数的关系式,再依据关系式,已知一个变量求另一个变量的值.【解答】解:设 S 与 t 的关系式为 S=kt,当 t=4 时,S=10,代入得:k=∴S=t当t=20 时,S==50【知识点】712.【分析】根据正比例函数的定义得到 m2﹣15=1 且m﹣4≠0.【解答】解:∵y=(m﹣4)x 是正比例函数∴m2﹣15=1 且 m﹣4≠0解得 m=4(不合题意,舍去)或 m=﹣4【知识点】613.【分析】把题中所给两点的坐标代入直线解析式计算可得 k 和b 的值.【解答】解:\ 9 /∵直线 y=kx﹣3 经过点(1,﹣2)和点(0,b)∴,解得k=1,b=﹣3∴k﹣b=4.【知识点】714.【分析】将点 A 的横坐标代入 y=6﹣x 可得其纵坐标的值,再将所得点 A 坐标代入 y=kx 可得k.【解答】解:设 A(2,m).把 A (2,m)代入 y=6﹣x 得:m=﹣2+6=4把A (2,4)代入 y=kx 得4=2k,解得 k=2.故答案是:2.【知识点】815.【分析】设直线 AB 的解析式为 y=kx+b,利用待定系数法即可解决问题.【解答】解:设直线 AB 的解析式为 y=kx+b,把A(﹣1,3),B(2,﹣5)两点坐标代入得到:,解得,∴这个函数的解析式为y=﹣x+【知识点】816.【分析】分k>0 和k<0 两种情况,结合一次函数的增减性,可得到关于 k、b 的方程组.【解答】解:当 k>0 时,此函数是增函数∵当 1≤x≤4 时,3≤y≤6∴当 x=1 时,y=3;当 x=4 时,y=6∴,解得当 k<0 时,此函数是减函数∵当 1≤x≤4 时,3≤y≤6∴当 x=1 时,y=6;当 x=4 时,y=3∴,解得:∴k+b=3 或6.【知识点】7,817.【分析】由一次函数的性质,进行运算求解.【解答】解:易知 k>0 时,y 随 x 的减少而减少∴当 x=﹣3 时,y=﹣1,代入正比例函数 y=kx 得:﹣1=﹣3k,解得 k=【知识点】6,718.【分析】由于一次函数 y=ax+b 与y=﹣ax+b 的图象关于 y 轴对称,所以一次函数 y=ax+b 与x 轴的交点(2,0)关于y 轴的对称点即为关于 x 的方程﹣ax+b=0 的解.【解答】解:∵一次函数 y=ax+b 与 y=﹣ax+b 的图象关于 y 轴对称∴一次函数 y=ax+b 与 x 轴的交点关于 y 轴的对称点即为 y=﹣ax+b 与 x 轴的交点\ 10 /又∵一次函数 y=ax+b 的图象与 x 轴交于点(2,0)∴一次函数 y=﹣ax+b 的图象与 x 轴交于点(﹣2,0)∴关于 x 的方程﹣ax+b=0 的解是 x=﹣2【知识点】919.【分析】根据函数图象交点的横坐标是关于 x 的方程的解,可得答案.【解答】解:由函数图象,得两直线的交点坐标是(﹣1,﹣2),所以,关于 x 的方程 k1x+b=k2x 的解为 x=﹣1【知识点】1020.【分析】找准几个关键点进行分析解答即可.【解答】解:由图象可知:当用时 1 小时时,油量剩余 45 升,行驶了 30 公里;当用时在 1﹣2.5 小时之间时,可得:每小时行驶的里程为公里,每小时耗油量为升∴当用时 1+1=2 小时时,此时刚好行驶了 130 公里,此时油箱里的剩油量为:45﹣8×1=37 升【知识点】4,7三.解答题(共 7 小题)21.【分析】若函数 y=kx+b 的图象不经过第三象限,则 k<0,b≥0,由此可以确定 m、n 的取值范围.【解答】解:∵y=(6﹣3m)x+(2n﹣4)不经过第三象限∴6﹣3m<0,2n﹣4≥0故 m>2,n≥2【知识点】722.【分析】(1)利用勾股定理求出 AB,再利用菱形的性质求出 OC 的长即可.(2)求出 C,D 两点坐标,利用待定系数法即可解决问题.(3)利用菱形的面积公式计算即可.【解答】解:(1)∵A(3,0),B(0,4)∴OA=3,OB=4∴AB=5∵四边形 ABCD 是菱形∴BC=AB=5∴OC=1∴C(0,﹣1)(2)由题意 C(0,﹣1),D(3,﹣5),设直线 CD 的解析式为 y=kx+b,则有,解得∴直线CD 的解析式为y=﹣x﹣1(3)S=5×3=15菱形 ABCD【知识点】823.【分析】(Ⅰ)先把P(n,﹣2)代入y=﹣2x+3 求出n 得到P(,﹣2),然后把P 点坐标代入y=﹣x+m 求出m;(Ⅱ)写出直线y=﹣x+m 在直线y=﹣2x+3 的上方所对应的自变量的范围即可;(Ⅲ)先求出 A、B 的坐标,然后利用三角形面积公式计算即可.【解答】解:(Ⅰ)把P(n,﹣2)代入y=﹣2x+3 得﹣2n+3=﹣2,解得n=;∴P(,﹣2)把P(,﹣2)代入y=﹣x+m 得﹣+m=﹣2,解得m=﹣(Ⅱ)不等式﹣x+m>﹣2x+3 的解集为x>;(Ⅲ)当 x=0 时,y=﹣2x+3=3,则 A(0,3)当x=0 时,y=﹣x﹣=﹣,则B(0,﹣)75所以△ABP 的面积=×(3+ )×=16【知识点】8,1024.【分析】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点 P 在第一象限即可得出结论;(3)把S=12 代入(1)中函数关系即可得出 x 的值,进而得出 y 的值;(4)利用描点法画出函数图象即可.【解答】解:(1)∵A 和 P 点的坐标分别是(8,0)、(x,y)∴S=×8×y=4y∵x+y=8∴y=8﹣x∴S=4(8﹣x)=32﹣4x∴所求的函数关系式为:S=﹣4x+32(2)由(1)得 S=﹣4x+32>0,解得:x<8又∵点 P 在第一象限S∴x>0综上可得 x 的范围为:0<x<8(3)∵S=12∴﹣4x+32=12,解得 x=5∵x+y=8∴y=8﹣5=3,即 P(5,3)(4)∵解析式为 S=﹣4x+32∴函数图象经过点(8,0)(0,32)(但不包括这两点的线段)所画图象如图【知识点】725.【分析】(1) 在变化过程中,哪个变量是随着哪个变量的变化而变化的,从而确定自变量、因变量;(2) 从表格中可以看出,当利润 y =0 时,相应的人数 x =300,从而得出答案;(3) 从表格中所列数据可以看出,当人数 x 每增加 50 人,利润 y 就相应的增加 100 元,通过推算可得出结果;(4) 根据表格中两个变量的变化规律,可以直接写出函数的关系式,【解答】解:(1)在这个变化关系中,自变量是每天的乘车人数 x (人);因变量是每天利润 y (元);(2) 当 y =0 时,x =300因此要不亏本,该公交车每天乘客人数至少达到 300 人(3)200+100× =400 元因此当一天乘客人数为 500 人时,利润是 400 元(4)y =100×=2x ﹣600 【知识点】1,4四、附加题(共 2 小题)26.【分析】(1) 设甲地运到 A 地的急需物资为 x 吨,则运到 B 地(120﹣x )吨,乙地运到 A 地(60﹣x )吨,运到 B 地(x+20)吨,根据题意即可求得总运费 y 与 x 的函数关系式;(2) 由(1)中的函数解析式,即可得 y 随 x 的增大而增大,则可求得何时总运费最低,继而可求得总运费最低时的运输方案.【解答】解:(1) 设甲地运到 A 地的急需物资为 x 吨,则运到 B 地(120﹣x )吨,乙地运到 A 地(60﹣x )吨,运到 B 地(x+20)吨.可得:y =20x+25(120﹣x )+15(60﹣x )+24(20+x )即 y =4x+4380(0≤x ≤60)(2) ∵k =4>0 ∴y 随 x 的增大而增大,当 x =0 时,最低费用 y =4380(元)方案:甲运往 B 地 120 吨,乙运 A 地 60 吨.乙运 B 地 20 吨.【知识点】7,一次函数的应用27.【分析】(1)根据甲、乙两旅行社的优惠方法,找出甲旅行社收费 y 1,乙旅行社收费 y 2 与旅游人数x 的函数关系式;(2)分 y 1<y 2,y 1=y 2,y 1>y 2 三种情况找出 x 的取值范围或 x 的值,此题得解.【解答】解:(1)根据题意得:y 1=100×3+100× (x ﹣3)=50x+150;y 2=100×60%x =60x .(2) 当 y 1=y 2 时,即 50x+150=60x ,解得:x =15;当 y 1<y 2 时,即 50x+150<60x ,解得:x >15,当 y1>y2时,即 50x+150>60x,解得:x<15,综上所述:当 10≤x<15 时,乙旅行社收费更优惠;当旅游的人数为 15 人时,甲、乙旅行社收费一样;当 15<x≤20 时,甲旅行社收费更优惠.【知识点】10。
一次函数的数学知识点汇总一次函数的数学知识点汇总一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
一次函数在初中数学中的地位和作用
一次函数在初中数学中扮演着重要的角色,是学生首次接触到函数概念时接触到的基本形式。
一次函数的学习不仅帮助学生理解数学中的抽象概念,还培养了学生的逻辑思维能力和解决实际问题的能力。
具体来说,一次函数有以下3个作用:
1.帮助学生理解函数概念:初中阶段是学生首次接触到函数概念的时候,一次
函数作为函数的基础形式,通过对其性质和图像的学习,学生可以逐渐掌握函数的概念和自变量与因变量的关系,为后续学习更复杂的函数打下基础。
2.培养逻辑思维能力:在学习一次函数的过程中,学生需要掌握一次函数的基
本性质,如函数的定义域、值域、单调性、零点等。
通过分析函数的性质和解决相关问题,学生可以进行逻辑思维的运算和推理,培养了他们的逻辑思维能力。
3.解决实际问题:在中学数学中,很多实际问题可以用一次函数来描述和解决。
比如,利润与销量之间的关系、距离与时间之间的关系等等。
通过学习一次函数的相关知识,学生可以将实际问题抽象为一次函数的形式,并通过解方程、求函数值等方法来解决问题。
这样的学习过程不仅能够提高学生的数学能力,还能够培养学生的问题解决能力和实际应用能力。
一次函数在初中数学中具有不可忽视的地位和作用,能够帮助学生理解函数概念,培养逻辑思维能力,解决实际问题,以及更好地理解其他数学概念。
因此,中学应该重视一次函数的教学,注重培养学生的数学思维和解决问题的能力。
1/ 1。